ALG 4.1

Randomized Pattern Matching:

Reading Selection:
CLR: Chapter 12
Handout: R. Karp and M. Rabin, "Efficient Randomized Pattern-Matching"

Generalized Pattern Matching

Input
- index set R
- for each $r \in R$ strings $X(r)$, $Y(r)$ $\in \{0,1\}^m$

Problem
- find $r \in R$ s.t. $X(r) = Y(r)$

Examples:

1. **ID String Pattern Matching**

 - **Input**: pattern $X = X_1 \ldots X_m \in \{0,1\}^m$
 - **Text**: $Y = Y_1 \ldots Y_n \in \{0,1\}^n$
 - **Index set**: $R = \{1,2,\ldots, n-m+1\}$
 - $\forall r \in R$
 - $X(r) = X$
 - $Y(r) = Y_r \ Y_r+1 \ldots \ Y_{r+(m-1)}$
(2) 2D Array Matching

Input pattern

$s \times s$ binary array $X = (X_{ij}), m = s^2$

text $b \times b$ binary array $Y = (Y_{ij}), n = b^2$

Index set

$R = \{< i,j > | s \leq i,j \leq b\}$

$X(< i,j >) =$ string of rows of X

$Y(< i,j >) =$ string of rows in $s \times s$ block of Y

with (i,j) in lower right position.

(note Karp & Pratt reverse n,m)

Pattern Matching by Fingerprinting

S is a finite set

$\forall p \in S \quad \Phi_p (\cdot) : \{0,1\}^m \rightarrow \text{small range } D_p$

*$\Phi_p (X)$ is "fingerprint" for string X

Idea

compare $X(r) = Y(r)$ only if fingerprints agree: $\Phi_p(X(r)) = \Phi_p(Y(r))$

Algorithm

$p \leftarrow$ random element of S

for each $r \in R$ in order do

begin

compute $a_p(r) = \Phi_p(X(r))$

compute $b_p(r) = \Phi_p(Y(r))$

if $a_p(r) = b_p(r)$ then

if $X(r) = Y(r)$ then output "Match at r"

end
Requirements

(1) small domain \(D_p\)

(2) small probability of false match
\(\Phi_p(X(r)) = \Phi_p(Y(r)) \text{ but } X(r) \neq Y(r)\)

(3) fingerprints \(\Phi_p(X(r)), \Phi_p(Y(r))\) are easily updatable from previous \(r\)

Examples of fingerprints:

(A) integer modular functions.

(B) unimodular matrices

(C) irreducible polynomial modular functions.

represent binary string \(X = X_1 \ldots X_m\)

by integer \(H(x) = \sum_{i=1}^{m} X_i 2^{m-i}\)

modular fingerprint \(\Phi_p(x) = \text{res } (H(x), p)\)

modular fingerprint \(\Phi_p(X) = \text{res } (H(X), p)\)

\[= p \cdot \frac{H(X)}{p} - H(X)\]

note \(\Phi_p(x) \equiv H(X) \mod p\)
Define \(S = \{ p \mid p \text{ is prime and } p \leq M \} \)

where \(M \) is a (suf. large) integer

idea

choose random \(p \in S \)

\(\Rightarrow \) must prove \(\Phi_p(X) = \text{res}(H(X), p) \) is

good fingerprint

Facts about Prime Numbers

let \(\Pi(k) = \text{number of primes } \leq k \)

FACT 1

If \(k \geq 29 \) and \(a \leq 2^k \), then

\(a \) has \(\leq \Pi(k) \) distinct prime divisors

proof

follows from Rosser & Schoenfeld bound:

\[
\prod_{\text{prime } p \leq k} p > e^{1 - \frac{1}{2} \ln \frac{k}{\ln k}}
\]

for all \(k \geq 17 \)

\[
\frac{k}{\ln k} \leq \Pi(k) \leq 1.25506 \frac{k}{\ln k}
\]

(prime number theorem)
Suppose Randomized Pattern Match

Algorithm is executed, with
fingerprint \(\Phi_p(X) = \text{res}(H(x), p) \)
with set \(S = \{ p \mid p \text{ prime } \leq M \} \)
where \(M = mn^2 \) and \(mn \geq 29 \)

Theorem.

for each \(r \in R \), probability of
false match \(\Phi_p(X(r)) = \Phi_p(Y(r)) \) but \(X(r) \neq Y(r) \)
is \(\leq \frac{2.511}{n} \)

proof

A false match occurs only if \(\exists r \in R \)
\(X(r) \neq Y(r) \) and \(p \mid (H(x(r)) - H(Y(r))) \)
iff \(p \mid L \) where \(L = \prod_{X(r) \neq Y(r)} | H(X(r)) - H(Y(r)) | \)

But \(L \leq 2^{mn} \) so by Fact 1,
\(L \) has at most \(\Pi(mn) \) prime divisors

Since \(p \) is chosen at \text{random} from \(\Pi(M) \) primes,
and only \(\Pi(mn) \) give false matches,

\[
\text{Prob(false match)} \leq \frac{\Pi(mn)}{\Pi(M)} \leq \frac{2.511}{n}
\]

by Fact 2.
Updating Modular Fingerprints

Pattern

\[X = X_1 \ldots X_m \]

Text

\[Y = Y_1 \ldots Y_n \]

\[X(r) = X, \quad Y(r) = Y_r Y_{r+1} \ldots Y_{r+m-1} \]

Since

\[Y(r+1) = (Y(r) - 2^{m-1} Y_r) \cdot 2 + Y_{r+m} \]

Update Formula:

\[a_p(r+1) = (a_p(r) + a_p(r) + \xi Y_r + Y_{r+m}) \mod p \]

where \(\xi = -2^{m} \mod p \)

Proof

Expected Time is:

\[O(n) + nm \text{ Prob(false match) } \leq O(n) + nm \left(O\left(\frac{1}{n} \right) \right) \]

\[\leq O(n) \]

Theorem

Total Exp. Time for finding a match is \(O(n) \)
2D Randomized Pattern Matching

input
pattern \(X = (X_{ij}) \) is \(s \times s \) boul. array

text
\(Y = (Y_{ij}) \) is \(b \times b \) boul. array

text window
\(Y(< i,j >) \) = concatenation of rows of \(s \times s \) subarray of \(Y \) with \(< i,j > \) in lower right corner

Index i Update

\[
\text{fingerprint } \quad a_p(< i+1,j >) = a_p(< i,j >) + \left(a_p(< i,j >) - \lambda \cdot Y_{i-s+1,j} + Y_{i+1,j} \right) \mod p
\]

where \(\lambda = 2^s \mod p \)

\[
\text{Index j Update } \quad a_p(< i,j+1 >) = a_p(< i,j >) \cdot 2^{-s} + \left[Y_{i,j+1} \cdot 2 + Y_{2,j+1} \cdot 2^2 + \ldots + Y_{s,j+1} \cdot 2^s \right] \mod p
\]

where \(\theta = 2^{s(s-1)} \mod p \)
Unimodular Matrices as Fingerprints

Definition

homomorphism \(k \) from \(\{0,1\}^* \) into unimodular matrices with

\[
k(\varepsilon) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad k(0) = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \quad k(1) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}
\]

\(k(X \ast Y) = k(X) \cdot k(Y) \)

concatenation \(\uparrow \) \quad matrix multiplication

Fact 1' If \(X \in \{0,1\}^m \), then each entry of \(k(X) \) is \(\leq F_m = m \text{th Fibonacci} \)

(where \(F_0 = F_1 = 1 \), and \(F_m = F_{m-1} + F_{m-2} \) for \(m \geq 2 \))

Fact 2' \(\log F_m \sim 0.694m \)

Suppose the unimodular fingerprint \(\Phi_p \) is used with random \(p \in S = \{p | p \leq M \text{ is prime}\} \) where \(M = mn^2 \).

Theorem

The Random Pattern Matching Algorithm has probability \(\leq \frac{6.971}{n} \) of false match.
proof

A false match occurs if \(\exists i,j \in \{1,2\} \)
\[
\Phi_p(X(r))_{i,j} = \Phi_p(Y(r))_{i,j} \text{ but } k(X(r))_{i,j} \neq k(Y(r))_{i,j}
\]
iff \(p \mid L' \) where \(L' = \prod_{r \in R, \{1,2\}} |k(X(r))_{i,j} - k(Y(r))_{i,j}| \)

But \(L' \leq (F_m)^{4n} \leq 2^{4n \log F_m} \)

By fact 1, the number of primes that divide \(L' \) is at most
\[\prod \left(2^{4n \log F_m} \right)\]

The probability of a false match is
\[\prod \left(2^{4n \log F_m} \right) \leq \frac{6.971}{n} \text{ since by Fact 2'}
\]
\[
\log(F_m^{\frac{1}{n}}) = .694m
\]

Updating Using Unimodular Matrices

ID string matching:
\[
a_p(r) = \Phi_p(Y(r))
\]
\[
a_p(r+1) = K_p(Y_r)^{-1} a_p(r) H(Y_{r+m}) \mod p
\]

where \(K_p(0)^{-1} = \begin{pmatrix} 1 & 0 \\ p-1 & 1 \end{pmatrix} \)

and \(K_p(1)^{-1} = \begin{pmatrix} 1 & p-1 \\ 0 & 1 \end{pmatrix} \)

(can also extend to 2D string matching)
Simplifications of Modular Fingerprinting

\[S = \{ p \mid p \leq M \text{ and } p \text{ prime or pseudoprime} \} \]

- **p is pseudoprime** if \(2^{p-1} \equiv 1 \mod p\) but \(p\) is not prime.
- \# pseudoprimes \(\leq Me^{-c(\log M \log \log M)} \).

A false match occurs when \(p|L\) where
\[
L = \prod (H(X(r)) - H(Y(r)))
\]

Let \(N\) be the number of M-fat integers dividing \(L\)

\[
N \leq \frac{\ln 2}{2} \frac{n^4}{(\log n)^2}
\]

If \(M = \frac{n^4}{(\ln n)^2} \), then \(\frac{N}{|S|} < 0.5 \).

- **Fact**
 \[|S| \sim M(\ln 2 + o(1)) \]

- **Bound** \(L < 2^{nm} \)

- **False Match Probability**
 \[
 \text{prob of false match} = \frac{N}{|S|} < 0.5
 \]
(3) \(S = \{ p | p \leq M \} \) with some \(M \)

idea use new \(p \) when get false match

expected time

\[cn \left(.5 + (.5)^2 + (.5)^3 + \ldots \right) \leq O(n) \]

Fingerprinting by Random Polynomials

Galois Field

\[GF(2^k) = \{ b_1 \ldots b_k | b_1, \ldots, b_k \in \{0,1\} \} \]

\[Z_2[t] = \text{polynomials of form} \]

\[\frac{p(t)}{p(t)} = t^k + a_{k-1} t^{k-1} + \ldots + a_0 \quad \text{where} \]

\[a_{k-1}, a_{k-2}, \ldots, a_0 \in \{0,1\} \]

\(p(x) \) **irreducible** if can’t be factored

Lemma

If \(k \) is prime, the number of irreducible polynomials of degree \(k \) in \(Z_2[t] \) is

\[\frac{2^k - 2}{k} \]

Fingerprint fn

\(\Phi_p(x) = x_1 t^{m-1} + \ldots + x_m \mod p(t) \)

(residue comp can be done efficiently)
Theorem

If use random Fingerprint fn
with degree $k > \log(nm\epsilon^{-1})$, then prob of
false match is $\leq \epsilon$.

proof

use usual argument and above Lemma

Open Problems

(1) Are there deterministic methods
for Fingerprinting?

(2) What are optimal trade offs for
prob of error and size of S
for randomized Fingerprinting?
for fixed random p,

idea store $\Phi_p(F_1), \ldots, \Phi_p(F_k)$

fingerprints of files F_1, \ldots, F_k

Security:

only operator knows p, so if

any file F_i modified, to F'_i

then with high likelihood

$$\Phi_p(F_i) \neq \Phi_p(F'_i)$$

\implies can build a secure operating system

from this idea!