Convex Hull

Jehn-Ruey Jiang
National Central University, Jhongli City, 32001, Taiwan
Convex vs. Concave

• A polygon P is **convex** if for every pair of points x and y in P, the line xy is also in P; otherwise, it is called **concave**.
The convex hull problem

- The convex hull of a set of planar points is the smallest convex polygon containing all of the points.
Graham’s Scan

• Start at point guaranteed to be on the hull. (the point with the minimum y value)
• Sort remaining points by polar angles of vertices relative to the first point.
• Go through sorted points, keeping vertices of points that have left turns and dropping points that have right turns.
Graham’s Scan
Graham’s Runtime

- Graham’s scan is $O(n \log n)$ due to initial sort of angles.
A more detailed algorithm

Graham-Scan(Q)

1. let p_0 be the point in Q with the minimum y-coordinate, or the leftmost such point in case of a tie
2. let (p_1, p_2, \ldots, p_m) be the remaining points in Q, sorted by polar angle in counterclockwise order around p_0 (if more than one point has the same angle, remove all but the one that is farthest from p_0)
3. **Push**(p_0, S)
4. **Push**(p_1, S)
5. **Push**(p_2, S)
6. **for** $i \leftarrow 3$ **to** m
7. do while the angle formed by points NEXT-TO-TOP(S), TOP(S), and p_i makes a nonleft turn
8. do **Pop**(S)
9. **Push**(p_i, S)
10. **return** S
Figure 33.6 A set of points $Q = \{p_0, p_1, \ldots, p_{12}\}$ with its convex hull $\text{CH}(Q)$ in gray.
The execution of GRAHAM-SCAN on the set \(Q \) of points contains in stack \(S \) is shown in gray at each step. (a) The sequence \(\{p_1, p_2, \ldots, p_{12}\} \) of points numbered in order of increasing polar angle relative to \(p_0 \), and the initial stack \(S \) containing \(p_0 \), \(p_1 \), and \(p_2 \). (b)–(k) Stack \(S \) after each iteration of the for loop of lines 6–9. Dashed lines show nonleft turns, which cause points to be popped from the stack. In part (h), for example, the right turn at angle \(\angle p_7 p_8 p_0 \) causes \(p_8 \) to be popped, and then the right turn at angle \(\angle p_6 p_7 p_0 \) causes \(p_7 \) to be popped. (i) The convex hull returned by the procedure.
Convex Hull by Divide-and-Conquer

• First, sort all points by their x coordinate.
 – (O(n log n) time)

• Then divide and conquer:
 – Find the convex hull of the left half of points.
 – Find the convex hull of the right half of points.
 – Merge the two hulls into one.
Convex Hull Pseudocode

//input: the number of points n, and
//an array of points S, sorted by x coord.
//output: the convex hull of the points in S.

point[] findHullDC(int n, point S[]) {
 if (n > 5) {
 int h = floor(n/2);
 m = n-h;
 point LH[], RH[]; //left and right hulls
 LH = findHullDC(h, S[1..h]);
 RH = findHullDC(m, S[h+1..n]);
 return mergeHulls(LH.size(), RH.size(),
 LH, HR);
 } else {
 return Hull of S by exhaustive search;
 }
}
Merging Hulls

• Big picture:
 - first find the lines that are upper tangent, and lower tangent to the two hulls (the two red lines)

 - Then remove the points that are cut off.
Upper
Finding Tangent Lines

• Start with the rightmost point of the left hull, and the leftmost point of the right hull:

![Diagram of hulls with tangent line]

• While the line is not upper tangent to both left and right:
 - While the line is not upper tangent to the left, move to the next point (counter-clockwise).
 - While the line is not upper tangent to the right, move to the next point (clockwise).
Checking Tangentness

• How can we tell if a line is upper tangent to the left hull?

• The pair of line segments $\overline{p_r p_l}$, and $\overline{p_l p_{l-cw}}$ should make a CCW turn at p_r.

• The same goes for $\overline{p_r p_l}$ and $\overline{p_l p_{l-cw}}$.
Finding the lower tangent in $O(n)$ time

$a =$ rightmost point of A
$b =$ leftmost point of B

while $T=ab$ not lower tangent to both convex hulls of A and B do{
 while T not lower tangent to convex hull of A do{
 $a=a-1$
 }
 while T not lower tangent to convex hull of B do{
 $b=b+1$
 }
}
can be checked in constant time
Lower Tangent Example

• Initially, $T=(4, 7)$ is only a lower tangent for A. The A loop does not execute, but the B loop increments b to 11.
• But now $T=(4, 11)$ is no longer a lower tangent for A, so the A loop decrements a to 0.
• $T=(0, 11)$ is not a lower tangent for B, so b is incremented to 12.
• $T=(0, 12)$ is a lower tangent for both A and B, and T is returned.
Convex Hull: Runtime

- Preprocessing: sort the points by x-coordinate \(O(n \log n) \) just once

- Divide the set of points into two sets \(A \) and \(B \):
 - \(A \) contains the left \(\lfloor n/2 \rfloor \) points,
 - \(B \) contains the right \(\lceil n/2 \rceil \) points

- Recursively compute the convex hull of \(A \) \(T(n/2) \)
- Recursively compute the convex hull of \(B \) \(T(n/2) \)
- Merge the two convex hulls \(O(n) \)

\[
T(n) = 2 \cdot T(n/2) + cn
\]

\[
T(n) = O(n \log n)
\]