Q. How many h's cause x and y to collide?
A. There are m choices for each of a_1, a_2, \ldots, a_r, but once these are chosen, exactly one choice for a_0 causes x and y to collide, namely

$$\left(a_0 - \sum_{i=1}^{r} (x_i - y_i) \right) \mod m.$$

Thus, the number of h's that cause x and y to collide is $m^r \cdot 1 = m^r = |H|/m$.

October 5, 2005

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson
Computational Geometry ctd.

• Segment intersection problem:
 – Given: a set of n distinct segments $s_1 \ldots s_n$, represented by coordinates of endpoints
 – Detection: detect if there is any pair $s_i \neq s_j$ that intersects
 – Reporting: report all pairs of intersecting segments
Segment intersection

• Easy to solve in $O(n^2)$ time
• Is it possible to get a better algorithm for the reporting problem?
• NO (in the worst-case)
• However:
 – We will see we can do better for the detection problem
 – Moreover, the number of intersections P is usually small.

Then, we would like an output sensitive algorithm, whose running time is low if P is small.
Result

- We will show:
 - $O(n \log n)$ time for detection
 - $O((n +P) \log n)$ time for reporting
- We will use …
 … (no, not divide and conquer)
 … Binary Search Trees
- Specifically: Line sweep approach
Orthogonal segments

- All segments are either horizontal or vertical
- Assumption: all coordinates are distinct
- Therefore, only vertical-horizontal intersections exist
Orthogonal segments

- **Sweep line:**
 - A *vertical line* sweeps the plane from left to right
 - It “stops” at all “important” x-coordinates, i.e., when it hits a V-segment or endpoints of an H-segment
 - Invariant: all intersections on the left side of the sweep line have been already reported
Orthogonal segments ctd.

• We maintain sorted y-coordinates of H-segments currently intersected by the sweep line (using a balanced BST V)
• When we hit the left point of an H-segment, we add its y-coordinate to V
• When we hit the right point of an H-segment, we delete its y-coordinate from V
Orthogonal segments ctd.

• Whenever we hit a V-segment having coord. \(y_{\text{top}}, y_{\text{bot}} \), we report all H-segments in \(V \) with y-coordinates in \([y_{\text{top}}, y_{\text{bot}}]\).
Algorithm

- Sort all V-segments and endpoints of H-segments by their x-coordinates – this gives the “trajectory” of the sweep line
- Scan the elements in the sorted list:
 - Left endpoint: add segment to tree V
 - Right endpoint: remove segment from V
 - V-segment: report intersections with the H-segments stored in V
Analysis

• Sorting: $O(n \log n)$
• Add/delete H-segments to/from vertical data structure V:
 – $O(\log n)$ per operation
 – $O(n \log n)$ total
• Processing V-segments:
 – $O(\log n)$ per intersection - SEE NEXT SLIDE
 – $O(P \log n)$ total
• Overall: $O((P + n) \log n)$ time
• Can be improved to $O(P + n \log n)$
Analyzing intersections

• Given:
 – A BST V containing y-coordinates
 – An interval $I=[y_{bot},y_{top}]$
• Goal: report all y’s in V that belong to I
• Algorithm:
 – $y=\text{Successor}(y_{bot})$
 – While $y \leq y_{top}$
 • Report y
 • $y:=\text{Successor}(y)$
 – End
• Time: (number of reported y’s)$\cdot O(\log n) + O(\log n)$
The general case

• Assumption: all coordinates of endpoints and intersections distinct

• In particular:
 – No vertical segments
 – No three segments intersect at one point
Sweep line

- Invariant (as before): all intersections on the left of the sweep line have been already reported
- Stops at all “important” x-coordinates, i.e., when it hits endpoints or intersections
- Do not know the intersections in advance!
- The list of intersection coordinates is constructed and maintained dynamically
 (in a “horizontal” data structure H)
Sweep line

- Also need to maintain the information about the segments intersecting the sweep line
- **Cannot keep the values of y-coordinates of the segments!**
- Instead, we will maintain their order. I.e., at any point, we maintain all segments intersecting the sweep line, sorted by the y-coordinates of the intersections (in a “vertical” data structure V)
Algorithm

- Initialize the “vertical” BST V (to “empty”)
- Initialize the “horizontal” priority queue H (to contain the segments’ endpoints sorted by x-coordinates)
- Repeat
 - Take the next “event” p from H:
 // Update V
 - If p is the left endpoint of a segment, add the segment to V
 - If p is the right endpoint of a segment, remove the segment from V
 - If p is the intersection point of s and s', swap the order of s and s' in V, report p
Algorithm ctd.

// Update H
– For each new pair of neighbors s and s’ in V:
 • Check if s and s’ intersect on the right side of the sweep line
 • If so, add their intersection point to H
 • Remove the possible duplicates in H
– Until H is empty
Analysis

- Initializing H: $O(n \log n)$
- Updating V:
 - $O(\log n)$ per operation
 - $O((P+n) \log n)$ total
- Updating H:
 - $O(\log n)$ per intersection
 - $O(P \log n)$ total
- Overall: $O((P+n) \log n)$ time
Correctness

• All reported intersections are correct
• Assume there is an intersection not reported. Let \(p=(x,y) \) be the first such unreported intersection (of \(s \) and \(s' \))
• Let \(x' \) be the last event before \(p \). Observe that:
 – At time \(x' \) segments \(s \) and \(s' \) are neighbors on the sweep line
 – Since no intersections were missed till then, \(V \) maintained the right order of intersecting segments
 – Thus, \(s \) and \(s' \) were neighbors in \(V \) at time \(x' \). Thus, their intersection should have been detected
Changes

- Y’s – change the order