Dealing with Hard Problems

Prof. Piotr Indyk

- What to do if:
 - Divide and conquer
 - Dynamic programming
 - Greedy
 - Linear Programming/Network Flows
 - ...

does not give a polynomial time algorithm?
Dealing with Hard Problems

• Solution I: Ignore the problem
 – Can’t do it! There are thousands of problems for which we do not know polynomial time algorithms
 – For example:
 • Traveling Salesman Problem (TSP)
 • Set Cover
Traveling Salesman Problem

- Traveling Salesman Problem (TSP)
 - Input: undirected graph with lengths on edges
 - Output: shortest cycle that visits each vertex exactly once
- Best known algorithm: $O(n 2^n)$ time.
Set Covering

- **Set Cover:**
 - **Input:** subsets $S_1 \ldots S_n$ of X, $\bigcup_i S_i = X$, $|X|=m$
 - **Output:** $C \subseteq \{1 \ldots n\}$, such that $\bigcup_{i \in C} S_i = X$, and $|C|$ minimal
- **Best known algorithm:** $O(2^n m)$ time(?)

Bank robbery problem:

- **Sets:**
 - $S_{\text{Joe}} = \{\text{plan, safe}\}$
 - $S_{\text{Jim}} = \{\text{shoot, scary, drive}\}$
 -
Dealing with Hard Problems

- Exponential time algorithms for small inputs. E.g., \((100/99)^n\) time is not bad for \(n < 1000\).
- Polynomial time algorithms for some (e.g., average-case) inputs
- Polynomial time algorithms for all inputs, but which return approximate solutions
Approximation Algorithms

• An algorithm A is ρ-approximate, if, on any input of size n:
 - The cost C_A of the solution produced by the algorithm, and
 - The cost C_{OPT} of the optimal solution are such that $C_A \leq \rho \ C_{OPT}$
• We will see:
 - 2-approximation algorithm for TSP in the plane
 - $\ln(m)$-approximation algorithm for Set Cover
Comments on Approximation

- “$C_A \leq \rho \cdot C_{\text{OPT}}$” makes sense only for minimization problems
- For maximization problems, replace by “$C_A \geq 1/\rho \cdot C_{\text{OPT}}$.”
- Additive approximation “$C_A \leq \rho + C_{\text{OPT}}$” also makes sense, although difficult to achieve.
2-approximation for TSP

- Compute MST T
 - An edge between any pair of points
 - Weight = distance between endpoints
- Compute a tree-walk W of T
 - Each edge visited twice
- Convert W into a cycle C using shortcuts
2-approximation: Proof

- Let C_{OPT} be the optimal cycle
- $\text{Cost}(T) \leq \text{Cost}(C_{OPT})$
 - Removing an edge from C gives a spanning tree, T is a spanning tree of minimum cost
- $\text{Cost}(W) = 2 \text{Cost}(T)$
 - Each edge visited twice
- $\text{Cost}(C) \leq \text{Cost}(W)$
 - Triangle inequality

$\implies \text{Cost}(C) \leq 2 \text{Cost}(C_{OPT})$
Approximation for Set Cover

Greedy algorithm:

- Initialize $C = \emptyset$
- Repeat until all elements are covered:
 - Choose S_i which contains largest number of yet-not-covered elements
 - Add i to C
 - Mark all elements in S_i as covered
Greedy Algorithm: Example

- $X = \{1, 2, 3, 4, 5, 6\}$
- Sets:
 - $S_1 = \{1, 2\}$
 - $S_2 = \{3, 4\}$
 - $S_3 = \{5, 6\}$
 - $S_4 = \{1, 3, 5\}$
- Algorithm picks $C = \{4, 1, 2, 3\}$
- Not optimal!
ln(m)-approximation

- Notation:
 - \(C_{OPT} \) = optimal cover
 - \(k = |C_{OPT}| \)
- Fact: At any iteration of the algorithm, there exists \(S_j \) which contains at \(\geq 1/k \) fraction of yet-not-covered elements
- Proof: by contradiction.
 - If all sets cover \(<1/k\) fraction of yet-not-covered elements, there is no way to cover them using \(k \) sets
 - But \(C_{OPT} \) does that!
- Therefore, at each iteration greedy covers \(\geq 1/k \) fraction of yet-not-covered elements
ln(m)-approximation

- Let u_i be the number of yet-not-covered elements at the end of step $i=0,1,2,…$
- We have
 \[
 u_{i+1} \leq u_i (1-1/k) \quad \text{and} \quad (1-1/k)^k < 1/e
 \]
 \[
 u_0 = m
 \]
- Therefore, after $t=k \ln m$ steps, we have
 \[
 u_t \leq u_0 (1-1/k)^t \leq m (1-1/k)^k \ln m < m 1/e^{\ln m} = m / m = 1
 \]
 Since $(1-1/k)^k < 1/e$ and $e^{\ln m} = m$
- I.e., all elements are covered by the $k \ln m$ sets chosen by greedy algorithm
- Opt size is $k \Rightarrow$ greedy is ln(m)-approximate
Approximation Algorithms

• Very rich area
 – Algorithms use greedy, linear programming, dynamic programming
 • E.g., 1.01-approximate TSP in the plane
 – Sometimes can show that approximating a problem is as hard as finding exact solution!
 • E.g., $0.99 \ln(m)$-approximate Set Cover