Q. How many h'a's cause x and y to collide?

A. There are m choices for each of a₁, a₂, ..., aᵣ, but once these are chosen, exactly one choice for a₀ causes x and y to collide, namely

\[
\begin{pmatrix}
\vdots \\
\sum_{i=1}^{r} \cdot (x_{i} - y_{i})
\end{pmatrix} \\
= \begin{pmatrix}
\vdots \\
-1
\end{pmatrix} a_{i} (x_{i} - y_{i}) \mod m.
\]

Thus, the number of h'a's that cause x and y to collide is

\[m^r \cdot 1 = m^r = |H|/m.\]
Today

- Randomized algorithms: algorithms that flip coins
 - Matrix product checker: is $AB=C$?
 - Quicksort:
 - Example of divide and conquer
 - Fast and practical sorting algorithm
 - Other applications on Wednesday
Randomized Algorithms

- Algorithms that make random decisions
- That is:
 - Can generate a random number \(x \) from some range \(\{1 \ldots R\} \)
 - Make decisions based on the value of \(x \)
- Why would it make sense?
Two cups, one coin

• If you always choose a fixed cup, the adversary will put the coin in the other one, so the expected payoff = $0
• If you choose a random cup, the expected payoff = $0.5
Randomized Algorithms

• Two basic types:
 – Typically fast (but sometimes slow): Las Vegas
 – Typically correct (but sometimes output garbage): Monte Carlo

• The probabilities are defined by the random numbers of the algorithm! (not by random choices of the problem instance)
Matrix Product

- Compute $C = A \times B$
 - Simple algorithm: $O(n^3)$ time
 - Multiply two 2×2 matrices using 7 mult. $\rightarrow O(n^{2.81\ldots})$ time [Strassen’69]
 - Multiply two 70×70 matrices using 143640 multiplications $\rightarrow O(n^{2.795\ldots})$ time [Pan’78]
 - …
 - $O(n^{2.376\ldots})$ [Coppersmith-Winograd]
Matrix Product Checker

• Given: \(n \times n\) matrices \(A, B, C\)
• Goal: is \(A \times B = C\) ?
• We will see an \(O(n^2)\) algorithm that:
 – If answer=\(\text{YES}\), then \(\Pr[\text{output}=\text{YES}] = 1\)
 – If answer=\(\text{NO}\), then \(\Pr[\text{output}=\text{YES}] \leq \frac{1}{2}\)
The algorithm

- Algorithm:
 - Choose a random binary vector $x[1 \ldots n]$,
 such that $\Pr[x_i=1]=\frac{1}{2}$, $i=1 \ldots n$
 - Check if $ABx=Cx$

- Does it run in $O(n^2)$ time?
 - YES, because $ABx = A(Bx)$
Correctness

• Let $D=AB$, need to check if $D=C$

• What if $D=C$?
 – Then $Dx=Cx$, so the output is YES

• What if $D\neq C$?
 – Presumably there exists x such that $Dx\neq Cx$
 – We need to show there are many such x
\[D \neq C \]

\[\sum_{i=0}^{r} a_i (x_i - y_i) \mod m = -a_0 \]

Q. How many \(h \)'s cause \(x \) and \(y \) to collide?
A. There are \(m \) choices for each of \(a_1, a_2, \ldots, a_r \), but once these are chosen, exactly one choice for \(a_0 \) causes \(x \) and \(y \) to collide, namely

\[\begin{bmatrix} x_0 - y_0 \\ x_1 - y_1 \\ \vdots \\ x_r - y_r \end{bmatrix} \cdot \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_r \end{bmatrix} \mod m. \]

Thus, the number of \(h \)'s that cause \(x \) and \(y \) to collide is \(m^r \cdot 1 = m^r = |H|/m. \]
Vector product

• Consider vectors \(d \neq c \) (say, \(d_i \neq c_i \))
• Choose a random binary \(x \)
• We have \(dx = cx \) iff \((d-c)x = 0 \)
• \(\Pr[(d-c)x = 0] = ? \)

\[
(d-c): \quad d_1-c_1, d_2-c_2, \ldots, d_i-c_i, \ldots, d_n-c_n
\]
\[
x: \quad x_1, x_2, \ldots, x_i, \ldots, x_n
\]
\[
= \sum_{j \neq i} (d_j-c_j)x_j + (d_i-c_i)x_i
\]
Analysis, ctd.

• If $x_i=0$, then $(c-d)x=S_1$
• If $x_i=1$, then $(c-d)x=S_2\neq S_1$
• So, ≥ 1 of the choices gives $(c-d)x \neq 0$
 $\rightarrow \Pr[cx=dx] \leq \frac{1}{2}$
Matrix Product Checker

• Is $A \times B = C$?
• We have an algorithm that:
 – If answer=YES, then $\Pr[\text{output}=\text{YES}] = 1$
 – If answer=NO, then $\Pr[\text{output}=\text{YES}] \leq \frac{1}{2}$
• What if we want to reduce $\frac{1}{2}$ to $\frac{1}{4}$?
 – Run the algorithm twice, using independent random numbers
 – Output YES only if both runs say YES
• Analysis:
 – If answer=YES, then $\Pr[\text{output}_1=\text{YES}, \text{output}_2=\text{YES}] = 1$
 – If answer=NO, then
 \[\Pr[\text{output}=\text{YES}] = \Pr[\text{output}_1=\text{YES}, \text{output}_2=\text{YES}] = \Pr[\text{output}_1=\text{YES}] \cdot \Pr[\text{output}_2=\text{YES}] \leq \frac{1}{4} \]
Quicksort

- Divide-and-conquer algorithm.
- Sorts “in place” (like insertion sort, but not like merge sort).
- Very practical (with tuning).
- Can be viewed as a randomized Las Vegas algorithm.
Divide and conquer

Quicksort an n-element array:

1. **Divide:** Partition the array into two subarrays around a *pivot* x such that elements in lower subarray $\leq x \leq$ elements in upper subarray.

2. **Conquer:** Recursively sort the two subarrays.

3. **Combine:** Trivial.

Key: Linear-time partitioning subroutine.
Pseudocode for quicksort

QUICKSORT(A, p, r)
 if \(p < r \)
 then \(q \leftarrow \text{PARTITION}(A, p, r) \)
 QUICKSORT(A, p, q-1)
 QUICKSORT(A, q+1, r)

Initial call: QUICKSORT(A, 1, n)
Partitioning subroutine

\textsc{Partition}(A, p, r) \triangleq A[p \ldots r]

\begin{align*}
x & \leftarrow A[p] \quad \triangleq \text{pivot} = A[p] \\
i & \leftarrow p \\
\text{for } j & \leftarrow p + 1 \text{ to } r \\
\text{do if } A[j] & \leq x \\
\text{then } i & \leftarrow i + 1 \\
\text{exchange } A[i] & \leftrightarrow A[j] \\
\text{exchange } A[p] & \leftrightarrow A[i] \\
\text{return } i
\end{align*}

\textbf{Invariant: }
\begin{tabular}{c c c c c c c}
\hline
 & $\leq x$ & & $\geq x$ & & ? & \\
\hline
p & i & j & r
\end{tabular}
Example of partitioning

\[6 \quad 10 \quad 13 \quad 5 \quad 8 \quad 3 \quad 2 \quad 11 \]

\[i \quad j \]
Example of partitioning

\[\begin{array}{cccccccc}
6 & 10 & 13 & 5 & 8 & 3 & 2 & 11 \\
\end{array}\]

\[i \rightarrow j\]
Example of partitioning

\[\begin{array}{cccccccc}
6 & 10 & 13 & 5 & 8 & 3 & 2 & 11 \\
\end{array} \]

\[i \rightarrow j \]
Example of partitioning

\[\begin{array}{cccccccc}
6 & 10 & 13 & 5 & 8 & 3 & 2 & 11 \\
6 & 5 & 13 & 10 & 8 & 3 & 2 & 11 \\
\end{array} \]

\[i \quad j \]
Example of partitioning

\begin{align*}
\begin{array}{cccccccc}
6 & 10 & 13 & 5 & 8 & 3 & 2 & 11 \\
\end{array}
\end{align*}

\begin{align*}
\begin{array}{cccccccc}
6 & 5 & 13 & 10 & 8 & 3 & 2 & 11 \\
\end{array}
\end{align*}

\begin{align*}
& i \quad \longrightarrow \quad j
\end{align*}
Example of partitioning

\[\begin{array}{cccccccc}
6 & 10 & 13 & 5 & 8 & 3 & 2 & 11 \\
6 & 5 & 13 & 10 & 8 & 3 & 2 & 11 \\
\end{array} \]

Q. How many \(h \)’s cause \(x \) and \(y \) to collide?

A. There are \(m \) choices for each of \(a_1, a_2, \ldots, a_r \), but once these are chosen, exactly one choice for \(a_0 \) causes \(x \) and \(y \) to collide, namely

\[
\begin{pmatrix}
\sum_{i=1}^{r} a_i \\
\end{pmatrix}
\]

Thus, the number of \(h \)’s that cause \(x \) and \(y \) to collide is

\[m^r = \frac{|H|}{m}. \]
Example of partitioning

\[
\begin{array}{cccccccc}
6 & 10 & 13 & 5 & 8 & 3 & 2 & 11 \\
6 & 5 & 13 & 10 & 8 & 3 & 2 & 11 \\
6 & 5 & 3 & 10 & 8 & 13 & 2 & 11 \\
\end{array}
\]

\[i \quad j\]
Example of partitioning

Q. How many h_a's cause x and y to collide?

A. There are m choices for each of a_1, a_2, …, a_r, but once these are chosen, exactly one choice for a_0 causes x and y to collide, namely

\[
\sum_{i=1}^{r} a_i (x_i - y_i) \mod m.
\]

Thus, the number of h_a's that cause x and y to collide is

\[
m^r = \frac{|H|}{m}.
\]

October 5, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.15
Example of partitioning

\begin{align*}
\begin{array}{ccccccc}
6 & 10 & 13 & 5 & 8 & 3 & 2 & 11 \\
6 & 5 & 13 & 10 & 8 & 3 & 2 & 11 \\
6 & 5 & 3 & 10 & 8 & 13 & 2 & 11 \\
6 & 5 & 3 & 2 & 8 & 13 & 10 & 11 \\
\end{array}
\end{align*}

\[i \quad j\]
Example of partitioning

\[
\begin{array}{cccccccc}
6 & 10 & 13 & 5 & 8 & 3 & 2 & 11 \\
6 & 5 & 13 & 10 & 8 & 3 & 2 & 11 \\
6 & 5 & 3 & 10 & 8 & 13 & 2 & 11 \\
6 & 5 & 3 & 2 & 8 & 13 & 10 & 11 \\
\end{array}
\]

Proof (completed)

Q. How many \(h \)'s cause \(x \) and \(y \) to collide?

A. There are \(m \) choices for each of \(a_1, a_2, \ldots, a_r \), but once these are chosen, exactly one choice for \(a_0 \) causes \(x \) and \(y \) to collide, namely

\[
\sum_{i=0}^{r} (x_i - y_i) \mod m.
\]

Thus, the number of \(h \)'s that cause \(x \) and \(y \) to collide is

\[
m^r = \frac{|H|}{m}.
\]

October 5, 2005

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

L7.15
Example of partitioning

\[
\begin{array}{cccccccc}
6 & 10 & 13 & 5 & 8 & 3 & 2 & 11 \\
6 & 5 & 13 & 10 & 8 & 3 & 2 & 11 \\
6 & 5 & 3 & 10 & 8 & 13 & 2 & 11 \\
6 & 5 & 3 & 2 & 8 & 13 & 10 & 11 \\
\end{array}
\]

Q. How many \(h_a \)'s cause \(x \) and \(y \) to collide?

A. There are \(m \) choices for each of \(a_1, a_2, \ldots, a_r \), but once these are chosen, exactly one choice for \(a_0 \) causes \(x \) and \(y \) to collide, namely

\[
\begin{align*}
&\sum_{i=1}^{r} a_i (x_i - y_i) \\
&\quad \pmod{m}.
\end{align*}
\]

Thus, the number of \(h_a \)'s that cause \(x \) and \(y \) to collide is

\[
m^r \cdot \frac{|H|}{m}.
\]

October 5, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson

L7.15
Example of partitioning

1. 6 10 13 5 8 3 2 11
2. 6 5 13 10 8 3 2 11
3. 6 5 3 10 8 13 2 11
4. 6 5 3 2 8 13 10 11
5. 2 5 3 6 8 13 10 11

Proof (completed)

Q. How many h's cause x and y to collide?
A. There are m choices for each of a1, a2, …, ar, but once these are chosen, exactly one choice for a0 causes x and y to collide, namely
\[
\sum_{i=1}^{r} a_i (x_i - y_i) \pmod{m}.
\]
Thus, the number of h's that cause x and y to collide is
\[
m^r = |H|/m.
\]
Analysis of quicksort

• Assume all input elements are distinct.
• In practice, there are better partitioning algorithms for when duplicate input elements may exist.
• What is the worst case running time of Quicksort?
Worst-case of quicksort

- Input sorted or reverse sorted.
- Partition around min or max element.
- One side of partition always has no elements.

\[
T(n) = T(0) + T(n-1) + \Theta(n)
\]

\[
= \Theta(1) + T(n-1) + \Theta(n)
\]

\[
= T(n-1) + \Theta(n)
\]

\[
= \Theta(n^2) \quad \text{(arithmetic series)}
\]
Worst-case recursion tree

\[T(n) = T(0) + T(n-1) + cn \]
Worst-case recursion tree

\[T(n) = T(0) + T(n-1) + cn \]

Proof (completed)

Q. How many \(h \)'s cause \(x \) and \(y \) to collide?

A. There are \(m \) choices for each of \(a_1, a_2, \ldots, a_r \), but once these are chosen, exactly one choice for \(a_0 \) causes \(x \) and \(y \) to collide, namely

\[
\begin{bmatrix}
| & | & | & \\
\cdot & \cdot & \cdot & \\
| & | & | & \\
\end{bmatrix} = -a_i (x_i - y_i) \mod m.
\]

Thus, the number of \(h \)'s that cause \(x \) and \(y \) to collide is

\[m^r = |H|/m. \]

October 5, 2005

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson
Worst-case recursion tree

\[T(n) = T(0) + T(n-1) + cn \]
Worst-case recursion tree

\[T(n) = T(0) + T(n-1) + cn \]
Worst-case recursion tree

\[T(n) = T(0) + T(n-1) + cn \]
Worst-case recursion tree

\[T(n) = T(0) + T(n-1) + cn \]

\[\Theta\left(\sum_{k=1}^{n} k \right) = \Theta(n^2) \]
Worst-case recursion tree

\[T(n) = T(0) + T(n-1) + cn \]

\[\Theta(1) \]
\[c(n-1) \]
\[\Theta(1) \]
\[c(n-2) \]
\[\Theta(1) \]
\[\ldots \]
\[\Theta(1) \]

\[h = n \]

\[\Theta \left(\sum_{k=1}^{n} k \right) = \Theta(n^2) \]
Nice-case analysis

If we’re lucky, PARTITION splits the array evenly:
\[T(n) = 2T(n/2) + \Theta(n) \]
\[= \Theta(n \lg n) \] (same as merge sort)

What if the split is always \(\frac{1}{10} : \frac{9}{10} \)?
\[T(n) = T\left(\frac{1}{10} n\right) + T\left(\frac{9}{10} n\right) + \Theta(n) \]
Analysis of nice case

\[T(n) \]
Analysis of nice case

\[
T\left(\frac{1}{10} n\right) \quad cn \quad T\left(\frac{9}{10} n\right)
\]
Analysis of nice case

\[
\begin{align*}
\text{cn} & \quad \frac{1}{10}\text{cn} \quad \frac{9}{10}\text{cn} \\
T\left(\frac{1}{100}n\right)T\left(\frac{9}{100}n\right) & \quad T\left(\frac{9}{100}n\right)T\left(\frac{81}{100}n\right)
\end{align*}
\]
Analysis of nice case

Q. How many h's cause x and y to collide?
A. There are m^r choices for each of a_1, a_2, \ldots, a_r, but once these are chosen, exactly one choice for a_0 causes x and y to collide, namely

$$\begin{bmatrix} a_1 \\ \vdots \\ a_r \end{bmatrix} \cdot (x_0 - y_0) \mod m.$$

Thus, the number of h's that cause x and y to collide is $m^r = |H|/m$.

October 5, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L7.15
Analysis of nice case

$cn \log_{10/9} n \leq T(n) \leq cn \log_{10/9} n + O(n)$
Randomized quicksort

• Partition around a random element. I.e., around $A[t]$, where t chosen uniformly at random from $\{p \ldots r\}$

• We will show that the expected time is $O(n \log n)$
“Paranoid” quicksort

- Will modify the algorithm to make it easier to analyze:
 - Repeat:
 - Choose the pivot to be a random element of the array
 - Perform \textsc{Partition}
 - Until the resulting split is “lucky”, i.e., not worse than $1/10: 9/10$
 - Recurse on both sub-arrays
Analysis

• Let $T(n)$ be an upper bound on the expected running time on any array of n elements.

• Consider any input of size n.

• The time needed to sort the input is bounded from the above by a sum of
 • The time needed to sort the left subarray.
 • The time needed to sort the right subarray.
 • The number of iterations until we get a lucky split, times cn.

Proof (completed)

Q. How many h's cause x and y to collide?

A. There are m choices for each of a_1, a_2, \ldots, a_r, but once these are chosen, exactly one choice for a_0 causes x and y to collide, namely:

$$
\begin{align*}
\sum_{i=1}^{r} a_i (x_i - y_i) & \mod m, \\
\end{align*}
$$

Thus, the number of h's that cause x and y to collide is $m^r = |H|/m$.

October 5, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson
partitions = # iterations until lucky split of at most 1/10:9/10

Expectations

- By linearity of expectation:

\[T(n) \leq \max T(i) + T(n - i) + E[\# partitions] \cdot cn \]

where maximum is taken over \(i \in \frac{n}{10}, \frac{9n}{10} \)

- We will show that \(E[\# partitions] \) is \(\leq 10/8 \)

- Therefore:

\[T(n) \leq \max T(i) + T(n - i) + 2cn, i \in [\frac{n}{10}, \frac{9n}{10}] \]
Final bound

- Can use the recursion tree argument:
 - Tree depth is $\Theta(\log n)$
 - Total expected work at each level is at most $10/8 \cdot cn$
 - The total expected time is $O(n \log n)$
Lucky partitions

• The probability that a random pivot induces lucky partition is at least $8/10$
 (we are *not* lucky if the pivot happens to be among the smallest/largest $n/10$ elements)

• If we flip a coin, with heads prob. $p=8/10$, the expected waiting time for the first head is $1/p = 10/8$
Quicksort in practice

• Quicksort is a great general-purpose sorting algorithm.
• Quicksort is typically over twice as fast as merge sort.
• Quicksort can benefit substantially from code tuning.
• Quicksort behaves well even with caching and virtual memory.
• Quicksort is great!

Proof (completed)
Q. How many h's cause x and y to collide?
A. There are m choices for each of a_1, a_2, \ldots, a_r, but once these are chosen, exactly one choice for a_0 causes x and y to collide, namely

\[
\begin{bmatrix}
\sum_{i=1}^{r} \prod_{i=1}^{r} (a_i (x_i - y_i)) \mod m
\end{bmatrix} = \begin{bmatrix}
-1
\end{bmatrix} = \lfloor \frac{|H|}{m} \rfloor.
\]

Thus, the number of h's that cause x and y to collide is $m^r = \frac{|H|}{m}$.
More intuition

Suppose we alternate lucky, unlucky, lucky, unlucky, lucky,

\[L(n) = 2U(n/2) + \Theta(n) \quad \text{lucky} \]
\[U(n) = L(n - 1) + \Theta(n) \quad \text{unlucky} \]

Solving:

\[L(n) = 2(L(n/2 - 1) + \Theta(n/2)) + \Theta(n) \]
\[= 2L(n/2 - 1) + \Theta(n) \]
\[= \Theta(n \log n) \quad \text{Lucky!} \]

How can we make sure we are usually lucky?
Randomized quicksort analysis

Let $T(n)$ = the random variable for the running time of randomized quicksort on an input of size n, assuming random numbers are independent.

For $k = 0, 1, \ldots, n-1$, define the indicator random variable

$$X_k = \begin{cases} 1 & \text{if PARTITION generates a } k : n-k-1 \text{ split,} \\ 0 & \text{otherwise.} \end{cases}$$

$$E[X_k] = \Pr\{X_k = 1\} = 1/n,$$ since all splits are equally likely, assuming elements are distinct.
Analysis (continued)

\[T(n) = \begin{cases}
T(0) + T(n-1) + \Theta(n) & \text{if } 0 : n-1 \text{ split}, \\
T(1) + T(n-2) + \Theta(n) & \text{if } 1 : n-2 \text{ split}, \\
\vdots \\
T(n-1) + T(0) + \Theta(n) & \text{if } n-1 : 0 \text{ split},
\end{cases} \]

\[= \sum_{k=0}^{n-1} X_k \left(T(k) + T(n - k - 1) + \Theta(n) \right). \]
Calculating expectation

\[
E[T(n)] = E \left[\sum_{k=0}^{n-1} X_k (T(k) + T(n-k-1) + \Theta(n)) \right]
\]

Take expectations of both sides.
Calculating expectation

\[E[T(n)] = E\left[\sum_{k=0}^{n-1} X_k (T(k) + T(n-k-1) + \Theta(n)) \right]\]

\[= \sum_{k=0}^{n-1} E[X_k (T(k) + T(n-k-1) + \Theta(n))]\]

Linearity of expectation.
Calculating expectation

\[E[T(n)] = E \left[\sum_{k=0}^{n-1} X_k (T(k) + T(n-k-1) + \Theta(n)) \right] \]

\[= \sum_{k=0}^{n-1} E[X_k (T(k) + T(n-k-1) + \Theta(n))] \]

\[= \sum_{k=0}^{n-1} E[X_k] \cdot E[T(k) + T(n-k-1) + \Theta(n)] \]

Independence of \(X_k\) from other random choices.
Calculating expectation

\[E[T(n)] = E \left[\sum_{k=0}^{n-1} X_k (T(k) + T(n-k-1) + \Theta(n)) \right] \]

\[= \sum_{k=0}^{n-1} E[X_k (T(k) + T(n-k-1) + \Theta(n))] \]

\[= \sum_{k=0}^{n-1} E[X_k] \cdot E[T(k) + T(n-k-1) + \Theta(n)] \]

\[= \frac{1}{n} \sum_{k=0}^{n-1} E[T(k)] + \frac{1}{n} \sum_{k=0}^{n-1} E[T(n-k-1)] + \frac{1}{n} \sum_{k=0}^{n-1} \Theta(n) \]

Linearity of expectation; \(E[X_k] = 1/n \).
Calculating expectation

\[E[T(n)] = E \left[\sum_{k=0}^{n-1} X_k (T(k) + T(n-k-1) + \Theta(n)) \right] \]

\[= \sum_{k=0}^{n-1} E[X_k (T(k) + T(n-k-1) + \Theta(n))] \]

\[= \sum_{k=0}^{n-1} E[X_k] \cdot E[T(k) + T(n-k-1) + \Theta(n)] \]

\[= \frac{1}{n} \sum_{k=0}^{n-1} E[T(k)] + \frac{1}{n} \sum_{k=0}^{n-1} E[T(n-k-1)] + \frac{1}{n} \sum_{k=0}^{n-1} \Theta(n) \]

\[= 2 \sum_{k=1}^{n-1} E[T(k)] + \Theta(n) \]

Summations have identical terms.
Hairy recurrence

\[E[T(n)] = \frac{2}{n} \sum_{k=2}^{n-1} E[T(k)] + \Theta(n) \]

(The \(k = 0, 1 \) terms can be absorbed in the \(\Theta(n) \).)

Prove: \(E[T(n)] \leq an \lg n \) for constant \(a > 0 \).

* Choose \(a \) large enough so that \(an \lg n \) dominates \(E[T(n)] \) for sufficiently small \(n \geq 2 \).

Use fact: \(\sum_{k=2}^{n-1} k \lg k \leq \frac{1}{2} n^2 \lg n - \frac{1}{8} n^2 \) (exercise).
Substitution method

\[E[T(n)] \leq 2 \frac{n-1}{n} \sum_{k=2}^{n} a_k \log k + \Theta(n) \]

Substitute inductive hypothesis.
Substitution method

\[
E[T(n)] \leq 2 \sum_{n}^{n-1} \frac{a k \lg k + \Theta(n)}{n} \\
\leq 2a \left(\frac{1}{2} n^2 \lg n - \frac{1}{8} n^2 \right) + \Theta(n)
\]

Use fact.
Substitution method

\[E[T(n)] \leq \frac{2}{n} \sum_{k=2}^{n-1} a_k \lg k + \Theta(n) \]

\[\leq \frac{2a}{n} \left(\frac{1}{2} n^2 \lg n - \frac{1}{8} n^2 \right) + \Theta(n) \]

\[= an \lg n - \left(\frac{an}{4} - \Theta(n) \right) \]

Express as \textit{desired} – \textit{residual}.
Substitution method

\[E[T(n)] \leq 2 \sum_{k=2}^{n-1} \frac{a}{n} k \log k + \Theta(n) \]

\[= \frac{2a}{n} \left(\frac{1}{2} n^2 \log n - \frac{1}{8} n^2 \right) + \Theta(n) \]

\[= an \log n - \left(\frac{an}{4} - \Theta(n) \right) \]

\[\leq an \log n , \]

if \(a \) is chosen large enough so that \(an/4 \) dominates the \(\Theta(n) \).
• Assume

Running time $= O(n)$ for n elements.
Randomized Algorithms

- Algorithms that make decisions based on random coin flips.
- Can “fool” the adversary.
- The running time (or even correctness) is a random variable; we measure the expected running time.
- We assume all random choices are independent.
- This is not the average case!