Today

- We have seen algorithms for:
 - “numerical” data (sorting, median)
 - graphs (shortest path, MST)
- Today and the next lecture: algorithms for geometric data
Computational Model

• In the two lectures, we assume that
 – The input (e.g., point coordinates) are real numbers
 – We can perform (natural) operations on them in constant time, with perfect precision
• Advantage: simplicity
• Drawbacks: highly non-trivial issues:
 – Theoretical: if we allow arbitrary operations on reals, we can compress \(n \) numbers into a one number
 – Practical: algorithm designed for infinite precision sometimes fail on real computers
Computational Geometry

• Algorithms for geometric problems
• Applications: CAD, GIS, computer vision,…….
• E.g., the closest pair problem:
 – Given: a set of points \(P = \{p_1 \ldots p_n\} \) in the plane, such that \(p_i = (x_i, y_i) \)
 – Goal: find a pair \(p_i \neq p_j \) that minimizes \(||p_i - p_j|| \)
 \[||p-q|| = [(p_x-q_x)^2+(p_y-q_y)^2]^{1/2} \]
• We will see more examples in the next lecture
Closest Pair

- Find a closest pair among \(p_1 \ldots p_n \)
- Easy to do in \(O(n^2) \) time
 - For all \(p_i \neq p_j \), compute \(||p_i - p_j|| \) and choose the minimum
- We will aim for \(O(n \log n) \) time
Divide and conquer

- **Divide:**
 - Compute the median of x-coordinates
 - Split the points into P_L and P_R, each of size $n/2$
- **Conquer:** compute the closest pairs for P_L and P_R
- **Combine** the results (the hard part)
Combine

- Let $d = \min(d_1, d_2)$
- Observe:
 - Need to check only pairs which cross the dividing line
 - Only interested in pairs within distance $< d$
- Suffices to look at points in the $2d$-width strip around the median line
Scanning the strip

- Sort all points in the strip by their y-coordinates, forming \(q_1 \ldots q_k \), \(k \leq n \).
- Let \(y_i \) be the y-coordinate of \(q_i \)
- \(d_{\text{min}} = d \)
- For \(i=1 \) to \(k \)
 - \(j = i - 1 \)
 - While \(y_i - y_j < d \)
 - If \(\|q_i - q_j\| < d \) then \(d_{\text{min}} = \|q_i - q_j\| \)
 - \(j := j - 1 \)
 - Report \(d_{\text{min}} \) (and the corresponding pair)
Analysis

• Correctness: easy
• Running time is more involved
• Can we have many q_j’s that are within distance d from q_i?
• No
• Proof by packing argument
Analysis, ctd.

Theorem: there are at most 7 q_j’s such that $y_i - y_j \leq d$.

Proof:

- Each such q_j must lie either in the left or in the right $d \times d$ square.
- Within each square, all points have distance distance $\geq d$ from others.
- We can pack at most 4 such points into one square, so we have 8 points total (incl. q_i).
Packing bound

- Proving “4” is not easy
- Will prove “5”
 - Draw a disk of radius $d/2$ around each point
 - Disks are disjoint
 - The disk-square intersection has area $\geq \pi (d/2)^2/4 = \pi/16 \ d^2$
 - The square has area d^2
 - Can pack at most $16/\pi \approx 5.1$ points
Running time

• Divide: $O(n)$
• Combine: $O(n \log n)$ because we sort by y
• However, we can:
 – Sort all points by y at the beginning
 – Divide preserves the y-order of points
Then combine takes only $O(n)$
• We get $T(n) = 2T(n/2) + O(n)$, so $T(n) = O(n \log n)$
Close pair

- Given: \(P = \{p_1 \ldots p_n\}\)
- Goal: check if there is any pair \(p_i \neq p_j\) within distance \(R\) from each other
- Will give an \(O(n)\) time algorithm, using…
 …radix sort!
 (assuming coordinates are small integers)
Algorithm

- Impose a square grid onto the plane, where each cell is an $R \times R$ square.
- Put each point into a bucket corresponding to the cell it belongs to. That is:
 - For each point $p=(x,y)$, create its bucket ID $b(p) = (\lfloor x/R \rfloor, \lfloor y/R \rfloor)$
 - Radix sort all $b(p)$’s
 - Each sequence of the same $b(p)$ forms a bucket
- If there is a bucket with > 4 points in it, answer YES and exit
- Otherwise, for each $p \in P$:
 - Let $c = b(p)$
 - Let C be the set of bucket IDs of the 8 cells adjacent to c
 - For all points q from buckets in $C \cup \{c\}$
 - If $||p-q|| \leq R$, then answer YES and exit
- Answer NO

$(1,1), (1,2), (1,2), (2,1), (2,2), (2,2), (2,3), (3,1), (3,2)$

© 2003 by Piotr Indyk

Introduction to Algorithms

November 10, 2004 L17.13
Bucket access

• Given a bucket ID c, how can we quickly retrieve all points p such that $b(p)=c$?

• This is exactly the dictionary problem (Lecture 7)

• E.g., we can use hashing.
Analysis

• Running time:
 – Putting points into the buckets: $O(n)$ time
 – Checking if there is a heavy bucket: $O(n)$
 – Checking the cells: $9 \times 4 \times n = O(n)$

• Overall: linear time