String Matching
Prof. Piotr Indyk

- **Input:** Two strings $T[1 \ldots n]$ and $P[1 \ldots m]$, containing symbols from alphabet Σ.

 E.g.:
 - $\Sigma=\{a,b,\ldots,z\}$
 - $T[1\ldots18]=\text{“to be or not to be”}$
 - $P[1..2]=\text{“be”}$

- **Goal:** find all “shifts” $0 \leq s \leq n-m$ such that $T[s+1\ldots s+m]=P$

 E.g. 3, 16
Simple Algorithm

for \(s \leftarrow 0 \) to \(n-m \)

\[\text{Match} \leftarrow 1 \]

for \(j \leftarrow 1 \) to \(m \)

\[\text{if } T[s+j] \neq P[j] \text{ then} \]

\[\text{Match} \leftarrow 0 \]

exit loop

if \(\text{Match}=1 \) then output \(s \)
Results

- Running time of the simple algorithm:
 - Worst-case: $O(nm)$
 - Average-case (random text): $O(n)$

- $T_s =$ time spent on checking shift s
- $E[T_s] \leq 2$
- $E [\sum_s T_s] = \sum_s E[T_s] = O(n)$
Worst-case

- Is it possible to achieve $O(n)$ for any input?
 - Knuth-Morris-Pratt’77: deterministic
 - Karp-Rabin’81: randomized
Karp-Rabin Algorithm

- A very elegant use of an idea that we have encountered before, namely… HASHING!

- Idea:
 - Hash all substrings
 \[T[1\ldots m], T[2\ldots m+1], \ldots, T[n-m+1\ldots n] \]
 - Hash the pattern \(P[1\ldots m] \)
 - Report the substrings that hash to the same value as \(P \)

- Problem: how to hash \(n-m \) substrings, each of length \(m \), in \(O(n) \) time?
Attempt 0

- Modular Hashing Method:
 \[h_a(x) = \sum_i a_i x_i \mod q \]
 where \(a = (a_1, \ldots, a_r) \), \(x = (x_1, \ldots, x_r) \)

- To implement it, we would need to compute
 \[h_a(T[s \ldots s+m-1]) = \sum_{i=0}^{m-1} a_i T[s+i] \mod q \]
 for \(s = 0 \ldots n-m \)

- How to compute it in \(O(n) \) time?

- A big open problem!
Attempt 1

• Assume $\Sigma = \{0, 1\}$

• Think about each $T^s = T[s+1 \ldots s+m]$ as a number in binary representation, i.e.,

\[
t_s = T[s+1]2^{m-1} + T[s+2]2^{m-2} + \ldots + T[s+m]2^0
\]

• Find a fast way of computing t_{s+1} given t_s

• Output all s such that t_s is equal to the number p represented by P
The great formula

• How to transform
 \[t_s = T[s+1]2^{m-1} + T[s+2]2^{m-2} + \ldots + T[s+m]2^0 \]
 into
 \[t_{s+1} = T[s+2]2^{m-1} + T[s+3]2^{m-2} + \ldots + T[s+m+1]2^0 \]?

• Three steps:
 – Subtract \(T[s+1]2^{m-1} \)
 – Multiply by 2 (i.e., shift the bits by one position)
 – Add \(T[s+m+1]2^0 \)

• Therefore:
 \[t_{s+1} = (t_s - T[s+1]2^{m-1}) \times 2 + T[s+m+1]2^0 \]
Algorithm

\[t_{s+1} = (t_s - T[s+1]2^{m-1}) \times 2 + T[s+m+1]2^0 \]

- Can compute \(t_{s+1} \) from \(t_s \) using 3 arithmetic operations
- Therefore, we can compute all \(t_0, t_1, \ldots, t_{n-m} \) using \(O(n) \) arithmetic operations
- We can compute a number corresponding to \(P \) using \(O(m) \) arithmetic operations
- Are we done?
Problem

- To get $O(n)$ time, we would need to perform each arithmetic operation in $O(1)$ time
- However, the arguments are m-bit long!
- If m large, it is unreasonable to assume that operations on such big numbers can be done in $O(1)$ time
- We need to reduce the number range to something more manageable
Attempt 2: Hashing

- We will instead compute
 \[t'_s = T[s+1]2^{m-1} + T[s+2]2^{m-2} + \ldots + T[s+m]2^0 \mod q \]
 where \(q \) is an “appropriate” prime number
- One can still compute \(t'_{s+1} \) from \(t'_s \):
 \[t'_{s+1} = (t'_s - T[s+1]2^{m-1}) \times 2 + T[s+m+1]2^0 \mod q \]
- If \(q \) is not large, i.e., has \(O(\log n) \) bits, we can compute all \(t'_s \) (and \(p' \)) in \(O(n) \) time
Problem

- Unfortunately, we can have false positives, i.e., $T^s \neq P$ but $t_s \mod q = p \mod q$
- Need to use a random q
- We will show that the probability of a false positive is small \rightarrow randomized algorithm
False positives

- Consider any \(t_s \neq p \). We know that both numbers are in the range \(\{0 \ldots 2^{m-1}\} \)
- How many primes \(q \) are there such that
 \[t_s \mod q = p \mod q \equiv (t_s - p) \mod q \]
- Such prime has to divide \(x = (t_s - p) \leq 2^m \)
- Represent \(x = p_1^{e_1} p_2^{e_2} \ldots p_k^{e_k} \), \(p_i \) prime, \(e_i \geq 1 \)
 - What is the largest possible value of \(k \)?
 - Since \(2 \leq p_i \), we have \(x \geq 2^k \)
 - But \(x \leq 2^m \)
 - \(k \leq m \)
- There are \(\leq m \) primes dividing \(x \)
Algorithm

- **Algorithm:**
 - Let \(\prod \) be a set of \(2nm \) primes, each having \(O(\log n) \) bits
 - Choose \(q \) uniformly at random from \(\prod \)
 - Compute \(t_0 \mod q, t_1 \mod q, \ldots, \) and \(p \mod q \)
 - Report \(s \) such that \(t_s \mod q = p \mod q \)

- **Analysis:**
 - For each \(s \), the probability that \(T^s \neq P \) but
 \[t_s \mod q = p \mod q \]
 is at most \(m/2nm = 1/2n \)
 - The probability of *any* false positive is at most \((n-m)/2n \leq 1/2 \)
“Details”

- How do we know that such Π exists? (That is, a set of 2^{nm} primes, each having $O(\log n)$ bits)

- How do we choose a random prime from Π in $O(n)$ time?
Prime density

- Primes are “dense”. I.e., if \(\text{PRIMES}(N) \) is the set of primes smaller than \(N \), then asymptotically

\[
|\text{PRIMES}(N)|/N \sim 1/\ln N
\]

- If \(N \) large enough, then

\[
|\text{PRIMES}(N)| \geq N/(2\ln N)
\]

- Proof: Trust me.
Prime density continued

- Set $N = C \cdot mn \cdot \ln(mn)$
- There exists $C = O(1)$ such that
 \[\frac{N}{(2 \ln N)} \geq 2mn \]
 (Note: for such N we have PRIMES(N) $\geq 2mn$)
- Proof:
 \[
 C \cdot mn \cdot \ln(mn) \div [2 \ln(C \cdot mn \cdot \ln(mn))] \\
 \geq C \cdot mn \cdot \ln(mn) \div [2 \ln(C \cdot (mn)^2)] \\
 = C \cdot mn \cdot \ln(mn) \div 4[\ln(C) + \ln(mn)]
 \]
- All elements of PRIMES(N) are $\log N = O(\log n)$ bits long
Prime selection

- Still need to find a random element of $\text{PRIMES}(N)$
- Solution:
 - Choose a random element from $\{1 \ldots N\}$
 - Check if it is prime
 - If not, repeat
Prime selection analysis

- A random element q from $\{1\ldots N\}$ is prime with probability $\sim 1/\ln N$
- We can check if q is prime in time polynomial in $\log N$:
 - Randomized: Rabin, Solovay-Strassen in 1976
 - Deterministic: Agrawal et al in 2002
- Therefore, we can generate random prime q in $o(n)$ time
Final Algorithm

- Set $N = C \cdot m n \cdot \ln(mn)$
- Repeat
 - Choose q uniformly at random from $\{1 \ldots N\}$
- Until q is prime
- Compute $t_0 \mod q$, $t_1 \mod q$, \ldots, and $p \mod q$
- Report s such that $t_s \mod q = p \mod q$

Optional Final m Steps: Double check match for s is correct