Randomly built binary search trees

- Expected node depth
- Analyzing height
 - Convexity lemma
 - Jensen’s inequality
 - Exponential height
- Post mortem

Prof. Erik Demaine
Binary-search-tree sort

\[T \leftarrow \emptyset \quad \triangleright \text{Create an empty BST} \]

for \(i = 1 \) to \(n \)

\[\text{do } \text{TREE-INSERT}(T, A[i]) \]

Perform an inorder tree walk of \(T \).

Example:
\[A = [3 \ 1 \ 8 \ 2 \ 6 \ 7 \ 5] \]

Tree-walk time = \(O(n) \),
but how long does it take to build the BST?
BST sort performs the same comparisons as quicksort, but in a different order!

The expected time to build the tree is asymptotically the same as the running time of quicksort.
Node depth

The depth of a node = the number of comparisons made during TREE-INSERT. Assuming all input permutations are equally likely, we have

Average node depth

\[
= \frac{1}{n} E \left[\sum_{i=1}^{n} (#\text{comparisons to insert node } i) \right]
\]

\[
= \frac{1}{n} O(n \lg n) \quad \text{(quicksort analysis)}
\]

\[
= O(\lg n) .
\]
Expected tree height

But, average node depth of a randomly built BST = $O(\lg n)$ does not necessarily mean that its expected height is also $O(\lg n)$ (although it is).

Example.

\[
\text{Expected tree height} = \Theta(\sqrt{n})
\]

\[
\text{Average depth} \leq \frac{1}{n} \left(n \cdot \lg n + \frac{\sqrt{n} \cdot \sqrt{n}}{2} \right) = O(\lg n)
\]
Height of a randomly built binary search tree

Outline of the analysis:

• Prove *Jensen’s inequality*, which says that
 \(f(E[X]) \leq E[f(X)] \) for any convex function \(f \) and random variable \(X \).

• Analyze the *exponential height* of a randomly built BST on \(n \) nodes, which is the random variable \(Y_n = 2^{X_n} \), where \(X_n \) is the random variable denoting the height of the BST.

• Prove that \(2^{E[X_n]} \leq E[2^{X_n}] = E[Y_n] = O(n^3) \), and hence that \(E[X_n] = O(\lg n) \).
Convex functions

A function $f : \mathbb{R} \to \mathbb{R}$ is **convex** if for all $\alpha, \beta \geq 0$ such that $\alpha + \beta = 1$, we have

$$f(\alpha x + \beta y) \leq \alpha f(x) + \beta f(y)$$

for all $x, y \in \mathbb{R}$.
Convexity lemma

Lemma. Let \(f : \mathbb{R} \rightarrow \mathbb{R} \) be a convex function, and let \(\alpha_1, \alpha_2, \ldots, \alpha_n \) be nonnegative real numbers such that \(\sum_k \alpha_k = 1 \). Then, for any real numbers \(x_1, x_2, \ldots, x_n \), we have

\[
 f\left(\sum_{k=1}^{n} \alpha_k x_k \right) \leq \sum_{k=1}^{n} \alpha_k f(x_k).
\]

Proof. By induction on \(n \). For \(n = 1 \), we have \(\alpha_1 = 1 \), and hence \(f(\alpha_1 x_1) \leq \alpha_1 f(x_1) \) trivially.
Proof (continued)

Inductive step:

\[
f\left(\sum_{k=1}^{n} \alpha_k x_k\right) = f\left(\alpha_n x_n + (1 - \alpha_n) \sum_{k=1}^{n-1} \frac{\alpha_k}{1 - \alpha_n} x_k\right)
\]

Algebra.
Proof (continued)

Inductive step:

\[
f\left(\sum_{k=1}^{n} \alpha_k x_k \right) = f\left(\alpha_n x_n + (1 - \alpha_n) \sum_{k=1}^{n-1} \frac{\alpha_k}{1 - \alpha_n} x_k \right)
\leq \alpha_n f(x_n) + (1 - \alpha_n) f\left(\sum_{k=1}^{n-1} \frac{\alpha_k}{1 - \alpha_n} x_k \right)
\]

Convexity.
Proof (continued)

Inductive step:

\[
f\left(\sum_{k=1}^{n} \alpha_k x_k\right) = f\left(\alpha_n x_n + (1 - \alpha_n) \sum_{k=1}^{n-1} \frac{\alpha_k}{1 - \alpha_n} x_k\right)
\]

\[
\leq \alpha_n f(x_n) + (1 - \alpha_n) f\left(\sum_{k=1}^{n-1} \frac{\alpha_k}{1 - \alpha_n} x_k\right)
\]

\[
\leq \alpha_n f(x_n) + (1 - \alpha_n) \sum_{k=1}^{n-1} \frac{\alpha_k}{1 - \alpha_n} f(x_k)
\]

Induction.
Proof (continued)

Inductive step:

\[
f\left(\sum_{k=1}^{n} \alpha_k x_k\right) = f\left(\alpha_n x_n + (1 - \alpha_n) \sum_{k=1}^{n-1} \frac{\alpha_k}{1 - \alpha_n} x_k\right)\]

\[
\leq \alpha_n f(x_n) + (1 - \alpha_n) f\left(\sum_{k=1}^{n-1} \frac{\alpha_k}{1 - \alpha_n} x_k\right)\]

\[
\leq \alpha_n f(x_n) + (1 - \alpha_n) \sum_{k=1}^{n-1} \frac{\alpha_k}{1 - \alpha_n} f(x_k)\]

\[
= \sum_{k=1}^{n} \alpha_k f(x_k) . \quad \text{Algebra.}\]
Convexity lemma: infinite case

Lemma. Let \(f : \mathbb{R} \to \mathbb{R} \) be a convex function, and let \(\alpha_1, \alpha_2, \ldots, \) be nonnegative real numbers such that \(\sum_k \alpha_k = 1 \). Then, for any real numbers \(x_1, x_2, \ldots, \) we have

\[
f \left(\sum_{k=1}^{\infty} \alpha_k x_k \right) \leq \sum_{k=1}^{\infty} \alpha_k f(x_k),
\]

assuming that these summations exist.
Convexity lemma: infinite case

Proof. By the convexity lemma, for any $n \geq 1$,

$$f\left(\sum_{k=1}^{n} \frac{\alpha_k}{\sum_{i=1}^{n} \alpha_i} x_k\right) \leq \sum_{k=1}^{n} \frac{\alpha_k}{\sum_{i=1}^{n} \alpha_i} f(x_k).$$
Convexity lemma: infinite case

Proof. By the convexity lemma, for any \(n \geq 1 \),

\[
f \left(\sum_{k=1}^{n} \frac{\alpha_k}{\sum_{i=1}^{n} \alpha_i} x_k \right) \leq \sum_{k=1}^{n} \frac{\alpha_k}{\sum_{i=1}^{n} \alpha_i} f(x_k).\]

Taking the limit of both sides (and because the inequality is not strict):

\[
\lim_{n \to \infty} f \left(\frac{1}{\sum_{i=1}^{n} \alpha_i} \sum_{k=1}^{n} \alpha_k x_k \right) \leq \lim_{n \to \infty} \frac{1}{\sum_{i=1}^{n} \alpha_i} \sum_{k=1}^{n} \alpha_k f(x_k).
\]
Jensen’s inequality

Lemma. Let f be a convex function, and let X be a random variable. Then, $f(E[X]) \leq E[f(X)]$.

Proof.

$$f(E[X]) = f\left(\sum_{k=-\infty}^{\infty} k \cdot \Pr\{X = k\}\right)$$

Definition of expectation.
Jensen’s inequality

Lemma. Let f be a convex function, and let X be a random variable. Then, $f(E[X]) \leq E[f(X)]$.

Proof.

$$f(E[X]) = f\left(\sum_{k=-\infty}^{\infty} k \cdot \Pr\{X = k\} \right)$$

$$\leq \sum_{k=-\infty}^{\infty} f(k) \cdot \Pr\{X = k\}$$

Convexity lemma (infinite case).
Jensen’s inequality

Lemma. Let f be a convex function, and let X be a random variable. Then, $f(E[X]) \leq E[f(X)]$.

Proof.

\[
f(E[X]) = f \left(\sum_{k=-\infty}^{\infty} k \cdot \Pr\{X = k\} \right)
\]

\[
\leq \sum_{k=-\infty}^{\infty} f(k) \cdot \Pr\{X = k\}
\]

\[
= E[f(X)].
\]

Tricky step, but true—think about it.
Analysis of BST height

Let X_n be the random variable denoting the height of a randomly built binary search tree on n nodes, and let $Y_n = 2^{X_n}$ be its exponential height.

If the root of the tree has rank k, then

$$X_n = 1 + \max\{X_{k-1}, X_{n-k}\},$$

since each of the left and right subtrees of the root are randomly built. Hence, we have

$$Y_n = 2 \cdot \max\{Y_{k-1}, Y_{n-k}\}.$$
Define the indicator random variable Z_{nk} as

$$Z_{nk} = \begin{cases} 1 & \text{if the root has rank } k, \\ 0 & \text{otherwise.} \end{cases}$$

Thus, $\Pr\{Z_{nk} = 1\} = E[Z_{nk}] = 1/n$, and

$$Y_n = \sum_{k=1}^{n} Z_{nk} (2 \cdot \max\{Y_{k-1}, Y_{n-k}\}) .$$
Exponential height recurrence

\[E[Y_n] = E\left[\sum_{k=1}^{n} Z_{nk} \left(2 \cdot \max\{Y_{k-1}, Y_{n-k}\} \right) \right] \]

Take expectation of both sides.
Exponential height recurrence

\[E[Y_n] = E\left[\sum_{k=1}^{n} Z_{nk} \left(2 \cdot \max \{Y_{k-1}, Y_{n-k}\} \right) \right] \]

\[= \sum_{k=1}^{n} E[Z_{nk} \left(2 \cdot \max \{Y_{k-1}, Y_{n-k}\} \right)] \]

Linearity of expectation.
Exponential height recurrence

\[E[Y_n] = E \left[\sum_{k=1}^{n} Z_{nk} \left(2 \cdot \max \{Y_{k-1}, Y_{n-k}\} \right) \right] \]

\[= \sum_{k=1}^{n} E \left[Z_{nk} \left(2 \cdot \max \{Y_{k-1}, Y_{n-k}\} \right) \right] \]

\[= 2 \sum_{k=1}^{n} E[Z_{nk}] \cdot E[\max \{Y_{k-1}, Y_{n-k}\}] \]

Independence of the rank of the root from the ranks of subtree roots.
Exponential height recurrence

\[E[Y_n] = E \left[\sum_{k=1}^{n} Z_{nk} \left(2 \cdot \max \{ Y_{k-1}, Y_{n-k} \} \right) \right] \]

\[= \sum_{k=1}^{n} E[Z_{nk} \left(2 \cdot \max \{ Y_{k-1}, Y_{n-k} \} \right)] \]

\[= 2 \sum_{k=1}^{n} E[Z_{nk}] \cdot E[\max \{ Y_{k-1}, Y_{n-k} \}] \]

\[\leq 2 \sum_{k=1}^{n} E[Y_{k-1} + Y_{n-k}] \]

The max of two nonnegative numbers is at most their sum, and \(E[Z_{nk}] = 1/n \).
Exponential height recurrence

\[E[Y_n] = E\left[\sum_{k=1}^{n} Z_{nk} \left(2 \cdot \max\{Y_{k-1}, Y_{n-k}\} \right) \right] \]

\[= \sum_{k=1}^{n} E[Z_{nk} \left(2 \cdot \max\{Y_{k-1}, Y_{n-k}\} \right)] \]

\[= 2 \sum_{k=1}^{n} E[Z_{nk}] \cdot E[\max\{Y_{k-1}, Y_{n-k}\}] \]

\[\leq 2 \sum_{k=1}^{n} E[Y_{k-1} + Y_{n-k}] \]

\[= \frac{4}{n} \sum_{k=0}^{n-1} E[Y_k] \]

Each term appears twice, and reindex.
Solving the recurrence

Use substitution to show that $E[Y_n] \leq cn^3$ for some positive constant c, which we can pick sufficiently large to handle the initial conditions.

$$E[Y_n] = \frac{4}{n} \sum_{k=0}^{n-1} E[Y_k]$$
Solving the recurrence

Use substitution to show that $E[Y_n] \leq cn^3$ for some positive constant c, which we can pick sufficiently large to handle the initial conditions.

\[
E[Y_n] = 4 \sum_{k=0}^{n-1} E[Y_k]
\leq 4 \sum_{k=0}^{n-1} ck^3
\]

Substitution.
Solving the recurrence

Use substitution to show that $E[Y_n] \leq cn^3$ for some positive constant c, which we can pick sufficiently large to handle the initial conditions.

$$
E[Y_n] = \frac{4}{n} \sum_{k=0}^{n-1} E[Y_k] \\
\leq \frac{4}{n} \sum_{k=0}^{n-1} c k^3 \\
\leq \frac{4c}{n} \int_0^n x^3 \, dx
$$

Integral method.
Solving the recurrence

Use substitution to show that \(E[Y_n] \leq cn^3 \) for some positive constant \(c \), which we can pick sufficiently large to handle the initial conditions.

\[
E[Y_n] = 4 \sum_{k=0}^{n-1} E[Y_k] \\
\leq 4 \sum_{k=0}^{n-1} c k^3 \\
\leq \frac{4c}{n} \int_0^n x^3 \, dx \\
= \frac{4c}{n} \left(\frac{n^4}{4} \right)
\]

Solve the integral.
Solving the recurrence

Use substitution to show that \(E[Y_n] \leq cn^3 \) for some positive constant \(c \), which we can pick sufficiently large to handle the initial conditions.

\[
E[Y_n] = 4 \sum_{k=0}^{n-1} E[Y_k] \\
\leq 4 \sum_{k=0}^{n-1} ck^3 \\
\leq \frac{4c}{n} \int_0^n x^3 \, dx \\
= 4c \left(\frac{n^4}{4} \right) \\
= cn^3. \quad \text{Algebra.}
\]
The grand finale

Putting it all together, we have

\[2^{E[X_n]} \leq E[2^{X_n}] \]

Jensen’s inequality, since \(f(x) = 2^x \) is convex.
The grand finale

Putting it all together, we have

\[2^{E[X_n]} \leq E[2^{X_n}] \]
\[= E[Y_n] \]

Definition.
The grand finale

Putting it all together, we have

\[2^{E[X_n]} \leq E[2^{X_n}] \]

\[= E[Y_n] \]

\[\leq cn^3. \]

What we just showed.
The grand finale

Putting it all together, we have

\[2^{E[X_n]} \leq E[2^{X_n}] \]
\[= E[Y_n] \]
\[\leq cn^3. \]

Taking the \(\lg \) of both sides yields

\[E[X_n] \leq 3 \lg n + O(1). \]
Post mortem

Q. Does the analysis have to be this hard?

Q. Why bother with analyzing exponential height?

Q. Why not just develop the recurrence on

\[X_n = 1 + \max\{X_{k-1}, X_{n-k}\} \]

directly?
Post mortem (continued)

A. The inequality

$$\max\{a, b\} \leq a + b.$$

provides a poor upper bound, since the RHS approaches the LHS slowly as $|a - b|$ increases. The bound

$$\max\{2^a, 2^b\} \leq 2^a + 2^b$$

allows the RHS to approach the LHS far more quickly as $|a - b|$ increases. By using the convexity of $f(x) = 2^x$ via Jensen’s inequality, we can manipulate the sum of exponentials, resulting in a tight analysis.
Thought exercises

- See what happens when you try to do the analysis on X_n directly.
- Try to understand better why the proof uses an exponential. Will a quadratic do?
- See if you can find a simpler argument. (This argument is a little simpler than the one in the book—I hope it’s correct!)