String Matching
Prof. Piotr Indyk

• **Input:** Two strings $T[1 \ldots n]$ and $P[1 \ldots m]$, containing symbols from alphabet Σ.

 E.g.:
 – $\Sigma = \{a, b, \ldots, z\}$
 – $T[1 \ldots 18] =$ “to be or not to be”
 – $P[1..2] =$ “be”

• **Goal:** find all “shifts” $0 \leq s \leq n-m$ such that $T[s+1 \ldots s+m] = P$

 E.g. 3, 16
Simple Algorithm

for $s \leftarrow 0$ to $n-m$

 $Match \leftarrow 1$
 for $j \leftarrow 1$ to m

 if $T[s+j] \neq P[j]$ then
 $Match \leftarrow 0$
 exit loop

 if $Match = 1$ then output s
Results

- Running time of the simple algorithm:
 - Worst-case: $O(nm)$
 - Average-case (random text): $O(n)$
 - $T_s =$ time spent on checking shift s
 - $E[T_s] \leq 2$
 - $E \left[\sum_s T_s \right] = \sum_s E[T_s] = O(n)$
Worst-case

• Is it possible to achieve $O(n)$ for any input?
 – Knuth-Morris-Pratt’77: deterministic
 – Karp-Rabin’81: randomized
Karp-Rabin Algorithm

• A very elegant use of an idea that we have encountered before, namely…

 HASHING!

• Idea:
 – Hash all substrings
 \[T[1\ldots m], T[2\ldots m+1], \ldots, T[n-m+1\ldots n] \]
 – Hash the pattern \(P[1\ldots m] \)
 – Report the substrings that hash to the same value as \(P \)

• Problem: how to hash \(n-m \) substrings, each of length \(m \), in \(O(n) \) time?
Modular Hashing Method:
\[h_a(x) = \sum_i a_i x_i \mod q \]
where \(a = (a_1, \ldots, a_r) \), \(x = (x_1, \ldots, x_r) \)

To implement it, we would need to compute
\[h_a(T[s \ldots s+m-1]) = \sum_i a_i T[s+i] \mod q \]
for \(s=0 \ldots n-m \)

How to compute it in \(O(n) \) time?

A big open problem!
Attest 1

• Assume $\Sigma = \{0, 1\}$
• Think about each $T^s = T[s+1 \ldots s+m]$ as a number in binary representation, i.e.,
 $$t_s = T[s+1]2^{m-1} + T[s+2]2^{m-2} + \ldots + T[s+m]2^0$$
• Find a fast way of computing t_{s+1} given t_s
• Output all s such that t_s is equal to the number p represented by P
The great formula

- How to transform
 \[t_s = T[s+1]2^{m-1} + T[s+2]2^{m-2} + \ldots + T[s+m]2^0 \]
 into
 \[t_{s+1} = T[s+2]2^{m-1} + T[s+3]2^{m-2} + \ldots + T[s+m+1]2^0 \]?

- Three steps:
 - Subtract \(T[s+1]2^{m-1} \)
 - Multiply by 2 (i.e., shift the bits by one position)
 - Add \(T[s+m+1]2^0 \)

- Therefore: \(t_{s+1} = (t_s - T[s+1]2^{m-1}) \times 2 + T[s+m+1]2^0 \)
Algorithm

\[t_{s+1} = (t_s - T[s+1]2^{m-1}) \times 2 + T[s+m+1]2^0 \]

- Can compute \(t_{s+1} \) from \(t_s \) using 3 arithmetic operations
- Therefore, we can compute all \(t_0, t_1, \ldots, t_{n-m} \) using \(O(n) \) arithmetic operations
- We can compute a number corresponding to \(P \) using \(O(m) \) arithmetic operations
- Are we done?
Problem

- To get $O(n)$ time, we would need to perform each arithmetic operation in $O(1)$ time.
- However, the arguments are m-bit long!
- If m large, it is unreasonable to assume that operations on such big numbers can be done in $O(1)$ time.
- We need to reduce the number range to something more manageable.
Attempt 2: Hashing

- We will instead compute
 \[t'_s = T[s+1]2^{m-1} + T[s+2]2^{m-2} + \ldots + T[s+m]2^0 \mod q \]
 where \(q \) is an “appropriate” prime number
- One can still compute \(t'_{s+1} \) from \(t'_s \):
 \[t'_{s+1} = (t'_s - T[s+1]2^{m-1}) \times 2 + T[s+m+1]2^0 \mod q \]
- If \(q \) is not large, i.e., has \(O(\log n) \) bits, we can compute all \(t'_s \) (and \(p' \)) in \(O(n) \) time
Problem

- Unfortunately, we can have false positives, i.e., $T^s \neq P$ but $t_s \mod q = p \mod q$
- Need to use a random q
- We will show that the probability of a false positive is small \rightarrow randomized algorithm
False positives

- Consider any $t_s \neq p$. We know that both numbers are in the range $\{0...2^m-1\}$
- How many primes q are there such that $t_s \mod q = p \mod q \equiv (t_s-p) =0 \mod q$?
- Such prime has to divide $x=(t_s-p) \leq 2^m$
- Represent $x=p_1^{e_1}p_2^{e_2}...p_k^{e_k}$, p_i prime, $e_i \geq 1$
 What is the largest possible value of k?
 - Since $2 \leq p_i$, we have $x \geq 2^k$
 - But $x \leq 2^m$
 - $k \leq m$
- There are $\leq m$ primes dividing x
Algorithm

- Algorithm:
 - Let Π be a set of $2nm$ primes, each having $O(\log n)$ bits
 - Choose q uniformly at random from Π
 - Compute $t_0 \mod q$, $t_1 \mod q$, …, and $p \mod q$
 - Report s such that $t_s \mod q = p \mod q$

- Analysis:
 - For each s, the probability that $T^s \neq P$ but $t_s \mod q = p \mod q$
 is at most $m/2nm = 1/2n$
 - The probability of any false positive is at most $(n-m)/2n \leq 1/2$
“Details”

- How do we know that such \prod exists?
 (That is, a set of 2^{nm} primes, each having $O(\log n)$ bits)

- How do we choose a random prime from \prod in $O(n)$ time?
Prime density

- Primes are “dense”. I.e., if $\text{PRIMES}(N)$ is the set of primes smaller than N, then asymptotically
 \[|\text{PRIMES}(N)|/N \sim 1/\ln N \]
- If N large enough, then
 \[|\text{PRIMES}(N)| \geq N/(2\ln N) \]
- Proof: Trust me.
Prime density continued

- Set $N = C \cdot m \cdot n \cdot \ln(mn)$
- There exists $C = O(1)$ such that $N/(2\ln N) \geq 2mn$

 (Note: for such N we have PRIMES(N) \geq 2mn)
- Proof:

 \[C \cdot m \cdot n \cdot \ln(mn) / [2 \cdot \ln(C \cdot m \cdot n \cdot \ln(mn))] \]
 \[\geq C \cdot m \cdot n \cdot \ln(mn) / [2 \cdot \ln(C \cdot (m\cdot n)^2)] \]
 \[= C \cdot m \cdot n \cdot \ln(mn) / 4[\ln(C) + \ln(mn)] \]
- All elements of PRIMES(N) are $\log N = O(\log n)$ bits long
Prime selection

- Still need to find a random element of \textsc{primes}(N)
- Solution:
 - Choose a random element from \{1 \ldots N\}
 - Check if it is prime
 - If not, repeat
Prime selection analysis

- A random element q from $\{1\ldots N\}$ is prime with probability $\sim 1/\ln N$
- We can check if q is prime in time polynomial in $\log N$:
 - Randomized: Rabin, Solovay-Strassen in 1976
 - Deterministic: Agrawal et al in 2002
- Therefore, we can generate random prime q in $o(n)$ time
Final Algorithm

- Set $N = C \cdot mn \cdot \ln(mn)$
- Repeat
 - Choose q uniformly at random from $\{1 \ldots N\}$
- Until q is prime
- Compute $t_0 \mod q$, $t_1 \mod q$, …, and $p \mod q$
- Report s such that $t_s \mod q = p \mod q$

Optional Final m Steps: Double check match for s is correct