Measuring Graph Centrality - PageRank

PPT by Brandon Fain
Outline

• Measuring Graph Centrality: Motivation

• Random Walks, Markov Chains, and Stationarity Distributions

• Google’s PageRank Algorithm
Directed Graphs

A B C D E F
A 0 1 0 0 0 0
B 0 0 1 0 0 0
C 0 0 0 0 1 0
D 0 1 0 0 0 0
E 0 0 0 1 0 1
F 0 0 0 0 0 0
Graph Centrality

- Which vertex is “the most important” in this graph?
- What do we even mean by important?
- In this class, we will focus on importance as centrality as measured by a random walk.
Motivation – Social Media

• Who is “important” in the Twitter network?
Motivation – Academic Publishing

• How impactful is a scientific publication?
Motivation – Web Search

• Which webpages are most important for displaying after a search query? (The original motivation).
Outline

• Measuring Graph Centrality: Motivation

• Random Walks, Markov Chains, and Stationarity Distributions

• Google’s PageRank Algorithm
Formalizing “Graph Centrality”

• **Attempt 1.** Measure the *in-degree* (number of incoming directed edges) of every node.
Formalizing Graph Centrality

- **Problem.** Why do edges from unimportant and important nodes contribute equally?
- What is the most important and central vertex in this graph?
Formalizing Graph Centrality

• **Attempt 2.** Say that a node is “central” in so far as we are likely to arrive at the node while traversing the graph.
• For example, in this graph, *all* traversals end at the same place.
Random Walk

• **Question.** What do we mean by “likely” in a traversal? Where is the probability coming from?

• **Answer.** We consider a *random walk*.

• Start at a random vertex

• For t from 1 to T steps:
 • Choose an outgoing edge uniformly at random and follow it

• Let π^t_i be the probability that we are at node i at time t. Then the centrality of node i is $\lim_{t \to \infty} \pi^t_i$.
Transition Probabilities

• Note that π^{t+1} only depends on π^t. In particular, let d_i denote the out-degree of vertex i. Then

$$\pi^{t+1}_j = \sum_{i : (i, j) \in E} \frac{\pi^t_i}{d_i}.$$

• For convenience, let P be the transition matrix defined below. For now, assume that $d_i \geq 1$ for all i.

$$P_{ij} = \begin{cases}
\frac{1}{d_i}, & A_{ij} = 1 \\
0, & A_{ij} = 0
\end{cases}$$
• Each row represents a conditional probability distribution: we can interpret P_{ij} as the probability that we move to j given we are at i.

• We can rewrite the updates in terms of the transition matrix.

\[\pi^{t+1} = \pi^t P \]

• Note that π^{t+1} is independent the history, conditional on π^t, i.e.,

\[\left(\pi^{t+1} \mid \pi^1, \pi^2, \ldots, \pi^t \right) = \left(\pi^{t+1} \mid \pi^t \right). \]

• Thus, this random walk is a Markov Chain.
Stationary Distribution

• $\lim_{t \to \infty} \pi^t$, our measure of graph centrality, is the stationary distribution of the Markov chain.

Questions.
1. Does the limit even exist?
2. Does the limit depend on the starting state π^1?
3. Can we compute $\lim_{t \to \infty} \pi^t$ efficiently?
Existence and Uniqueness

• Note that if \(\lim_{t \to \infty} \pi^t \) exists, then it must be some \(\pi^* \) such that
 \[
 \pi^* = \pi^* P \rightarrow P^T \pi^* = \pi^* .
 \]

• That is, the stationary distribution \(\pi^* \) should be an eigenvector of the
transposed transition matrix \(P^T \), with eigenvalue 1.
 • (More to come next class on eigenvalues in graphs).

• Is it the only one? We need a theorem from linear algebra. Suppose
 for a moment that \(P \) has all strictly positive values.
Existence and Uniqueness

• **Perron-Frobenius Theorem** (abbreviated). Let A be a square matrix with real, strictly positive entries. Then the following hold.
 1. The largest eigenvalue (call it λ_1) of A is unique.
 2. There is a *unique* eigenvector (call it \vec{v}^*) corresponding to λ_1, all entries of which are positive, and this is the *only* eigenvector with all positive entries.
 3. The power iteration method that repeatedly applies $\vec{v}^{t+1} = A\vec{v}^t$ beginning from an initial vector \vec{v}^1 not orthogonal to \vec{v}^* converges to \vec{v}^* as $t \to \infty$.

• Every row of P is a probability distribution, so $P \vec{1} = \vec{1}$.
• By conditions 2 and 1, it must be that the largest eigenvalue of P is 1.
• Since P is square, P and P^T have the same eigenvalues, so 1 is the largest eigenvalue of P^T too!
Existence and Uniqueness

• Since 1 is the largest eigenvalue of P^T, the theorem implies that π^* exists and is the unique eigenvector of P^T with all positive entries.

• So we have answered questions 1 and 2: the stationary distribution exists, and it is unique.

• What about computation? The theorem tells us that the power iteration method converges in the limit...but how long does that take?
Computation

• In general, the convergence rate is determined by the *spectral gap*. If $\lambda_1 = 1$ is the largest eigenvalue of P^T, and λ_2 is the second largest eigenvalue of P^T, then the spectral gap is $\lambda_1 - \lambda_2$.

• As we will see next lab, the spectral gap is in turn related to the *conductance* of the underlying graph.

• Let $S \subseteq V$ be a cut in $G = (V, E)$. The *conductance* of the cut is $\phi(S) = \frac{|\{(i,j) \in E : i \in S, j \notin S\}|}{\min(\sum_{i \in S} d_i, \sum_{i \notin S} d_i)}$.
Computation

• The conductance of a graph is the minimum conductance of any cut.

\[\phi(S) = \frac{2}{\min(10, 4)} = \frac{1}{2} \]
Computation

\[\phi(S) = \frac{1}{\min(7, 7)} = \frac{1}{7} \]
Computation

• So intuitively, lower conductance graphs have bottlenecks, and it may take a longer time for the random walk to traverse the cut.

• By contrast, power iteration converges rapidly on graphs with high conductance (e.g., complete graphs).

• To converge (to within some constant error term), one needs $O\left(\frac{\log(n)}{\phi^2}\right)$ iterations. What does that look like in practice?
Outline

• Measuring Graph Centrality: Motivation

• Random Walks, Markov Chains, and Stationarity Distributions

• Google’s PageRank Algorithm
PageRank

• Page rank is named after Larry Page.

• He was doing a PhD at Stanford when he started working on the project of building a search engine.

• He didn’t finish his PhD, but he is currently the Alphabet CEO and worth around 53 billion USD.
PageRank

• PageRank treats the web as a huge graph, where webpages are vertices, and hyperlinks are directed edges.

• The PageRank algorithm simply applies the power iteration method to compute the stationary distribution of a random walk on the web.

• Recall that we needed all entries in P to be strictly positive to be guaranteed that this works.

• That means that from any vertex, there has to be nonzero probability of transitioning to any other vertex.
PageRank

• To satisfy this, PageRank assumes a slightly different random walk than we described. In particular:

• Start at a random vertex
• For t from 1 to T steps:
 • If current page has no links
 • Choose a page uniformly at random.
 • Else
 • With probability 0.15, choose a page uniformly at random.
 • With the remaining probability, choose a link from the current page uniformly at random and follow it.
PageRank

• Thus, if there are n web pages in total, the transition matrix for this random walk is given by

$$P_{ij} = \begin{cases}
\frac{0.85A_{ij}}{d_i} + \frac{0.15}{n}, & \text{i has links} \\
\frac{1}{n}, & \text{i has no links}
\end{cases}$$

• Then we just compute the stationary distribution by the power iteration method.

• What kind results does this generate?
PageRank
PageRank

• Note that our modification also ensures that the conductance of the graph is not too small. In practice, 50 to 100 power iterations suffice for a reasonable approximation to the stationary distribution.

• This might seem hard for large n, but note that the graph itself is extremely sparse, so matrix – vector multiplication can be implemented efficiently.

• All other things equal, google search prefers to show results with higher PageRank.

• The #1 thing that increases your PageRank?
 • Having other important pages link to you.