Q. How many h's cause x and y to collide?

A. There are m choices for each of a_1, a_2, \ldots, a_r, but once these are chosen, exactly one choice for a_0 causes x and y to collide, namely

$$\sum_{i=1}^{r} \left(x_0 - y_0 - a_i \right) \mod m.$$

Thus, the number of h's that cause x and y to collide is $m^r \cdot 1 = m^r = |H|/m$. October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson
Today

• Randomized algorithms: algorithms that flip coins
 – Matrix product checker: is $AB=C$?
 – Quicksort:
 • Example of divide and conquer
 • Fast and practical sorting algorithm
Randomized Algorithms

- Algorithms that make random decisions
- That is:
 - Can generate a random number x from some range $\{1\ldots R\}$
 - Make decisions based on the value of x
- Why would it make sense?
Two cups, one coin

- If you always choose a fixed cup, the adversary will put the coin in the other one, so the expected payoff = $0
- If you choose a random cup, the expected payoff = $0.5
Randomized Algorithms

• Algorithms that make decisions based on random coin flips.

• Can “fool” the adversary.

• The running time (or even correctness) is a random variable; we measure the expected running time.

• We assume all random choices are independent.

• This is not the average case!
Randomized Algorithms

• Two basic types:
 – Typically fast (but sometimes slow): Las Vegas
 – Typically correct (but sometimes output garbage): Monte Carlo

• The probabilities are defined by the random numbers of the algorithm! (not by random choices of the problem instance)
Matrix Product

- Compute $A \times B$
 - Simple algorithm: $O(n^3)$ time
 - Multiply two 2×2 matrices using 7 mult.
 $\rightarrow O(n^{2.81\ldots})$ time [Strassen’69]
 - Multiply two 70×70 matrices using 143640 multiplications
 $\rightarrow O(n^{2.795\ldots})$ time [Pan’78]
 - ...
 - $O(n^{2.376\ldots})$ [Coppersmith-Winograd]
Matrix Product Checker

• Given: \(n \times n \) matrices \(A, B, C \)
• Goal: is \(A \times B = C \) ?
• We will see an \(O(n^2) \) algorithm that:
 – If answer=\(\text{YES} \), then \(\Pr[\text{output}=\text{YES}]=1 \)
 – If answer=\(\text{NO} \), then \(\Pr[\text{output}=\text{YES}] \leq \frac{1}{2} \)
The algorithm

• Algorithm:
 – Choose a random binary vector $x[1\ldots n]$, such that $\Pr[x_i=1]=\frac{1}{2}$, $i=1\ldots n$
 – Check if $ABx=Cx$

• Does it run in $O(n^2)$ time ?
 – YES, because $ABx = A(Bx)$
Correctness

• Let \(D=AB \), need to check if \(D=C \)
• What if \(D=C \) ?
 – Then \(Dx=Cx \), so the output is YES
• What if \(D\neq C \) ?
 – Presumably there exists \(x \) such that \(Dx\neq Cx \)
 – We need to show there are many such \(x \)
D ≠ C

Q. How many h's cause x and y to collide?
A. There are m choices for each of a_1, a_2, ... , a_r, but once these are chosen, exactly one choice for a_0 causes x and y to collide, namely

\[
\left(x_0 - y_0 \right) \mod m = -a_i (x_i - y_i) \mod m.
\]

Thus, the number of h's that cause x and y to collide is

\[
m^r \cdot 1 = m^r = |H|/m.
\]
Vector product

• Consider vectors $d \neq c$ (say, $d_i \neq c_i$)
• Choose a random binary x
• We have $d x = c x$ iff $(d - c) x = 0$
• $\Pr[(d - c) x = 0] =$?

$$(d - c): \begin{pmatrix} d_1 - c_1 \\ \vdots \\ d_n - c_n \end{pmatrix}$$

$x: \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \sum_{j \neq i} (d_j - c_j) x_j + (d_i - c_i) x_i$
Analysis, ctd.

- If $x_i=0$, then $(c-d)x=S_1$
- If $x_i=1$, then $(c-d)x=S_2 \neq S_1$
- So, ≥ 1 of the choices gives $(c-d)x \neq 0$

$\rightarrow \Pr[cx=dx] \leq \frac{1}{2}$
Matrix Product Checker

- Is $A \times B = C$?
- We have an algorithm that:
 - If answer=YES, then $\Pr[\text{output}=\text{YES}] = 1$
 - If answer=NO, then $\Pr[\text{output}=\text{YES}] \leq \frac{1}{2}$
- What if we want to reduce $\frac{1}{2}$ to $\frac{1}{4}$?
 - Run the algorithm twice, using independent random numbers
 - Output YES only if both runs say YES
- Analysis:
 - If answer=YES, then $\Pr[\text{output}_1=\text{YES}, \text{output}_2=\text{YES}] = 1$
 - If answer=NO, then
 $\Pr[\text{output}=\text{YES}] = \Pr[\text{output}_1=\text{YES}, \text{output}_2=\text{YES}]$
 $= \Pr[\text{output}_1=\text{YES}] \cdot \Pr[\text{output}_2=\text{YES}]$
 $\leq \frac{1}{4}$
Quicksort

- Divide-and-conquer algorithm.
- Sorts “in place” (like insertion sort, but not like merge sort).
- Very practical (with tuning).
- Can be viewed as a randomized Las Vegas algorithm.
Divide and conquer

Quicksort an \(n \)-element array:

1. **Divide:** Partition the array into two subarrays around a **pivot** \(x \) such that elements in lower subarray \(\leq x \leq \) elements in upper subarray.

\[
\begin{array}{ccc}
\leq x & x & \geq x \\
\end{array}
\]

2. **Conquer:** Recursively sort the two subarrays.

3. **Combine:** Trivial.

Key: *Linear-time partitioning subroutine.*
Pseudocode for quicksort

\[
\text{QUICKSORT}(A, p, r)
\]

\[
\text{if } p < r
\]

\[
\text{then } q \leftarrow \text{PARTITION}(A, p, r)
\]

\[
\text{QUICKSORT}(A, p, q-1)
\]

\[
\text{QUICKSORT}(A, q+1, r)
\]

Initial call: \text{QUICKSORT}(A, 1, n)
Partitioning subroutine

\textbf{Partition} \((A, p, r) \triangleq A[p \ldots r] \)

\[x \leftarrow A[p] \quad \triangleq \text{pivot} = A[p] \]

\[i \leftarrow p \]

\begin{align*}
&\text{for } j \leftarrow p + 1 \text{ to } r \\
&\quad \text{do if } A[j] \leq x \\
&\quad \quad \text{then } i \leftarrow i + 1 \\
&\quad \quad \quad \text{exchange } A[i] \leftrightarrow A[j] \\
&\quad \text{exchange } A[p] \leftrightarrow A[i] \\
&\text{return } i
\end{align*}

\textbf{Invariant:} \begin{tabular}{c|c|c|c|c}
\hline
\(x\) & \(\leq x\) & \(\geq x\) & \(\?\) \\
\hline
\(p\) & \(i\) & \(j\) & \(r\) \\
\hline
\end{tabular}
Example of partitioning

\[\begin{array}{cccccccc}
6 & 10 & 13 & 5 & 8 & 3 & 2 & 11 \\
\end{array} \]

\[i \quad j \]
Example of partitioning

| 6 | 10 | 13 | 5 | 8 | 3 | 2 | 11 |

\[i \quad \longrightarrow \quad j \]
Example of partitioning

\[
\begin{array}{cccccccc}
6 & 10 & 13 & 5 & 8 & 3 & 2 & 11 \\
\end{array}
\]

\[i \rightarrow j\]
Example of partitioning

\[
\begin{array}{cccccccc}
6 & 10 & 13 & 5 & 8 & 3 & 2 & 11 \\
6 & 5 & 13 & 10 & 8 & 3 & 2 & 11 \\
\end{array}
\]

\[i \quad j\]
Example of partitioning
Example of partitioning

\[
\begin{array}{cccccccc}
6 & 10 & 13 & 5 & 8 & 3 & 2 & 11 \\
6 & 5 & 13 & 10 & 8 & 3 & 2 & 11 \\
\end{array}
\]

Q. How many \(h \)'s cause \(x \) and \(y \) to collide?

A. There are \(m \) choices for each of \(a_1, a_2, \ldots, a_r \), but once these are chosen, exactly one choice for \(a_0 \) causes \(x \) and \(y \) to collide, namely

\[
\left(x_0 - y_0 \right) \mod m.
\]

Thus, the number of \(h \)'s that cause \(x \) and \(y \) to collide is

\[
m^r \cdot 1 = m^r = |H|/m.
\]
Example of partitioning

\[
\begin{array}{cccccccc}
6 & 10 & 13 & 5 & 8 & 3 & 2 & 11 \\
6 & 5 & 13 & 10 & 8 & 3 & 2 & 11 \\
6 & 5 & 3 & 10 & 8 & 13 & 2 & 11 \\
\end{array}
\]

\[i \quad j\]
Example of partitioning

Proof (completed)

Q. How many h_a's cause x and y to collide?

A. There are m choices for each of a_1, a_2, \ldots, a_r, but once these are chosen, exactly one choice for a_0 causes x and y to collide, namely

$$
\begin{pmatrix}
\sum_{i=1}^{r} & \cdot \\
\end{pmatrix}
\begin{pmatrix}
\begin{pmatrix} x_0 - y_0 - 1 \\
\end{pmatrix}
\end{pmatrix}
\begin{pmatrix}
\begin{pmatrix} x_i - y_i \\
\end{pmatrix}
\end{pmatrix}
\begin{pmatrix}
\begin{pmatrix} \mod m \\
\end{pmatrix}
\end{pmatrix}.
$$

Thus, the number of h_a's that cause x and y to collide is $m^r = |H|/m$.

October 5, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson
L7.15
Example of partitioning

\[\begin{array}{cccccccc}
6 & 10 & 13 & 5 & 8 & 3 & 2 & 11 \\
6 & 5 & 13 & 10 & 8 & 3 & 2 & 11 \\
6 & 5 & 3 & 10 & 8 & 13 & 2 & 11 \\
6 & 5 & 3 & 2 & 8 & 13 & 10 & 11 \\
\end{array} \]

\[i \quad j \]
Example of partitioning

\begin{align*}
6 & 10 & 13 & 5 & 8 & 3 & 2 & 11 \\
6 & 5 & 13 & 10 & 8 & 3 & 2 & 11 \\
6 & 5 & 3 & 10 & 8 & 13 & 2 & 11 \\
6 & 5 & 3 & 2 & 8 & 13 & 10 & 11 \\
\end{align*}

\text{Proof (completed)}

Q. How many h's cause x and y to collide?

A. There are m choices for each of a_1, a_2, \ldots, a_r, but once these are chosen, exactly one choice for a_0 causes x and y to collide, namely

$$
\frac{r \cdot 1}{m} = \frac{|H|}{m}.
$$

October 5, 2005

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

L7.15
Example of partitioning

<table>
<thead>
<tr>
<th>6</th>
<th>10</th>
<th>13</th>
<th>5</th>
<th>8</th>
<th>3</th>
<th>2</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>5</td>
<td>13</td>
<td>10</td>
<td>8</td>
<td>3</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>3</td>
<td>10</td>
<td>8</td>
<td>13</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>8</td>
<td>13</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>

Proof (completed)

Q. How many h_a's cause x and y to collide?
A. There are m choices for each of a_1, a_2, …, a_r, but once these are chosen, exactly one choice for a_0 causes x and y to collide, namely

\[
\begin{pmatrix}
\sum_{i=1}^{r} a_i \cdot (x_i - y_i)
\end{pmatrix}
\pmod{m}.
\]

Thus, the number of h_a's that cause x and y to collide is

\[
m^r = |H|/m.
\]
Example of partitioning

$$\begin{array}{cccccccc}
6 & 10 & 13 & 5 & 8 & 3 & 2 & 11 \\
6 & 5 & 13 & 10 & 8 & 3 & 2 & 11 \\
6 & 5 & 3 & 10 & 8 & 13 & 2 & 11 \\
6 & 5 & 3 & 2 & 8 & 13 & 10 & 11 \\
2 & 5 & 3 & 6 & 8 & 13 & 10 & 11 \\
\end{array}$$

Q. How many h_a's cause x and y to collide?
A. There are m choices for each of a_1, a_2, \ldots, a_r, but once these are chosen, exactly one choice for a_0 causes x and y to collide, namely

$$a_0 \sum_{i=1}^{r} (x_i - y_i) \mod m.$$

Thus, the number of h_a's that cause x and y to collide is $m r = |H|/m$.

October 5, 2005

Analysis of quicksort

- Assume all input elements are distinct.
- In practice, there are better partitioning algorithms for when duplicate input elements may exist.
- What is the worst case running time of Quicksort?
Worst-case of quicksort

- Input sorted or reverse sorted.
- Partition around min or max element.
- One side of partition always has no elements.

\[T(n) = T(0) + T(n-1) + \Theta(n) \]
\[= \Theta(1) + T(n-1) + \Theta(n) \]
\[= T(n-1) + \Theta(n) \]
\[= \Theta(n^2) \quad (\text{arithmetic series}) \]
Worst-case recursion tree

\[T(n) = T(0) + T(n-1) + cn \]
Worst-case recursion tree

\[T(n) = T(0) + T(n-1) + cn \]

\[T(n) \]
Worst-case recursion tree

\[T(n) = T(0) + T(n-1) + cn \]
Worst-case recursion tree

\[T(n) = T(0) + T(n-1) + cn \]
Worst-case recursion tree

\[
T(n) = T(0) + T(n-1) + cn
\]

\[
\begin{align*}
T(0) & \quad c(n-1) \\
T(0) & \quad c(n-2) \\
\vdots & \\
T(0) & \quad \Theta(1)
\end{align*}
\]
Worst-case recursion tree

\[T(n) = T(0) + T(n-1) + cn \]

\[\Theta \left(\sum_{k=1}^{n} k \right) = \Theta(n^2) \]
Worst-case recursion tree

\[T(n) = T(0) + T(n-1) + cn \]

\[\Theta \left(\sum_{k=1}^{n} k \right) = \Theta(n^2) \]

\[h = n \]

Proof (completed)

Q. How many \(h \)'s cause \(x \) and \(y \) to collide?

A. ...

\[= m^r \]

\[= |H|/m. \]

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.15
Nice-case analysis

If we’re lucky, PARTITION splits the array evenly:

\[T(n) = 2T(n/2) + \Theta(n) \]
\[= \Theta(n \lg n) \quad \text{(same as merge sort)} \]

What if the split is always \(\frac{1}{10} : \frac{9}{10} \)?

\[T(n) = T\left(\frac{1}{10} n\right) + T\left(\frac{9}{10} n\right) + \Theta(n) \]
Analysis of nice case

\[T(n) \]
Analysis of nice case

\[T\left(\frac{1}{10} n\right) \quad cn \quad T\left(\frac{9}{10} n\right) \]
Analysis of nice case

\[
\begin{align*}
&\text{Proof (completed)} \\
\text{Q. How many } h \text{'s cause } x \text{ and } y \text{ to collide?} \\
\text{A. There are } m^r \text{ choices for each of } a_1, a_2, \ldots, a_r, \\
\text{but once these are chosen, exactly one choice } a_0 \text{ causes } x \text{ and } y \text{ to collide, namely }
\begin{vmatrix}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1 \\
\end{vmatrix}
&= \begin{vmatrix}
\sum_{i=1}^{r} a_i (x_i - y_i) \\
\end{vmatrix} \\
\text{mod } m.
\end{align*}
\]

Thus, the number of } h \text{'s that cause } x \text{ and } y \text{ to collide is }
\begin{align*}
m^r & = |H|/m.
\end{align*}
Analysis of nice case

\[\frac{1}{10} \text{cn} \]

\[\frac{9}{10} \text{cn} \]

\[\frac{9}{100} \text{cn} \]

\[\Theta(1) \]

\[\Theta(1) \]

\[\log_{10/9} n \]

\[\Theta(1) \]

\[\text{cn} \]
Analysis of nice case

\[cn \]

\[\log_{10} n \]

\[\frac{1}{10} \]

\[\frac{9}{100} \]

\[\Theta(1) \]

\[\Theta(1) \]

\[cn \log_{10} n \leq T(n) \leq cn \log_{10/9} n + O(n) \]
Randomized quicksort

- Partition around a *random* element. I.e., around $A[t]$, where t chosen uniformly at random from $\{p \ldots r\}$.
- We will show that the *expected* time is $O(n \log n)$.
“Paranoid” quicksort

- Will modify the algorithm to make it easier to analyze:
 - Repeat:
 - Choose the pivot to be a random element of the array
 - Perform \textsc{Partition}
 - Until the resulting split is “lucky”, i.e., not worse than $1/10: 9/10$
 - Recurse on both sub-arrays
Analysis

- Let $T(n)$ be an upper bound on the *expected* running time on any array of n elements
- Consider any input of size n
- The time needed to sort the input is bounded from the above by a sum of
 - The time needed to sort the left subarray
 - The time needed to sort the right subarray
 - The number of iterations until we get a lucky split, times cn
partitions = # iterations until lucky split of at most $1/10$:$9/10$

Expectations

- By linearity of expectation:

$$T(n) \leq \max T(i) + T(n - i) + E[# \text{partitions}] \cdot cn$$

where maximum is taken over $i \in [n/10, 9n/10]$

- We will show that $E[#\text{partitions}]$ is $\leq 10/8$

- Therefore:

$$T(n) \leq \max T(i) + T(n - i) + 2cn, i \in [n/10, 9n/10]$$
Final bound

• Can use the recursion tree argument:
 • Tree depth is $\Theta(\log n)$
 • Total expected work at each level is at most $10/8 \cdot cn$
 • The total expected time is $O(n \log n)$
Lucky partitions

• The probability that a random pivot induces lucky partition is at least 8/10
 (we are not lucky if the pivot happens to be among the smallest/largest n/10 elements)
• If we flip a coin, with heads prob. p=8/10, the expected waiting time for the first head is 1/p = 10/8
Quicksort in practice

• Quicksort is a great general-purpose sorting algorithm.
• Quicksort is typically over twice as fast as merge sort.
• Quicksort can benefit substantially from code tuning.
• Quicksort behaves well even with caching and virtual memory.
• Quicksort is great!
More intuition

Suppose we alternate lucky, unlucky, lucky, unlucky, lucky, ….

\[L(n) = 2U(n/2) + \Theta(n) \quad \text{lucky} \]
\[U(n) = L(n - 1) + \Theta(n) \quad \text{unlucky} \]

Solving:

\[L(n) = 2(L(n/2 - 1) + \Theta(n/2)) + \Theta(n) \]
\[= 2L(n/2 - 1) + \Theta(n) \]
\[= \Theta(n \lg n) \quad \text{Lucky!} \]

How can we make sure we are usually lucky?
Randomized quicksort analysis

Let $T(n)$ = the random variable for the running time of randomized quicksort on an input of size n, assuming random numbers are independent.

For $k = 0, 1, \ldots, n-1$, define the *indicator random variable*

$$X_k = \begin{cases}
1 & \text{if PARTITION generates a } k : n-k-1 \text{ split,} \\
0 & \text{otherwise.}
\end{cases}$$

$E[X_k] = \Pr\{X_k = 1\} = 1/n$, since all splits are equally likely, assuming elements are distinct.
Analysis (continued)

\[
T(n) = \begin{cases}
T(0) + T(n-1) + \Theta(n) & \text{if } 0:n-1 \text{ split}, \\
T(1) + T(n-2) + \Theta(n) & \text{if } 1:n-2 \text{ split}, \\
& \vdots \\
T(n-1) + T(0) + \Theta(n) & \text{if } n-1:0 \text{ split},
\end{cases}
\]

\[
= \sum_{k=0}^{n-1} X_k \left(T(k) + T(n-k-1) + \Theta(n) \right).
\]

Q. How many \(h \)’s cause \(x \) and \(y \) to collide?
A. There are \(m \) choices for each of \(a_1, a_2, \ldots, a_r \), but once these are chosen, exactly one choice for \(a_0 \) causes \(x \) and \(y \) to collide, namely

\[
\left(\begin{array}{c}
\vdots \\
\end{array} \right) \cdot \left(\begin{array}{c}
\vdots \\
\end{array} \right) \left(\begin{array}{c}
\vdots \\
\end{array} \right) = 1 \\
\left(\begin{array}{c}
\vdots \\
\end{array} \right) \mod m.
\]

Thus, the number of \(h \)’s that cause \(x \) and \(y \) to collide is \(m^r \cdot 1 = m^r = |H|/m \).
Calculating expectation

\[
E[T(n)] = E\left[\sum_{k=0}^{n-1} X_k (T(k) + T(n-k-1) + \Theta(n)) \right]
\]

Take expectations of both sides.
Calculating expectation

\[
E[T(n)] = E\left[\sum_{k=0}^{n-1} X_k (T(k) + T(n - k - 1) + \Theta(n)) \right]
\]

\[
= \sum_{k=0}^{n-1} E\left[X_k (T(k) + T(n - k - 1) + \Theta(n)) \right]
\]

Linearity of expectation.
Calculating expectation

\[
E[T(n)] = E\left[\sum_{k=0}^{n-1} X_k (T(k) + T(n-k-1) + \Theta(n)) \right]
\]

\[
= \sum_{k=0}^{n-1} E[X_k (T(k) + T(n-k-1) + \Theta(n))]
\]

\[
= \sum_{k=0}^{n-1} E[X_k] \cdot E[T(k) + T(n-k-1) + \Theta(n)]
\]

Independence of \(X_k\) from other random choices.
Calculating expectation

\[
E[T(n)] = E\left[\sum_{k=0}^{n-1} X_k (T(k) + T(n - k - 1) + \Theta(n)) \right]
\]

\[
= \sum_{k=0}^{n-1} E[X_k (T(k) + T(n - k - 1) + \Theta(n))]
\]

\[
= \sum_{k=0}^{n-1} E[X_k] \cdot E[T(k) + T(n - k - 1) + \Theta(n)]
\]

\[
= \frac{1}{n} \sum_{k=0}^{n-1} E[T(k)] + \frac{1}{n} \sum_{k=0}^{n-1} E[T(n - k - 1)] + \frac{1}{n} \sum_{k=0}^{n-1} \Theta(n)
\]

Linearity of expectation; \(E[X_k] = 1/n \).
Calculating expectation

\[
E[T(n)] = E \left[\sum_{k=0}^{n-1} X_k (T(k) + T(n - k - 1) + \Theta(n)) \right]
\]

\[
= \sum_{k=0}^{n-1} E[X_k (T(k) + T(n - k - 1) + \Theta(n))]
\]

\[
= \sum_{k=0}^{n-1} E[X_k] \cdot E[T(k) + T(n - k - 1) + \Theta(n)]
\]

\[
= \frac{1}{n} \sum_{k=0}^{n-1} E[T(k)] + \frac{1}{n} \sum_{k=0}^{n-1} E[T(n - k - 1)] + \frac{1}{n} \sum_{k=0}^{n-1} \Theta(n)
\]

\[
= 2 \sum_{k=0}^{n-1} E[T(k)] + \Theta(n)
\]

Summations have identical terms.
Hairy recurrence

\[E[T(n)] = 2 \sum_{k=2}^{n-1} E[T(k)] + \Theta(n) \]

(The \(k = 0, 1 \) terms can be absorbed in the \(\Theta(n) \).)

Prove: \(E[T(n)] \leq an \lg n \) for constant \(a > 0 \).

- Choose \(a \) large enough so that \(an \lg n \) dominates \(E[T(n)] \) for sufficiently small \(n \geq 2 \).

Use fact: \(\sum_{k=2}^{n-1} k \lg k \leq \frac{1}{2} n^2 \lg n - \frac{1}{8} n^2 \) (exercise).
Substitution method

\[E[T(n)] \leq 2 \sum_{k=2}^{n-1} ak \lg k + \Theta(n) \]

Substitute inductive hypothesis.
Substitution method

\[E[T(n)] \leq 2 \sum_{k=2}^{n-1} \frac{a_k \lg k}{n} + \Theta(n) \]

\[\leq 2a \left(\frac{1}{2} n^2 \lg n - \frac{1}{8} n^2 \right) + \Theta(n) \]

Use fact.
Substitution method

\[E[T(n)] \leq \frac{2}{n} \sum_{k=2}^{n-1} ak \log k + \Theta(n) \]

\[\leq \frac{2a}{n} \left(\frac{1}{2} n^2 \log n - \frac{1}{8} n^2 \right) + \Theta(n) \]

\[= an \log n - \left(\frac{an}{4} - \Theta(n) \right) \]

Express as \textit{desired} – \textit{residual}.
Substitution method

\[E[T(n)] \leq \frac{2}{n} \sum_{k=2}^{n-1} ak \lg k + \Theta(n) \]

\[= \frac{2a}{n} \left(\frac{1}{2} n^2 \lg n - \frac{1}{8} n^2 \right) + \Theta(n) \]

\[= an \lg n - \left(\frac{an}{4} - \Theta(n) \right) \]

\[\leq an \lg n , \]

if \(a \) is chosen large enough so that \(an/4 \) dominates the \(\Theta(n) \).
Randomized Algorithms

- Algorithms that make decisions based on random coin flips.
- Can “fool” the adversary.
- The running time (or even correctness) is a random variable; we measure the expected running time.
- We assume all random choices are independent.
- This is not the average case!