Today

• We have seen algorithms for:
 – “numerical” data (sorting, median)
 – graphs (shortest path, MST)

• Today and the next lecture: algorithms for geometric data
Computational Model

• In the two lectures, we assume that
 – The input (e.g., point coordinates) are real numbers
 – We can perform (natural) operations on them in constant time, with perfect precision
• Advantage: simplicity
• Drawbacks: highly non-trivial issues:
 – Theoretical: if we allow arbitrary operations on reals, we can compress \(n \) numbers into a one number
 – Practical: algorithm designed for infinite precision sometimes fail on real computers
Computational Geometry

- Algorithms for geometric problems
- Applications: CAD, GIS, computer vision, ……
- E.g., the closest pair problem:
 - Given: a set of points \(P = \{ p_1 \ldots p_n \} \) in the plane, such that \(p_i = (x_i, y_i) \)
 - Goal: find a pair \(p_i \neq p_j \) that minimizes \(|| p_i - p_j || \)
 \(|| p - q || = \left((p_x - q_x)^2 + (p_y - q_y)^2 \right)^{1/2} \)
- We will see more examples in the next lecture
Closest Pair

- Find a closest pair among $p_1 \ldots p_n$
- Easy to do in $O(n^2)$ time
 - For all $p_i \neq p_j$, compute $||p_i - p_j||$ and choose the minimum
- We will aim for $O(n \log n)$ time
Divide and conquer

- **Divide:**
 - Compute the median of x-coordinates
 - Split the points into P_L and P_R, each of size $n/2$
- **Conquer:** compute the closest pairs for P_L and P_R
- **Combine** the results (the hard part)
Combine

• Let \(d = \min(d_1, d_2) \)
• Observe:
 – Need to check only pairs which cross the dividing line
 – Only interested in pairs within distance \(< d\)
• Suffices to look at points in the \(2d\)-width strip around the median line
Scanning the strip

- Sort all points in the strip by their y-coordinates, forming $q_1 \ldots q_k$, $k \leq n$.
- Let y_i be the y-coordinate of q_i
- $d_{\text{min}} = d$
- For $i=1$ to k
 - $j = i - 1$
 - While $y_i - y_j < d$
 - If $||q_i - q_j|| < d$ then $d_{\text{min}} = ||q_i - q_j||$
 - $j := j - 1$
- Report d_{min} (and the corresponding pair)
Analysis

• Correctness: easy
• Running time is more involved
• Can we have many q_j’s that are within distance d from q_i?
• No
• Proof by packing argument
Theorem: there are at most 7 q_j's such that $y_i - y_j \leq d$.

Proof:

- Each such q_j must lie either in the left or in the right $d \times d$ square.
- Within each square, all points have distance distance $\geq d$ from others.
- We can pack at most 4 such points into one square, so we have 8 points total (incl. q_i).
• Proving “4” is not easy
• Will prove “5”
 – Draw a disk of radius \(d/2 \) around each point
 – Disks are disjoint
 – The disk-square intersection has area \(\geq \pi (d/2)^2/4 = \pi/16 \ d^2 \)
 – The square has area \(d^2 \)
 – Can pack at most \(16/\pi \approx 5.1 \) points
Running time

- Divide: $O(n)$
- Combine: $O(n \log n)$ because we sort by y
- However, we can:
 - Sort all points by y at the beginning
 - Divide preserves the y-order of points
Then combine takes only $O(n)$
- We get $T(n) = 2T(n/2) + O(n)$, so $T(n) = O(n \log n)$
Close pair

• Given: \(P = \{p_1 \ldots p_n\} \)
• Goal: check if there is any pair \(p_i \neq p_j \) within distance \(R \) from each other
• Will give an \(O(n) \) time algorithm, using…
 …radix sort!

(assuming coordinates are small integers)
Algorithm

• Impose a square grid onto the plane, where each cell is an $R \times R$ square
• Put each point into a bucket corresponding to the cell it belongs to. That is:
 – For each point $p=(x,y)$, compute its bucket ID $b(p)=\left(\left\lfloor \frac{x}{R} \right\rfloor, \left\lfloor \frac{y}{R} \right\rfloor \right)$
 – Radix sort all $b(p)$’s
 – Each sequence of the same $b(p)$ forms a bucket
• If there is a bucket with > 4 points in it, answer YES and exit
• Otherwise, for each $p \in P$:
 – Let $c = b(p)$
 – Let C be the set of bucket IDs of the 8 cells adjacent to c
 – For all points q from buckets in $C \cup \{c\}$
 • If $||p-q|| \leq R$, then answer YES and exit
• Answer NO
Bucket access

• Given a bucket ID \(c \), how can we quickly retrieve all points \(p \) such that \(b(p) = c \)?
• This is exactly the dictionary problem (Lecture 7)
• E.g., we can use hashing.
Analysis

• Running time:
 – Putting points into the buckets: $O(n)$ time
 – Checking if there is a heavy bucket: $O(n)$
 – Checking the cells: $9 \times 4 \times n = O(n)$
• Overall: linear time