Lecture 17: Hidden Markov Models II

• Review:
 - Path $P(x, \pi) = a_0 \pi_1 \pi_2 \ldots \pi_T a_T$.
 - Viterbi $\pi^* = \arg \max \ P(x, \pi)$.
 - Forward $P(x) = \sum \ P(x, \pi)$.
 - Posterior decoding $P(\pi = k \mid x)$.
 - Supervised learning $\max \ P(x, \pi \mid A)$.
 - Unsupervised learning $\max \ P(x \mid A)$.

Notation: path π, emissions x, state k, time i.

- $P(x, \pi)$ is the (hidden) path
- a is the (observed) sequence

Probability of observing emissions x with known path π.

- $P(x, \pi) = a_0 \pi_1 \pi_2 \ldots \pi_T a_T$ and $P(x) = \sum \ P(x, \pi)$

Example: the dishonest casino

$$P(x_1, all-fair) = 0.5$$

$$P(x_1, all-loaded) = 0.05$$

$$\pi_x = \frac{1}{10}$$

$$\times 0.95 \times \times 0.05 \times \times 0.95 \times 0.05$$

Transition: 0.95 (most likely)

Unsupervised learning max

Posterior decoding $P(\pi)$

Example: the dishonest casino

$$P(x_1, all-loaded) = 0.95$$

$$P(x_1, all-fair) = 0.05$$

$$\pi_x = \frac{1}{10}$$

$$\times 0.95 \times \times 0.05 \times \times 0.95 \times 0.05$$

Transition: 0.95 (most likely)

Unsupervised learning max

Posterior decoding $P(\pi)$

Viterbi decoding - Finding the most likely path

1. Find path π^* that maximizes total joint probability $P(x, \pi)$
 - $\pi^* = \arg \max \ P(x, \pi) = a_0 \pi_1 \pi_2 \ldots \pi_T a_T$

2. Scoring x, one path
 - $P(x, \pi)$: Prob of a path, emissions
 - $P(x)$: Prob of emissions, over all paths

3. Viterbi decoding
 - $\pi^* = \arg \max \ P(x, \pi)$

Most likely path

Path containing the most likely state at any time point.

4. Posterior decoding
 - $x^* = \{ \pi^* \ | \ \pi^* = \arg \max \ \sum \ P(\pi \mid k, s) \}$

5. Supervised learning, given π
 - $A^* = \arg \max \ P(x, \pi \mid A)$

6. Unsupervised learning
 - $A^* = \arg \max \ \sum \ P(x, \pi \mid A)$

- Baum-Welch training, best path

Viterbi algorithm: Calculate $\max \ P(x, \pi)$ recursively

Define $V_i(j) = \text{Probability of the most likely path through state } x=k$.

Compute $V_i(i+1)$ recursively as a function of $V_i(i)$.

$V_i(i+1) = \max \ V_i(i) \times a_{jk}$

- Assume we know all V_i values for previous time step $i-1$.

- Calculate $V_i(i) = \max \ (V_i(i-1) \times a_{jk})$

- In state j at step i.

- Transition from state j.

- Emissions e_{x_i}

- a_{jk}
The Viterbi Algorithm

Input: \(x = x_1 \ldots x_N \)

Initialization:
\[V_0(0) = 1, V_k(0) = 0, \text{ for all } k > 0 \]

Iteration:
\[V_k(i) = \operatorname{e}^{x_i} \times \max_j a_{jk} V_j(i-1) \]

Termination:
\[P(x, \pi^*) = \max_k V_k(N) \]

Traceback:
Follow max pointers back

In practice:
Use log scores for computation

Running time and space:
Time: \(O(K^2 N) \)
Space: \(O(KN) \)

Derivation of Viterbi algorithm

Let \(V_k(i) = \max_{\pi_1, \ldots, i-1} P[x_1 \ldots x_i, \pi_1 \ldots \pi_{i-1}, \pi_i = k] \)

Calculate \(V_k(i+1) \) recursively as a function of \(V_j(i) \):
\[V_l(i+1) = \max_{\pi_1, \ldots, i} P[x_1 \ldots x_i, \pi_1, \ldots, \pi_i, x_{i+1}, \pi_{i+1} = l] \]

from definition
\[= \max_{\pi_1, \ldots, i} P(x_{i+1}, \pi_{i+1} = l | \pi_i) P[x_1 \ldots x_i, \pi_1, \ldots, \pi_i] \]
from Markov property (no memory)
\[= \max_k P(x_{i+1}, \pi_{i+1} = 1 | \pi_i = k) \max_{\pi_1, \ldots, i} P[x_1 \ldots x_i, \pi_1 \ldots \pi_i, x_{i+1}, \pi_{i+1} = k] \]
from commutativity of multiplication, max
\[= a_l(x_{i+1}) \max_k a_{lk} V_k(i) \]

from recursive definition of \(V_k \) variable

2. Model evaluation:
Total \(P(x|M) \), summed over all paths

Forward algorithm

Learning

1. Supervised learning, given \(\pi \)
\[\Lambda^* = \max_{\pi} P(x, \pi | \Lambda) \]

2. Unsupervised learning
\[\Lambda^* = \max_{\pi} \arg \max_{\pi} \Sigma P(x, \pi | \Lambda) \]

Viterbi training, best path

Baum-Welch training, over all paths

Simple: Given the model, generate some sequence \(x \)

Given a HMM, we can generate a sequence of length \(n \) as follows:
1. Start at state \(\pi_1 \) according to \(\operatorname{prob} a_{01} \)
2. Emit letter \(x_1 \) according to \(\operatorname{prob} e_{\pi_1}(x_1) \)
3. Go to state \(\pi_2 \) according to \(\operatorname{prob} a_{\pi_1 \pi_2} \)
4. \ldots until emitting \(x_n \)

We have some sequence \(x \) that can be emitted by \(\pi \). Can calculate its likelihood. However, in general, many different paths may emit this same sequence \(x \). How do we find the total probability of generating a given \(x \), over any path?

Complex: Given \(x \), was it generated by the model?

Given a sequence \(x \),
What is the probability that \(x \) was generated by the model (using any path)?

\[P(x) = \sum_{\pi} P(x, \pi) \]

- Challenge: exponential number of paths
- (cheap) alternative:
 - Calculate probability over maximum (Viterbi) path \(\pi^* \)
- (real) solution
 - Calculate sum iteratively using principles of dynamic programming
Calculate total probability $\sum P(x,\pi)$ recursively

- Assume we know f_j for the previous time step ($i-1$)
- Calculate $f_k(i) = e_k(x_i) \times \sum_{j} f_j(i-1) a_{kj}$

The Forward Algorithm – derivation

Define the forward probability:

$$f_l(i) = P(x_1, x_2, ..., x_i, \pi_i = l)$$

$$= \sum_{l=1}^{L} P(x_1, x_2, ..., x_i, \pi_1 = l, ..., \pi_{i-1} = l, \pi_i = l) = \sum_{l=1}^{L} f_l(i-1) a_{kl} e_l(x_i)$$

The Backward Algorithm

Input: $x = x_1, ..., x_N$

- **Initialization:** $b_k(N) = a_{0k}$
- **Iteration:** $b_k(i) = \sum_l e_l(x_{i+1}) a_{kl} b_l(i+1)$
- **Termination:** $P(x) = \sum_l a_{0l} e_l(x_1) b_l(1)$

The Backward Algorithm – derivation

Define the backward probability:

$$b_k(i) = P(x_i, ..., x_N | \pi_i = k) = \sum_{l=1}^{L} a_{lk} b_l(i+1)$$

$$= \sum_{l=1}^{L} b_l(i+1) - \sum_{l=1}^{L} b_l(i+1) a_{lk} e_l(x_i)$$

$\sum_{l=1}^{L} b_l(i+1) = d_i(x_{i+1})$ for all i
4. Decoding, all paths

Find the likelihood an emission \(x_i \) is generated by a state

\[
\text{Calculate } P(\pi_7 = \text{CpG}+ | x_7 = \text{G})
\]

- With no knowledge (no characters)
 - \(P(\pi_i = k) = \text{most likely state (prior)} \)
 - Time spent in Markov chain states
- With very little knowledge (just that character)
 - \(P(\pi_i = k | x_i = \text{G}) = (\text{prior}) \ast (\text{most likely emission}) \)
 - Emission probabilities adjusted for time spent
- With knowledge of entire sequence (all characters)
 - \(P(\pi_i = k | x = \text{AGCGCG...GATTATCGTCGTA}) \)
 - Sum over all paths that emit ‘G’ at position 7
 - Posterior decoding

Combining the Forward and Backward algorithms

We want to compute:

\[
P(\pi_i = k | x_i), \text{ the probability distribution on the } i^{th} \text{ position, given } x
\]

We can expand it into its forward and backward components:

\[
P(\pi_i = k, x) = P(x_1, \ldots, x_i, \pi_i = k) P(x_{i+1}, \ldots, x_N | x_1, \ldots, x_i, \pi_i = k)
\]

- Forward, \(f_k(i) \)
- Backward, \(b_k(i) \)

Putting it all together: Posterior decoding

For classification, more informative than Viterbi path \(\pi^* \)
- More refined measure of “which hidden states” generated \(x \)
- However, it may give an invalid sequence of states
- Not all \(j \rightarrow k \) transitions may be possible

Summary this far

- Generative model: Hidden states, observed emissions.
 - Generate a random sequence
 - Choose random transition, choose random emission (#0)
 - Scoring the likelihood of a sequence
 - Calculate likelihood of annotated path and sequence (#1)
 - Without specifying a path, total probability of generating \(x \)
 - Sum probabilities over all paths (#2)
 - Decoding: Finding the most likely path, given a sequence
 - What is the most likely path generating entire sequence?
 - Viterbi algorithm (#3)
 - What is the most probable state at each time step?
 - Forward + backward algorithms, posterior decoding (#4)
 - Next: Learning (#5 and #6)

One path

- Scoring \(x \), one path
 \[
P(x, \pi)
\]
 Prob of a path, emissions

- Viterbi decoding
 \[
x^* = \text{argmax}_\pi P(x, \pi)
\]
 Most likely path

- Superseded learning, given \(\pi \)
 \[
 \Lambda^* = \text{argmax}_\Lambda P(x, x|\pi)
 \]
 Viterbi training, best path

All paths

- Scoring \(x \), all paths
 \[
P(x) = \sum \pi P(x, \pi)
\]
 Prob of emissions, over all paths

- Posterior decoding
 \[
x^* = \{ \pi_i | \pi_i = \text{argmax}_\pi \sum \pi_i P(x, \pi|\pi_i) \}
\]
 Path containing the most likely state at any time point.

- Unsupervised learning
 \[
 \Lambda^* = \text{argmax}_\Lambda \sum \pi_i P(x, x|\pi)
 \]
 Baum-Welch training, over all paths

Putting it all together: Posterior decoding

```
<table>
<thead>
<tr>
<th>State</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>
```
Two types of learning: Supervised / Unsupervised

5. Supervised learning
infer model parameters given labeled training data

- GIVEN:
 * a HMM \(M \), with unspecified transition/emission probs.
 * labeled sequence \(x \),
- FIND:
 * parameters \(\theta = (E_i, A_{ij}) \) that maximize \(P(x, \pi | \theta) \)

Simply count frequency of each emission and transition, as observed in the training data

6. Unsupervised learning
infer model parameters given unlabeled training data

- GIVEN:
 * a HMM \(M \), with unspecified transition/emission probs.
 * unlabeled sequence \(x \),
- FIND:
 * parameters \(\theta = (E_i, A_{ij}) \) that maximize \(P(x | \theta) \)

Viterbi training:
guess parameters, find optimal Viterbi path (\#2), update parameters (\#5), iterate

Baum-Welch training:
guess parameters, sum over all paths (\#4), update parameters (\#5), iterate

Two learning scenarios

Case 1. When the right answer is known

Example:
GIVEN: a genomic region \(x = x_1…x_{1,000,000} \) where we have good (experimental) annotations of the CpG islands

GIVEN: the casino player allows us to observe him one evening, as he changes dice and produces 10,000 rolls

Case 2. When the right answer is unknown

Example:
GIVEN: the porcupine genome; we don’t know how frequent are the CpG islands there, neither do we know their composition

GIVEN: 10,000 rolls of the casino player, but we don’t see when he changes dice

QUESTION: Update the parameters \(\theta \) of the model to maximize \(P(x | \theta) \)

Case 1. When the right answer is known

Intuition: When we know the underlying states,
Best estimate is the average frequency of transitions & emissions that occur in the training data

Drawback:
Given little data, there may be overfitting; \(P(x | \theta) \) is maximized, but \(\theta \) is unreasonable
0 probabilities – VERY BAD

Example:
Given 10 casino rolls, we observe \(x = 2, 1, 5, 6, 1, 2, 3, 6, 2, 3 \)

\(\pi = \pi_1, \pi_2, \pi_3, \pi_4, \pi_5, \pi_6, \pi_7, \pi_8, \pi_9, \pi_10 \)

Then:

\(a_{11} = 1, a_{21} = 0, a_{31} = 3, a_{41} = 2, a_{51} = 1, a_{61} = 0, a_{71} = 4, a_{81} = 2, a_{91} = 1 \)

\(e_{11} = .2, e_{12} = .3, e_{13} = .1, e_{14} = 0, e_{15} = e_{16} = .1 \)

5: Supervised learning

Estimate model parameters based on labeled training data

Case 1. When the right answer is known

Given \(x = x_1…x_n \) for which the true \(\pi = \pi_1…\pi_n \) is known,

Define:

\[a_{ki} = \text{ # times } k \rightarrow l \text{ transition occurs in } \pi \]
\[e_k(b) = \text{ # times state } k \text{ in } \pi \text{ emits } b \text{ in } x \]

We can show that the maximum likelihood parameters \(\theta \) are:

\[a_{kl} = \frac{A_{kl}}{\sum_i A_{ki}} \quad \quad e_k(b) = \frac{E_k(b)}{\sum_c E_k(c)} \]

Pseudocounts

Solution for small training sets:

Add pseudocounts

\[a_{kl} = \# \text{ times } k \rightarrow l \text{ transition occurs in } \pi + r_{kl} \]
\[e_k(b) = \# \text{ times state } k \text{ in } \pi \text{ emits } b \text{ in } x + r_k(b) \]

\(r_{kl} \) and \(r_k(b) \) are pseudocounts representing our prior belief

Larger pseudocounts \(\Rightarrow \) Strong prior belief

Small pseudocounts (\(\epsilon < 1 \)): just to avoid 0 probabilities
Pseudocounts

Example: dishonest casino

We will observe player for one day, 500 rolls

Reasonable pseudocounts:

\[r_{RF} = r_{FL} = r_{LF} = r_{FR} = 1; \]
\[r_{FF} = r_{LL} = r_{TT} = r_{TT} = 1; \]
\[r_{F1} = r_{F2} = \ldots = r_{F6} = 20 \quad \text{(strong belief fair is fair)} \]
\[r_{F1} = r_{F2} = \ldots = r_{F6} = 5 \quad \text{(wait and see for loaded)} \]

Above #s pretty arbitrary – assigning priors is an art

6: Unsupervised learning

Estimate model parameters based on unlabeled training data

Learning case 2. When the right answer is unknown

We don’t know the true \(A_{kl}, E_q(b) \)

Idea:

• We estimate our “best guess” on what \(A_{kl}, E_q(b) \) are

• We update the parameters of the model, based on our guess

• We repeat

Estimating new parameters

To estimate \(A_{kl} \):

At each position \(i \) of sequence \(x \),

Find probability transition \(k \rightarrow l \) is used:

\[P(\pi_i = k, \pi_{i+1} = l | x) = \frac{Q}{P(x)} \times \frac{P(\pi_i = k, \pi_{i+1} = l, x_1, \ldots, x_N)}{P(x)} = \frac{Q}{P(x)} \times \frac{P(\pi_i = k, \pi_{i+1} = l, x, x_{i+2}, \ldots, x_N)}{P(x)} = \frac{Q}{P(x)} \times \frac{P(\pi_{i+1} = l, x_{i+2}, \ldots, x_N | \pi_i = k)}{P(x)} = \frac{Q}{P(x)} \times \frac{b_{k}(i+1) e_l(x_{i+1}) a_{kl}}{P(x)} \]

So:

\[P(\pi_i = k, \pi_{i+1} = l | x, \theta) = \frac{\zeta(i) a_{kl} e_l(x_{i+1}) b_{k}(i+1)}{P(x | \theta)} \]

(For one such transition, at time step \(i \rightarrow i+1 \))

Estimating new parameters

Case 2. When the right answer is unknown

Starting with our best guess of a model \(M \), parameters \(\theta \):

Given \(x = x_1 \ldots x_N \)

for which the true \(\pi = \pi_1 \ldots \pi_N \) is unknown,

We can get to a provably more likely parameter set \(\theta \)

Principle: EXPECTATION MAXIMIZATION

1. Estimate \(A_{kl}, E_q(b) \) in the training data
2. Update \(\theta \) according to \(A_{kl}, E_q(b) \)
3. Repeat 1 & 2, until convergence

Estimating new parameters

(\text{Sum over all } k \rightarrow l \text{ transitions, at any time step } i)

So,

\[A_{kl} = \sum_{i} P(\pi_i = k, \pi_{i+1} = l | x, \theta) = \sum_{i} \frac{\zeta(i) a_{kl} e_l(x_{i+1}) b_{k}(i+1)}{P(x | \theta)} \]

Similarly,

\[E_q(b) = \frac{1}{P(x)} \sum_{i} f(i) a_{kb} \]
Estimating new parameters

If we have several training sequences, \(x^1, \ldots, x^M\), each of length \(N\),

\[
f_k(i) = a_{kl} e_k(x_{i+1}) b_{l(i+1)}
\]

\[
A_{kl} = \sum_x \sum_i P(\pi_i = k, \pi_{i+1} = l | x, \theta) = \sum_x \sum_i \frac{P(x \mid \theta)}{P(x)}
\]

Similarly,

\[
E_k(b) = \sum_x \left(\frac{1}{P(x)} \right) \sum_{\{i \mid x_i = b\}} f_k(i) b_k(i)
\]

(Sum over all training seqs, all \(k \rightarrow l\) transitions, all time steps \(i\))

The Baum-Welch Algorithm

Initialization:

Pick the best-guess for model parameters

(or arbitrary)

Iteration:

1. Forward
2. Backward
3. Calculate \(A_{kl}\), \(E_k(b)\)
4. Calculate new model parameters \(a_{kl}\), \(e_k(b)\)
5. Calculate new log-likelihood \(P(x \mid \theta)\)

GUARANTEED TO BE HIGHER BY EXPECTATION-MAXIMIZATION

Until \(P(x \mid \theta)\) does not change much

The Baum-Welch Algorithm – comments

Time Complexity:

\(\delta \) iterations \(\times O(K^2N)\)

- Guaranteed to increase the log likelihood of the model

\[P(\theta \mid x) = \frac{P(x, \theta)}{P(x)} = \frac{P(x \mid \theta)}{P(x) P(\theta)}\]

- Not guaranteed to find globally best parameters

Converges to local optimum, depending on initial conditions

- Too many parameters / too large model: Overtraining

The Baum-Welch Algorithm – comments

Time Complexity:

\(\delta \) iterations \(\times O(K^2N)\)

- Guaranteed to increase the log likelihood of the model

\[P(\theta \mid x) = \frac{P(x, \theta)}{P(x)} = \frac{P(x \mid \theta)}{P(x) P(\theta)}\]

- Not guaranteed to find globally best parameters

Converges to local optimum, depending on initial conditions

- Too many parameters / too large model: Overtraining

Alternative: Viterbi Training

Initialization:

Same

Iteration:

1. Perform Viterbi, to find \(\pi^*\)
2. Calculate \(A_{kl}\), \(E_k(b)\) according to \(\pi^*\) + pseudocounts
3. Calculate the new parameters \(a_{kl}\), \(e_k(b)\)

Until convergence

Notes:

- Convergence is guaranteed – Why?
- Does not maximize \(P(x \mid \theta)\)
- In general, worse performance than Baum-Welch

What have we learned?

- Generative model. Hidden states, observed emissions.
 - Generate a random sequence
 - Choose random transition, choose random emission \((0)\)
 - Scoring: Finding the likelihood of a given sequence
 - Calculate likelihood of annotated path and sequence
 - Multiply emission and transition probabilities \((01)\)
 - Without specifying a path, total probability of generating \(x\)
 - Sum probabilities over all paths
 - Forward algorithm \((03)\)
 - Decoding: Finding the most likely path, given a sequence
 - What is the most likely path generating entire sequence?
 - Viterbi algorithm \((02)\)
 - What is the most probable state at each time step?
 - Forward + backward algorithm, posterior decoding \((04)\)
 - Learning: Estimating HMM parameters from training data
 - When state sequence is known
 - Simply compute maximum likelihood \(A\) and \(E\) \((05)\)
 - When state sequence is not known
 - Baum-Welch: Iterative estimation of all paths / frequencies \((06)\)
 - Viterbi training: Iterative estimation of best path / frequencies \((08)\)
The main questions on HMMs

<table>
<thead>
<tr>
<th>1. Scoring x, one path</th>
<th>2. Scoring x, all paths</th>
</tr>
</thead>
<tbody>
<tr>
<td>= Joint probability of a sequence and a path, given the model</td>
<td>= Total probability of a sequence, summed across all paths</td>
</tr>
<tr>
<td>Given: a HMM M, a path π, and a sequence x</td>
<td>FIND: the total probability $P(x</td>
</tr>
<tr>
<td>EXAMPLE: “all fair” vs. “all loaded” comparisons</td>
<td>Forward algorithm, sum score over all paths (same result as backward)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. Viterbi decoding</th>
<th>4. Posterior decoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>= Parsing a sequence into the optimal series of hidden states</td>
<td>= Total prob that emission x_i came from state k, across all paths</td>
</tr>
<tr>
<td>Given: a HMM M, a sequence x</td>
<td>FIND: the total probability $P(\pi_i=k</td>
</tr>
<tr>
<td>FIND: the sequence π^* of states that maximize $P(x,\pi</td>
<td>M)$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. Supervised learning</th>
<th>6. Unsupervised learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>= Optimize parameters of a model given training data</td>
<td>= Optimize parameters of a model given training data</td>
</tr>
<tr>
<td>Given: a labeled x, with unspecified transition/emission probs., labeled sequence x</td>
<td>Given: a labeled x, with unspecified transition/emission probs., labeled sequence x</td>
</tr>
<tr>
<td>FIND: parameters $\theta = (e_i, a_{ij})$ that maximize $P(x</td>
<td>\theta)$</td>
</tr>
<tr>
<td>EXAMPLE: Viterbi training: guess parameters, find optimal Viterbi path ($\pi^$); update parameters ($\pi^$); iterate</td>
<td>EXAMPLE: Baum-Welch training: guess, sum over all emissions/transitions ($\pi^$), update ($\pi^$), iterate</td>
</tr>
</tbody>
</table>

Decoding

- **One path**
 - $\pi^* = \arg\max_{\pi} P(x,\pi)$
 - Most likely path

- **All paths**
 - $\pi^* = \{\pi_i \mid \pi_i = \arg\max_k \sum \pi P(\pi_i=k|x)\}$
 - Path containing the most likely state at any time point.