Proof (completed)

Q. How many h's cause x and y to collide?

A. There are m choices for each of a_1, a_2, …, a_r, but once these are chosen, exactly one choice for a_0 causes x and y to collide, namely

$$\sum_{i=1}^{r} \cdot \left(x_0 - y_0 - \sum_{1}^{r} \right) = \left(x_i - y_i \right) \mod m.$$

Thus, the number of h's that cause x and y to collide is $m^r \cdot 1 = m^r = |H|/m$.

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

Introduction to Algorithms

Hashing II

- Universal hashing
- Universality theorem
- Constructing a set of universal hash functions
- Perfect hashing

Prof. Charles E. Leiserson
A weakness of hashing

Problem: For any hash function h, a set of keys exists that can cause the average access time of a hash table to skyrocket.

- An adversary can pick all keys from $\{k \in U : h(k) = i\}$ for some slot i.

Idea: Choose the hash function at random, independently of the keys.

- Even if an adversary can see your code, he or she cannot find a bad set of keys, since he or she doesn’t know exactly which hash function will be chosen.
Universal hashing

Definition. Let U be a universe of keys, and let \mathcal{H} be a finite collection of hash functions, each mapping U to $\{0, 1, \ldots, m{-1}\}$. We say \mathcal{H} is universal if for all $x, y \in U$, where $x \neq y$, we have $|\{h \in \mathcal{H} : h(x) = h(y)\}| = |\mathcal{H}| / m$.

That is, the chance of a collision between x and y is $1/m$ if we choose h randomly from \mathcal{H}.

\[
\begin{align*}
\mathcal{H} & \quad \{h : h(x) = h(y)\} \\
|\mathcal{H}| / m & \quad \text{ Chance of collision }
\end{align*}
\]
Universality is good

Theorem. Let h be a hash function chosen (uniformly) at random from a universal set \mathcal{H} of hash functions. Suppose h is used to hash n arbitrary keys into the m slots of a table T. Then, for a given key x, we have

$$E[\#\text{collisions with } x] < \frac{n}{m}.$$
Proof of theorem

Proof. Let C_x be the random variable denoting the total number of collisions of keys in T with x, and let

$$c_{xy} = \begin{cases}
1 & \text{if } h(x) = h(y), \\
0 & \text{otherwise.}
\end{cases}$$

Note: $E[c_{xy}] = 1/m$ and $C_x = \sum_{y \in T \setminus \{x\}} c_{xy}$.
Proof (continued)

\[E[C_x] = E \left[\sum_{y \in T - \{x\}} c_{xy} \right] \]

• Take expectation of both sides.
Proof (continued)

\[E[C_x] = E \left[\sum_{y \in T - \{x\}} c_{xy} \right] \]

\[= \sum_{y \in T - \{x\}} E[c_{xy}] \]

- Take expectation of both sides.
- Linearity of expectation.
Proof (continued)

\[E[C_x] = E \left[\sum_{y \in T - \{x\}} c_{xy} \right] \]

\[= \sum_{y \in T - \{x\}} E[c_{xy}] \]

\[= \sum_{y \in T - \{x\}} 1/m \]

- Take expectation of both sides.
- Linearity of expectation.
- \(E[c_{xy}] = 1/m. \)
Proof (continued)

\[
E[C_x] = E \left[\sum_{y \in T - \{x\}} c_{xy} \right]
\]

\[
= \sum_{y \in T - \{x\}} E[c_{xy}]
\]

\[
= \sum_{y \in T - \{x\}} 1/m
\]

\[
= \frac{n - 1}{m}.
\]

- Take expectation of both sides.
- Linearity of expectation.
- \(E[c_{xy}] = 1/m. \)
- Algebra.
Constructing a set of universal hash functions

Let m be prime. Decompose key k into $r + 1$ digits, each with value in the set $\{0, 1, \ldots, m-1\}$. That is, let $k = \langle k_0, k_1, \ldots, k_r \rangle$, where $0 \leq k_i < m$.

Randomized strategy:

Pick $a = \langle a_0, a_1, \ldots, a_r \rangle$ where each a_i is chosen randomly from $\{0, 1, \ldots, m-1\}$.

Define $h_a(k) = \sum_{i=0}^{r} a_i k_i \mod m$.

Dot product, modulo m

How big is $\mathcal{H} = \{ h_a \}$?

$|\mathcal{H}| = m^{r+1}$.

REMEMBER THIS!
Universality of dot-product hash functions

Theorem. The set $\mathcal{H} = \{h_a\}$ is universal.

Proof. Suppose that $x = \langle x_0, x_1, \ldots, x_r \rangle$ and $y = \langle y_0, y_1, \ldots, y_r \rangle$ be distinct keys. Thus, they differ in at least one digit position, wlog position 0. For how many $h_a \in \mathcal{H}$ do x and y collide?

We must have $h_a(x) = h_a(y)$, which implies that

$$\sum_{i=0}^{r} a_i x_i \equiv \sum_{i=0}^{r} a_i y_i \pmod{m}.$$
Proof (continued)

Equivalently, we have

$$\sum_{i=0}^{r} a_i (x_i - y_i) \equiv 0 \pmod{m}$$

or

$$a_0 (x_0 - y_0) + \sum_{i=1}^{r} a_i (x_i - y_i) \equiv 0 \pmod{m},$$

which implies that

$$a_0 (x_0 - y_0) \equiv -\sum_{i=1}^{r} a_i (x_i - y_i) \pmod{m}.$$
Fact from number theory

Theorem. Let m be prime. For any $z \in \mathbb{Z}_m$ such that $z \neq 0$, there exists a unique $z^{-1} \in \mathbb{Z}_m$ such that

$$z \cdot z^{-1} \equiv 1 \pmod{m}.$$

Example: $m = 7$.

$$
\begin{array}{ccccccccc}
z & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
z^{-1} & 1 & 4 & 5 & 2 & 3 & 6
\end{array}
$$
Back to the proof

We have

\[a_0(x_0 - y_0) \equiv -\sum_{i=1}^{r} a_i(x_i - y_i) \pmod{m}, \]

and since \(x_0 \neq y_0 \), an inverse \((x_0 - y_0)^{-1} \) must exist, which implies that

\[a_0 \equiv \left(-\sum_{i=1}^{r} a_i(x_i - y_i) \right) \cdot (x_0 - y_0)^{-1} \pmod{m}. \]

Thus, for any choices of \(a_1, a_2, \ldots, a_r \), exactly one choice of \(a_0 \) causes \(x \) and \(y \) to collide.
Proof (completed)

Q. How many h_a’s cause x and y to collide?

A. There are m choices for each of a_1, a_2, \ldots, a_r, but once these are chosen, exactly one choice for a_0 causes x and y to collide, namely

$$a_0 = \left(\left(- \sum_{i=1}^{r} a_i (x_i - y_i) \right) \cdot (x_0 - y_0)^{-1} \right) \mod m.$$

Thus, the number of h’s that cause x and y to collide is $m^r \cdot 1 = m^r = |H|/m$.

Since $|H| = m^r + 1$.

Perfect hashing

Given a set of n keys, construct a static hash table of size $m = O(n)$ such that SEARCH takes $\Theta(1)$ time in the worst case.

Idea: Two-level scheme with universal hashing at both levels.

No collisions at level 2!
Collisions at level 2

Theorem. Let \mathcal{H} be a class of universal hash functions for a table of size $m = n^2$. Then, if we use a random $h \in \mathcal{H}$ to hash n keys into the table, the expected number of collisions is at most $1/2$.

Proof. By the definition of universality, the probability that 2 given keys in the table collide under h is $1/m = 1/n^2$. Since there are $\binom{n}{2}$ pairs of keys that can possibly collide, the expected number of collisions is

$$\binom{n}{2} \cdot \frac{1}{n^2} = \frac{n(n-1)}{2} \cdot \frac{1}{n^2} < \frac{1}{2}.$$
No collisions at level 2

Corollary. The probability of no collisions is at least $1/2$.

Proof. *Markov’s inequality* says that for any nonnegative random variable X, we have

$$\Pr\{X \geq t\} \leq \frac{E[X]}{t}.$$

Applying this inequality with $t = 1$, we find that the probability of 1 or more collisions is at most $1/2$.

Thus, just by testing random hash functions in \mathcal{H}, we’ll quickly find one that works.
Analysis of storage

For the level-1 hash table T, choose $m = n$, and let n_i be random variable for the number of keys that hash to slot i in T. By using n_i^2 slots for the level-2 hash table S_i, the expected total storage required for the two-level scheme is therefore

$$E\left[\sum_{i=0}^{m-1} \Theta(n_i^2)\right] = \Theta(n),$$

since the analysis is identical to the analysis from recitation of the expected running time of bucket sort. (For a probability bound, apply Markov.)