Breadth-First Search of Graphs

Analysis of Algorithms

Prepared by
John Reif, Ph.D.
Distinguished Professor of Computer Science
Duke University
Applications of Breadth-First Search of Graphs

a) Single Source Shortest Path

b) Graph Matching
Reading on Breadth-First Search of Graphs

- Reading Selection:
 - CLR, Chapter 24
Breadth-First Search Algorithm Input

\textit{input}: undirected graph \(G = (V,E) \)
with root \(r \in V \)
Breadth-First Search (BFS) Algorithm

initialize: \(L \leftarrow 0 \)

for each \(v \in V \) do visit(v) \(\leftarrow false \)

LEVEL(0) \(\leftarrow \{ r \} \); visit (r) \(\leftarrow true \)

while LEVEL(L) \(\neq \{ \} \) do

begin

LEVEL(L+1) \(\leftarrow \{ \} \)

for each \(v \in \) LEVEL(L) do

begin

for each \(\{ v,u \} \in E \) s.t. not visit(u)

do

add u to LEVEL(L+1)

visit (u) \(\leftarrow true \)

od

end

L \(\leftarrow L + 1 \)

end
Breadth-First Search (BFS) Algorithm

Output:

\[\text{output: LEVEL(0), LEVEL(1), ..., LEVEL(L-1)} \]
\[O(|V|+|E|) \text{ time cost} \]
Edges in Breadth-First Search (BFS):

All edges of E have level distance ≤ 1 in BFS Tree.

Example:

```
root r

1 ---- 2 3 4
      \   / \ /
       \ /  / \ /
        \ /  /  /
          \ /  /  /
           \ /  /  /
            \ /  /
             \ /
              6
```

LEVEL(0)

LEVEL(1)

LEVEL(2)
Breadth-First Search (BFS) Tree T

- **Root**: Node 1
- **Level 0**: {1}
- **Level 1**: {2, 3, 4, 5}
- **Level 2**: {6, 7, 8}
Single Source Shortest Paths Problem

input: digraph $G = (V,E)$ with root $r \in V$
weighting $d: E \rightarrow$ positive reals

problem: For each vertex v, determine $D(v) = \text{min length path from root } r \text{ to } v$
Dijkstra ’s Algorithm for Single Source Shortest Paths

initialize:

\[Q \leftarrow \{ \} \]
\[\text{for each } v \in V - \{r\} \text{ do } D(v) \leftarrow \infty \]
\[D(r) \leftarrow 0 \]

until no change do

choose a vertex \(u \in V - Q \) with minimum \(D(u) \)
add \(u \) to \(Q \)

\[\text{for each } (u,v) \in E \text{ s.t. } v \in V - Q \text{ do} \]
\[D(v) \leftarrow \min (D(v), D(u) + d(u,v)) \]

output:
\[\forall v \in V \]
\[D(v) = \text{weight of min. path from } r \text{ to } v \]
Example Single Source Shortest Paths Problem

- example
Example Execution of Dijkstra’s Algorithm

<table>
<thead>
<tr>
<th>Q</th>
<th>u</th>
<th>D(1)</th>
<th>D(2)</th>
<th>D(3)</th>
<th>D(4)</th>
<th>D(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>1</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>{1}</td>
<td>2</td>
<td>0</td>
<td>10</td>
<td>30</td>
<td>∞</td>
<td>100</td>
</tr>
<tr>
<td>{1,2}</td>
<td>3</td>
<td>0</td>
<td>10</td>
<td>30</td>
<td>60</td>
<td>100</td>
</tr>
<tr>
<td>{1,2,3}</td>
<td>4</td>
<td>0</td>
<td>10</td>
<td>30</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>{1,2,3,4}</td>
<td>5</td>
<td>0</td>
<td>10</td>
<td>30</td>
<td>50</td>
<td>90</td>
</tr>
</tbody>
</table>
Proof of Dijkstra’s Algorithm

• Use induction hypothesis:

\[
\begin{align*}
(1) & \quad \forall v \in V, \\
 & \quad \text{D}(v) \text{ is weight of the minimum cost of} \\
 & \quad \text{path p from r to v, where p visits} \\
 & \quad \text{only vertices of } Q \cup \{v\} \\
(2) & \quad \forall v \in Q, \\
 & \quad \text{D}(v) = \text{minimum cost path from r to v} \\
 & \quad \text{basis} \quad \text{D}(r) = 0 \text{ for } Q = \{r\}
\end{align*}
\]
Proof of Dijkstra’s Algorithm (cont’d)

induction step

if D(u) is minimum for all u ∈ V-Q
then claim:

(1) D(u) is minimum cost of path from r to u in G

suppose not: then path p with
weight < D(u) and such that p visits
a vertex w ∈ V-(Q ∪ {u}). Then
D(w) < D(u), contradiction.

(2) is satisfied by

\[D(v) = \min_{(u,v) \in E} (D(v), D(u) + d(u,v)) \]

for all v ∈ Q ∪ {u}
Time Cost of Dijkstra’s Algorithm on a RAM Model

- Time cost: per iteration

 \[
 \begin{align*}
 &- \ O(\log|V|) \text{ to find } u \in V-Q \\
 &\text{with min } D(u) \\
 &- \ O(\text{degree}(u)) \text{ to update weights}
 \end{align*}
 \]

- Since there are \(|V|\) iterations,

 Total Time \(O(|V| (\log |V|) + |E|)\)
Graph Matching

- Graph $G = (V,E)$
- **Graph Matching** M is a subset of E
 - If e_1, e_2 distinct edges in M
 - Then they have no vertex in common

Vertex v is matched if v is in an edge of M
Graph Matching Problem:
Find a maximum size matching

• Suppose:
 – G = (V,E) has matching M

Goal:
 – find a larger matching
Augmenting Path in G given Graph Matching M

- An augmenting path $p = (e_1, e_2, ..., e_k)$

require \[
\begin{align*}
\text{begins and ends at} \\
\text{unmatched vertices} \\
e_1, e_3, e_5, ..., e_k \in E - M \\
e_2, e_4, ..., e_{k-1} \in M
\end{align*}
\]
Graph Matching Example

- **Initial matching** M in G

 - Graph with vertices 1 to 8 and edges 1-5, 2-6, 3-7, 4-8, 5-2, 6-4, 4-7, 7-3.

 - Initial matching $M = \{(5,2), (2,6), (6,4), (4,7), (7,3)\}$, so $|M| = 2$.

- **Augmenting path**
 $p = ((5,2), (2,6), (6,4), (4,7), (7,3))$
Graph Matching Example

- Augmenting path
 \[p = ((5,2), (2,6), (6,4), (4,7), (7,3)) \]
- New matching
 \[M' = P \bigoplus M = (P \cup M) - (P \cap M) \]

\[|P \bigoplus M| = 3 \]
Graph Matching Example

- New matching M'

- Augmenting path $p = (((1, 6), (6, 4), (4, 8)))$

$|M'| = 3$
Graph Matching Example

- Augmenting path $p = ((1,6), (6,4), (4,8))$

- Max matching $M'' = P \bigoplus M' = (P \cup M') - (P \cap M')$

$|M''| = 4$
Graph Matching Example

- New matching $M' = P \bigoplus M = (P \cup M) - (P \cap M)$

- Augmenting path $p = ((1,6), (6,4), (4,8))$

$|P \bigoplus M| = 3$
Characterization of a Maximum Graph Matching via Lack of Augmented Path

- **Theorem** M is maximum matching iff there is *no* augmenting path relative to M
• Theorem M is maximum matching iff there is no augmenting path relative to M

Proof of Characterization of Maximum Graph Matching

• Proof
 (1) If M is smaller matching and p is an augmenting path for M,
 then $M \oplus P$ is a matching size $> |M|$

 (2) If M, M' are matchings with $|M| < |M'|$
 then there is an augmenting path.
Claim: $M \oplus M'$ contains an augmenting path for M.

Proof

- The graph $G' = (V, M \oplus M')$ has only paths with edges alternating between M and M'.
- Repeatedly delete a cycle in G' (with equal number of edges in M, M')
- Since $|M| < |M'|$ must eventually get augmenting path remaining for M.
Maximum Matching Algorithm

- **Algorithm**

\[
\text{input} \quad \text{graph } G = (V,E) \\
[1] M \leftarrow \{\} \\
[2] \text{while } \text{there exists an augmenting path } p \text{ relative to } M \\
\quad \text{do } M \leftarrow M \oplus P \\
[3] \text{output} \quad \text{maximum matching } M
\]
Maximum Weighted Matching Algorithm

- Assume
 - \(\text{weighting } d : E \rightarrow \mathbb{R}^+\) = positive reals
- Theorem
 - Let \(M\) be maximum weight among matchings of size \(|M|\).
 - Let \(P\) be an augmenting path for \(M\) of maximum weight.
 - Then matching \(M \oplus P\) is of maximum weight among matchings of size \(|M| + 1\).
Proof of Maximum Weighted Matching Algorithm

- **Proof**
 - Let M' be any maximum weight matching of size $|M| + 1$.
 - Consider the graph $G' = (V, M \oplus M')$.
 - Then the maximum weight augmenting path p in G' gives a matching $M \oplus P$ of the same weight as M'.
Finding Augmented Paths

Remaining problem:
Find augmenting path

• For Bipartite Graphs:
 => Use modified Breadth First Search

• Otherwise:
 => Use Edmond’s Algorithm
Bipartite Graph

- Bipartite Graph \(G = (V,E) \)

\[
V = V_1 \cup V_2 , \quad V_1 \cap V_2 = \emptyset
\]

\(E \) is a subset of \(\{ \{u,v\} \mid u \in V_1, v \in V_2 \} \)
Breadth-First Search Algorithm for Augmented Path

- Assume G is bipartite graph with matching M.
- Use Breadth-First Search:

\[
\text{LEVEL}(0) = \text{some unmatched vertex } r
\]

For **odd** \(L > 0 \),
\[
\text{LEVEL}(L) = \{ u | \{ v, u \} \in E - M \text{ when } v \in \text{LEVEL}(L - 1) \text{ and } u \text{ in no lower level} \}
\]

For **even** \(L > 0 \),
\[
\text{LEVEL}(L) = \{ u | \{ v, u \} \in M \text{ when } v \in \text{LEVEL}(L - 1) \text{ and } u \text{ in no lower level} \}
\]
Proof of Breadth-First Search Algorithm for Augmented Path

• Cases
 (1) If for some odd $L > 0$, $\text{LEVEL}(L)$ contains an unmatched vertex u then the Breadth First Search tree T has an augmenting path from r to u
 (2) Otherwise no augmenting path exists, so M is maximal.
Finding a Maximal Matching in a Bipartite Graph

• **Theorem**

 If $G = (V,E)$ is a bipartite graph, then the maximum matching can be constructed in $O(|V|(|V| + |E|))$ time.

• **Proof**

 Each stage requires $O(|V| + |E|)$ time for Breadth First Search construction of augmenting path.
Finding Augmented Paths

Remaining problem:
Find augmenting path

• For Bipartite Graphs:
 => Use modified Breadth First Search

• Otherwise:
 => Use Edmond’s Algorithm
Computing Augmented Paths in General Graphs

- Let M be matching in general graph G
- Fix starting vertex r to be an unmatched vertex

Let vertex $v \in V$ be *even* if
- \exists even length augmenting path from r to v
 and *odd* if
- \exists odd length augmenting path from r to v.
Why Algorithm for Augmented Paths in Bipartite Graphs does not work for General Graphs

Case

G is bipartite

⇒ *no* vertex is both even and odd

Case

G is *not* bipartite

⇒ some vertices may be both even and odd!
Edmond’s Algorithm for Augmented Paths in General Graphs

P is *augmenting path* from r to v

STEM is subpath of p from r to v

BLOSSOM is subpath of p from v to w plus edge \{w,v\}

Partially shaded area:

Base w even vertex

Shrinking Blossom

Node labels:

- r
- t
- v
- t'
- w, v
- Shrinked Blossom
Blossom Shrinking Maintains the Existence of Augmented Paths

- *Theorem*
 If G' is formed from G by shrinking of blossom B, then G contains an augmenting path iff G' does.
Proof of Blossom Shrinking

- **Proof**
 1. If G' contains an augmenting path p, then if p visits blossom B we can insert an augmenting subpath p' within blossom into p to get a new *augmenting path* for G

 2. If G contains an *augmenting path*, then apply Edmond’s blossom shrinking algorithm to find an *augmenting path in G'*.
Edmond’s Blossom Shrinking Algorithm

Main Ideas of Edmond’s algorithm:

- The algorithm incrementally constructs a forest of trees whose paths are partial augmenting paths.
- If a cycle is formed, contract it to a vertex.
- Try to link two partial augmenting paths of distinct trees to form a full augmenting path.
Edmond’s Blossom Shrinking Algorithm (cont’d)

- Note: We will let $P(v) =$ parent of vertex v

```plaintext
[[0] for each unmatched vertex $v \in V$
  do label $v$ as "even"
[[1] for each matched $v \in V$
  do label $v$ "unreached" set $p(v) = null$
  if $v$ is matched edge $\{v, w\}$
  then mate $(v) \leftarrow w$
  od]
```
Main Loop

- Edmond’s Main Loop:

Choose an unexplored edge \((v,w) \in \vec{E}\)
where \(v\) is "even"

(if none exists, then terminate and output
current matching \(M\), since there is no
augmenting path)
Main Loop (cont’d)

- **Case 1** if w is “odd” then do nothing.
- **Case 2** if w is “unreached” and matched then set w “odd” and set mate(w) “even”
 Set P(w) ← v , P(mate (w)) ← w
Main Loop (cont’d)

- Case 3 if w is “even” and v, w are in distinct trees T, T’ then output augmenting path p from root of T to v, through {v, w}, in T’ to root.
Main Loop (cont’d)

- **Case 4**
 w is “even” and v,w in same tree T
 then \{v,w\} forms a blossom B
 containing all vertices which are both
 (i) a descendant of LCA(v,w) and
 (ii) an ancestor of v or w

where \(\text{LCA}(v,w) = z = \text{least common ancestor of } v,w \) in T

Shrinking Blossom
Main Loop (cont’d)

- Shrink all vertices of B to a single vertex b. Define \(p(b) = p(\text{LCA}(v,w)) \) and \(p(x) = b \) for all \(x \in B \).
Proof Edmond’s blossom-shrinking algorithm succeeds

• **Lemma**
 Edmond’s blossom-shrinking algorithm succeeds iff
 \[\exists \text{ an augmenting path in } G \]

• **Proof**
 Uses an induction on blossom shrinking stages
Time Bounds for Matching in General Graphs

- Edmond’s blossom-shrinking algorithm costs time $O(n^4)$

- [Gabow and Tarjan] implement in time $O(nm)$ all $O(n)$ stages of matching algorithm taking $O(m)$ time per stage for blossom shrinking

- [Micali and Vazirani] using network flow to find augmented paths and reduce time to $O(n^{1/2}m)$ for unweighted matching in general graphs