Fast Fourier Transform

- **Discrete Fourier Transform (DFT):**
 - Given: coefficients of a polynomial
 \[a(x) = a_0 + a_1 x + \ldots + a_{n-1} x^{n-1} \]
 - Goal: compute \(a(\omega_n^0), a(\omega_n^1) \ldots a(\omega_n^{n-1}) \),
 \(\omega_n \) is the “principal n-th root of unity”
- **Challenge:** Perform DFT in \(O(n \log n) \) time.
Motivation I: 6.003

- FFT is **essential** for digital signal processing
 - $a_0, a_1, \ldots, a_{n-1}$: signal in the “time domain”
 - $a(\omega_n^0), a(\omega_n^1) \ldots a(\omega_n^{n-1})$: signal in the “frequency domain”
 - FFT enables quick conversion from one domain to the other

- Used in Compact Disks, Digital Cameras, Synthesizers, etc, etc.
Example application: SETI

- Searching For Extraterrestrial Intelligence (SETI):

“At each drift rate, the client searches for signals at one or more bandwidths between 0.075 and 1,221 Hz. This is accomplished by using FFTs of length 2^n ($n = 3, 4, \ldots, 17$) to transform the data into a number of time-ordered power spectra.”
FFT

- Very elaborate implementations (e.g., FFTW, “the Fastest Fourier Transform in the West”, done at MIT)
- Hardware implementations
Motivation II: Computer Science

- We will see how to multiply two polynomials in $O(n \log n)$ time using FFT
- Multiplication of polynomials \rightarrow mult. of (large) integers - cryptography
- Also: pattern matching, etc.
DFT

- Recall: want $a(\omega_n^0), a(\omega_n^1) \ldots a(\omega_n^{n-1})$
- ω_n is the "principal n-th root of unity, i.e., for $j=0\ldots n-1$ we have $(\omega_n^j)^n=1$
- We will work in the field of complex numbers where

 $$\omega_n = e^{2\pi i/n} = \cos(2\pi/n) + i \sin(2\pi/n)$$

 - ω_n is indeed the principal n-th root of unity:

 $$(\omega_n^j)^n = e^{2\pi ij} = \cos(2\pi j) + i \sin(2\pi j) = 1$$
Halving Lemma

- If \(n > 0 \) is even, then the squares of the \(n \) complex \(n \)-th roots of unity are the \(n/2 \) complex \((n/2) \)-th roots of unity, i.e.:
 \[
 \{ (\omega_n^0)^2, \ldots, (\omega_n^{n-1})^2 \} = \{ \omega_{n/2}^0, \ldots, \omega_{n/2}^{n/2-1} \}
 \]

- Proof:
 \[
 (\omega_n^j)^2 = e^{2(2\pi ij/n)} = e^{2\pi ij/(n/2)} = \omega_{n/2}^j
 \]
FFT

• Divide-and-conquer algorithm
• “Split” \(a(x)\) into \(a^{[0]}(x)\) and \(a^{[1]}(x)\):
 \[
a^{[0]}(x) = a_0 + a_2 x + \ldots + a_{n-2} x^{n/2-1}
 \]
 \[
a^{[1]}(x) = a_1 + a_3 x + \ldots + a_{n-1} x^{n/2-1}
 \]
• Therefore
 \[
a^{[0]}(x^2) + x \ a^{[1]}(x^2) = a(x)
 \]
FFT: the algorithm

- Recall we need to evaluate the polynomial \(a \) at points \(\{ \omega_n^0, \ldots, \omega_n^{n-1} \} \)
- Suffices to
 - Evaluate polynomials \(a^{[0]} \) and \(a^{[1]} \) at points \(\{ (\omega_n^0)^2, \ldots, (\omega_n^{n-1})^2 \} = P \)
 - Compute \(a(\omega_n^j) = a^{[0]}((\omega_n^j)^2) + \omega_n^j a^{[1]}((\omega_n^j)^2) \)
- However, \(P = \{ \omega_{n/2}^0, \ldots, \omega_{n/2}^{n/2-1} \} \), \(|P| = n/2 \)
- Thus, we just need to recursively evaluate two polynomials with degree \(n/2-1 \) at \(n/2 \) points!
- Time: \(T(n)=2 T(n/2) + O(n) \rightarrow T(n)=O(n \log n) \)
Comments

- We assumed that n is a power of 2
- This is NOT without loss of generality
Inverse DFT

- Given: the values $a(\omega_n^0), a(\omega_n^1), \ldots, a(\omega_n^{n-1})$, denoted by $y_0, y_1, \ldots, y_{n-1}$.
- Goal: compute the coefficients $a_0, a_1, \ldots, a_{n-1}$.
- Algorithm:
 - “Observe” that $a_j = y((\omega_n^{-1})^j)$, $y(x)$ is a polynomial with coefficients y_0, \ldots, y_{n-1} (see CLRS for proof)
 - Run FFT
Polynomial multiplication

Input: \(a(x) = a_0 + a_1 x + \ldots + a_{n-1} x^{n-1}\),
\(b(x) = b_0 + b_1 x + \ldots + b_{n-1} x^{n-1}\),

Output: \(c(x) = a(x) \times b(x) = c_0 + c_1 x + \ldots + c_{2n-2} x^{2n-2}\)
\(c_i = a_0 b_i + a_1 b_{i-1} + \ldots + a_{i-1} b_1 + a_i b_0\)

How to solve it in \(O(n \log n)\) time?
FFT-based algorithm

- Extend a, b to degree $2n-2$ (by adding 0’s)
- Compute $a(\omega_{2n}^0) \ldots a(\omega_{2n}^{2n-2})$ and $b(\omega_{2n}^0) \ldots b(\omega_{2n}^{2n-2})$ (via FFT)
- Compute $c(\omega_{2n}^j) = a(\omega_{2n}^j) \ast b(\omega_{2n}^j)$, $j=0 \ldots 2n-2$
- Compute $c_0, c_1, \ldots, c_{2n-2}$ (via inverse FFT)
- Same time as FFT
Uniqueness of \(c \)

- Can show (CLRS) that if we fix the values of a \((d-1)\)-degree polynomial at \(d \) different points, then the polynomial is unique
- E.g., there is only one line passing through 2 points
- Therefore, the algorithm is correct