Proof (completed)

Q. How many h's cause x and y to collide?

A. There are m choices for each of a_1, a_2, \ldots, a_r, but once these are chosen, exactly one choice for a_0 causes x and y to collide, namely

$$
\left\lfloor \frac{x - y}{m} \right\rfloor = -a_i (x - y) \mod m.
$$

Thus, the number of h's that cause x and y to collide is $m^r \cdot 1 = m^r = |H|/m$.

October 5, 2005
Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson
Today

- We have seen algorithms for:
 - “numerical” data (sorting, median)
 - graphs (shortest path, MST)
- Today and the next lecture: algorithms for geometric data
Computational Model

• In the two lectures, we assume that
 – The input (e.g., point coordinates) are real numbers
 – We can perform (natural) operations on them in constant time, with perfect precision
• Advantage: simplicity
• Drawbacks: highly non-trivial issues:
 – Theoretical: if we allow arbitrary operations on reals, we can compress \(n \) numbers into a one number
 – Practical: algorithm designed for infinite precision sometimes fail on real computers
Computational Geometry

- Algorithms for geometric problems
- Applications: CAD, GIS, computer vision,…….
- E.g., the closest pair problem:
 - Given: a set of points \(P = \{p_1 \ldots p_n\} \) in the plane, such that \(p_i = (x_i, y_i) \)
 - Goal: find a pair \(p_i \neq p_j \) that minimizes \(||p_i - p_j|| \)
 \[||p-q|| = [(p_x-q_x)^2+(p_y-q_y)^2]^{1/2} \]
- We will see more examples in the next lecture
Closest Pair

- Find a closest pair among $p_1 \ldots p_n$
- Easy to do in $O(n^2)$ time
 - For all $p_i \neq p_j$, compute $||p_i - p_j||$ and choose the minimum
- We will aim for $O(n \log n)$ time
Divide and conquer

- Divide:
 - Compute the median of x-coordinates
 - Split the points into P_L and P_R, each of size $n/2$

- Conquer: compute the closest pairs for P_L and P_R

- Combine the results (the hard part)
Combine

- Let $d = \min(d_1, d_2)$
- Observe:
 - Need to check only pairs which cross the dividing line
 - Only interested in pairs within distance $< d$
- Suffices to look at points in the $2d$-width strip around the median line
Scanning the strip

- Sort all points in the strip by their y-coordinates, forming $q_1 \ldots q_k$, $k \leq n$.
- Let y_i be the y-coordinate of q_i.
- $d_{\text{min}} = d$
- For $i=1$ to k
 - $j = i-1$
 - While $y_i - y_j < d$
 - If $\|q_i - q_j\| < d$ then $d_{\text{min}} = \|q_i - q_j\|$
 - $j := j-1$
- Report d_{min} (and the corresponding pair)
Analysis

• Correctness: easy
• Running time is more involved
• Can we have many q_j’s that are within distance d from q_i?
 • No
• Proof by packing argument
Analysis, ctd.

Theorem: there are at most 7 q_j's such that $y_i - y_j \leq d$.

Proof:
- Each such q_j must lie either in the left or in the right $d \times d$ square.
- Within each square, all points have distance distance $\geq d$ from others.
- We can pack at most 4 such points into one square, so we have 8 points total (incl. q_i).
Packing bound

• Proving “4” is not easy
• Will prove “5”
 – Draw a disk of radius d/2 around each point
 – Disks are disjoint
 – The disk-square intersection has area $\geq \pi (d/2)^2/4 = \pi/16 \ d^2$
 – The square has area d^2
 – Can pack at most $16/\pi \approx 5.1$ points
Running time

- Divide: \(O(n) \)
- Combine: \(O(n \log n) \) because we sort by \(y \)
- However, we can:
 - Sort all points by \(y \) at the beginning
 - Divide preserves the \(y \)-order of points
 Then combine takes only \(O(n) \)
- We get \(T(n) = 2T(n/2) + O(n) \), so \(T(n) = O(n \log n) \)
Close pair

• Given: \(P = \{ p_1 \ldots p_n \} \)

• Goal: check if there is any pair \(p_i \neq p_j \) within distance \(R \) from each other

• Will give an \(O(n) \) time algorithm, using…
 …radix sort!

 (assuming coordinates are small integers)
Algorithm

- Impose a square grid onto the plane, where each cell is an $R \times R$ square.
- Put each point into a bucket corresponding to the cell it belongs to. That is:
 - For each point $p=(x,y)$, create its bucket ID $b(p) = (\lfloor x/R \rfloor, \lfloor y/R \rfloor)$
 - Radix sort all $b(p)$'s
 - Each sequence of the same $b(p)$ forms a bucket
- If there is a bucket with > 4 points in it, answer YES and exit
- Otherwise, for each $p \in P$:
 - Let $c = b(p)$
 - Let C be the set of bucket IDs of the 8 cells adjacent to c
 - For all points q from buckets in $C \cup \{c\}$
 - If $||p-q|| \leq R$, then answer YES and exit
- Answer NO

$(1,1), (1,2), (1,2), (2,1), (2,2), (2,2), (2,3), (3,1), (3,2)$
Bucket access

• Given a bucket ID c, how can we quickly retrieve all points p such that $b(p) = c$?
• This is exactly the dictionary problem (Lecture 7)
• E.g., we can use hashing.
Analysis

• Running time:
 – Putting points into the buckets: \(O(n) \) time
 – Checking if there is a heavy bucket: \(O(n) \)
 – Checking the cells: \(9 \times 4 \times n = O(n) \)
• Overall: linear time