Late-Term Exam Review

PPT by Brandon Fain
Course Evaluations

• I want to stress that we take this seriously.

• Part of the reason this lab exists is in response to student feedback.

• Please let us know what you liked and did not like, what we should keep and what we can make better.
Course Evaluations

• Go to https://dukehub.duke.edu/

2. Click on the Evaluation icon (see image below) to begin the evaluation process. A course evaluation form will open up.
Late-Term Exam Format

• 4 problems, each will ask you to write and analyze an algorithm

• 2 from graph theory
 • Connectivity: DFS, connected components, cycles, topological sort
 • Short paths: BFS, Dijkstra’s, Bellman-Ford
 • Spanning Trees: Greedy, Prim, Kruskal

• 2 from other topics from lecture
 • Polynomial multiplication and FFT
 • Number theory algorithms and RSA
 • Pattern matching
 • Computational Geometry
 • Dynamic Programming
Chapter 30 Polynomials and the FFT

Polynomial Multiplication and FFT

\[
\begin{align*}
A(\omega_{2n}^0, B(\omega_{2n}^0) \\
A(\omega_{2n}^1, B(\omega_{2n}^1) \\
\vdots \\
A(\omega_{2n}^{2n-1}, B(\omega_{2n}^{2n-1})
\end{align*}
\]

\[
\begin{align*}
C(\omega_{2n}^0) \\
C(\omega_{2n}^1) \\
\vdots \\
C(\omega_{2n}^{2n-1})
\end{align*}
\]

Evaluation
Time \(\Theta(n \lg n)\)

Ordinary multiplication
Time \(\Theta(n^2)\)

Interpolation
Time \(\Theta(n \lg n)\)

Pointwise multiplication
Time \(\Theta(n)\)

Coefficient representations

Point-value representations
Public Key Cryptography

Working of RSA
1. Select at random two LARGE prime numbers p and q (100-200 decimal digits).

2. Compute $n = pq$.

3. Select a small odd integer e relatively prime to $\phi(n) = (p - 1)(q - 1)$= number nontrivial factors of n

4. Compute d such that $ed = 1 \mod \phi(n)$ (d exists and is unique!!!).

5. Publish the public key function $P_A(M) = M^e \mod n$ (the pair (e, n)).

6. Keep secret the secret key function $S_A(C) = C^d \mod n$.

Pattern Matching

- **Input:** Two strings $T[1\ldots n]$ and $P[1\ldots m]$, containing symbols from alphabet Σ.

 E.g.:
 - $\Sigma=\{a,b,\ldots,z\}$
 - $T[1\ldots 18]=\text{“to be or not to be”}$
 - $P[1..2]=\text{“be”}$

- **Goal:** find all “shifts” $0 \leq s \leq n-m$ such that $T[s+1\ldots s+m]=P$

 E.g. 3, 16
Computational Geometry

- Algorithms for geometric problems
- Applications: CAD, GIS, computer vision,
- E.g., the closest pair problem:
 - Given: a set of points $P = \{p_1 \ldots p_n\}$ in the plane, such that $p_i = (x_i, y_i)$
 - Goal: find a pair $p_i \neq p_j$ that minimizes $\|p_i - p_j\|$ for $\|p-q\| = [(p_x - q_x)^2 + (p_y - q_y)^2]^{1/2}$
Computational Geometry

• Divide:
 – Compute the median of x-coordinates
 – Split the points into P_L and P_R, each of size $n/2$

• Conquer: compute the closest pairs for P_L and P_R

• Combine the results (the hard part)
Dynamic Programming

Optimal substructure
An optimal solution to a problem (instance) contains optimal solutions to subproblems.

Overlapping subproblems
A recursive solution contains a “small” number of distinct subproblems repeated many times.
Dynamic Programming

Example: Longest Common Subsequence (LCS)

- Given two sequences $x[1 \ldots m]$ and $y[1 \ldots n]$, find a longest subsequence common to them both.

 “a” not “the”

x: A B C B D A B

y: B D C A B A

$BCBA = \text{LCS}(x, y)$

functional notation, but not a function
Dynamic Programming

Strategy: Consider *prefixes* of x and y.
- Define $c[i, j] = |LCS(x[1 \ldots i], y[1 \ldots j])|$.
- Then, $c[m, n] = |LCS(x, y)|$.

Theorem.

$$c[i, j] = \begin{cases}
 c[i-1, j-1] + 1 & \text{if } x[i] = y[j], \\
 \max \{c[i-1, j], c[i, j-1]\} & \text{otherwise.}
\end{cases}$$
Dynamic Programming

\[m = 3, \ n = 4: \]

\[3,4 \]

\[2,4 \]

\[1,4 \]

\[2,3 \]

\[1,3 \]

\[2,2 \]

\[3,3 \]

\[2,3 \]

\[1,3 \]

\[2,2 \]

\[3,2 \]

same subproblem

\[m + n \]
Graph Connectivity – Depth First Search
Graph Connectivity – Depth First Search

• **Runtime.**
 • $O(|V| + |E|)$ using adjacency lists.
 • $O(|V|^2)$ using adjacency matrix
 • In a dense graph, both are the same.

• **Applications**
 • Connectivity - “Does there exist a path from u to v?” Also, discovering connected components.
 • Cycle Detection – Just look for a “back” edge.
 • Topological Sort – Find a directed acyclic graph such that all edges are left to right (to do this, sort decreasing by finish time).
Short Paths – Breadth First Search

Runtime
• $O(|V|+|E|)$

Applications
• Shortest path in an unweighted graph
• Graph coloring / Testing for bipartite graph
Short Paths – Dijkstra’s Algorithm

• Exchange a standard queue in breadth first search for a priority queue maintained on minimum distance so far.

• Runtime
 • $O(|E|\log(|V|))$ with a binary heap

• Application
 • Shortest paths in weighted graphs with no negative edges
Short Paths – Bellman Ford

• Rather than making a clever exploration of the graph...
• Repeat $|V|-1$ times:
 • For every edge:
 • If that gives you a shorter path to some vertex, update.

• **Runtime**
 • $O(|V||E|)$

• **Application**
 • Shortest path in weighted graphs with negative edges but no negative cycles
 • Detecting negative cycles
Greedy Algorithm – Spanning Trees

• A tree is a connected graph with no cycles.
• A spanning tree is a tree with every vertex in the graph.
• Minimum spanning trees have a greedy choice property.

Greedy-choice property
A locally optimal choice is globally optimal.
Greedy Algorithm – Spanning Trees

Optimal substructure

MST T: (Other edges of G are not shown.)

- The MST of $T_1 \cup T_2$ just takes the “cheapest” edge between the two components.
Greedy Algorithm – Spanning Trees

• This intuition yields two algorithms for minimum spanning trees.

• **Prim’s Algorithm** – Maintain a single tree / connected component. At each step include the vertex outside the current tree with the cheapest edge to the current tree.

• **Kruskal’s Algorithm** – Maintain many different trees / connected components. At each step, merge any two components using the cheapest edge possible.

• **Runtime**
 • $O(|E| \log(|V|))$ for both, but...
 • Prim’s algorithm just needs a priority queue, Kruskal’s algorithm needs a new disjoint set data structure for maintaining and merging components.
Questions?