Q. How many h's cause x and y to collide?

A. There are m choices for each of a_1, a_2, \ldots, a_r, but once these are chosen, exactly one choice for a_0 causes x and y to collide, namely

$$a_0 \cdot \left(x_0 - y_0 - \sum_{i=1}^{r} a_i (x_i - y_i) \right) \mod m. \quad (1)$$

Thus, the number of h's that cause x and y to collide is $m^r \cdot 1 = m^r = |H| / m$.

October 5, 2005

Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson
Today

• We have seen algorithms for:
 – “numerical” data (sorting, median)
 – graphs (shortest path, MST)
• Today and the next lecture: algorithms for geometric data
Computational Model

In the two lectures, we assume that

- The input (e.g., point coordinates) are *real* numbers
- We can perform (natural) operations on them in *constant* time, with perfect precision

- Advantage: simplicity
- Drawbacks: highly non-trivial issues:
 - Theoretical: if we allow arbitrary operations on reals, we can compress \(n \) numbers into a one number
 - Practical: algorithm designed for infinite precision sometimes fail on real computers
Computational Geometry

- Algorithms for geometric problems
- Applications: CAD, GIS, computer vision,……
- E.g., the closest pair problem:
 - Given: a set of points \(P = \{p_1 \ldots p_n\} \) in the plane, such that \(p_i = (x_i, y_i) \)
 - Goal: find a pair \(p_i \neq p_j \) that minimizes \(\|p_i - p_j\| \)
 \[\|p - q\| = [(p_x - q_x)^2 + (p_y - q_y)^2]^{1/2} \]
- We will see more examples in the next lecture
Closest Pair

• Find a closest pair among \(p_1 \ldots p_n \)
• Easy to do in \(O(n^2) \) time
 – For all \(p_i \neq p_j \), compute \(||p_i - p_j|| \) and choose the minimum
• We will aim for \(O(n \log n) \) time
Divide and conquer

- Divide:
 - Compute the median of x-coordinates
 - Split the points into P_L and P_R, each of size $n/2$
- Conquer: compute the closest pairs for P_L and P_R
- Combine the results (the hard part)
Combine

- Let $d = \min(d_1, d_2)$
- Observe:
 - Need to check only pairs which cross the dividing line
 - Only interested in pairs within distance $< d$
- Suffices to look at points in the $2d$-width strip around the median line
Scanning the strip

- Sort all points in the strip by their y-coordinates, forming \(q_1 \ldots q_k, \ k \leq n \).
- Let \(y_i \) be the y-coordinate of \(q_i \)
- \(d_{\min} = d \)
- For \(i=1 \) to \(k \)
 - \(j = i-1 \)
 - While \(y_i - y_j < d \)
 - If \(\|q_i - q_j\| < d \) then \(d_{\min} = \|q_i - q_j\| \)
 - \(j := j-1 \)
- Report \(d_{\min} \) (and the corresponding pair)
Analysis

• Correctness: easy
• Running time is more involved
• Can we have many q_j’s that are within distance d from q_i?
• No
• Proof by packing argument
Analysis, ctd.

Theorem: there are at most 7 q_j’s such that $y_i - y_j \leq d$.

Proof:
- Each such q_j must lie either in the left or in the right $d \times d$ square
- Within each square, all points have distance distance $\geq d$ from others
- We can pack at most 4 such points into one square, so we have 8 points total (incl. q_i)
Packing bound

- Proving “4” is not easy
- Will prove “5”
 - Draw a disk of radius $d/2$ around each point
 - Disks are disjoint
 - The disk-square intersection has area $\geq \pi (d/2)^2/4 = \pi/16 \cdot d^2$
 - The square has area d^2
 - Can pack at most $16/\pi \approx 5.1$ points
Running time

• Divide: $O(n)$
• Combine: $O(n \log n)$ because we sort by y
• However, we can:
 – Sort all points by y at the beginning
 – Divide preserves the y-order of points

Then combine takes only $O(n)$

• We get $T(n)=2T(n/2)+O(n)$, so
 $T(n)=O(n \log n)$
Close pair

• Given: \(P = \{p_1 \ldots p_n\} \)
• Goal: check if there is any pair \(p_i \neq p_j \) within distance \(R \) from each other
• Will give an \(O(n) \) time algorithm, using…
 …radix sort!
(assuming coordinates are small integers)
Algorithm

- Impose a square grid onto the plane, where each cell is an $R \times R$ square
- Put each point into a bucket corresponding to the cell it belongs to. That is:
 - For each point $p=(x,y)$, create computes its bucket ID $b(p)=\left(\lfloor x/R \rfloor, \lfloor y/R \rfloor \right)$
 - Radix sort all $b(p)$ ’s
 - Each sequence of the same $b(p)$ forms a bucket
- If there is a bucket with > 4 points in it, answer YES and exit
- Otherwise, for each $p \in P$:
 - Let $c = b(p)$
 - Let C be the set of bucket IDs of the 8 cells adjacent to c
 - For all points q from buckets in $C \cup \{c\}$
 - If $\|p-q\| \leq R$, then answer YES and exit
- Answer NO

(1,1), (1,2), (1,2), (2,1), (2,2), (2,2), (2,3), (3,1), (3,2)
Bucket access

- Given a bucket ID \(c \), how can we quickly retrieve all points \(p \) such that \(b(p) = c \)?
- This is exactly the dictionary problem
- E.g., we can use hashing.
Analysis

• Running time:
 – Putting points into the buckets: $O(n)$ time
 – Checking if there is a heavy bucket: $O(n)$
 – Checking the cells: $9 \times 4 \times n = O(n)$
• Overall: linear time