Breadth-First Search of Graphs

Analysis of Algorithms

John Reif, Ph.D.
Computer Science Dept
Duke University
Applications of Breadth-First Search of Graphs

a) Single Source Shortest Path

b) Graph Matching
Reading on Breadth-First Search of Graphs

• Reading Selection:
 – CLR, Chapter 24
Breadth-First Search Algorithm Input

input: undirected graph \(G = (V,E) \)
with root \(r \in V \)
Breadth-First Search (BFS) Algorithm

initialize: \(L \leftarrow 0 \)

\(\text{for each } v \in V \text{ do visit}(v) \leftarrow false \)

\(\text{LEVEL}(0) \leftarrow \{r\}; \text{visit}(r) \leftarrow true \)

\(\text{while } \text{LEVEL}(L) \neq \{\} \text{ do} \)

\(\text{begin} \)

\(\text{LEVEL}(L+1) \leftarrow \{\} \)

\(\text{for each } v \in \text{LEVEL}(L) \text{ do} \)

\(\text{begin} \)

\(\text{for each } \{v,u\} \in E \text{ s.t. not visit}(u) \)

\(\text{do} \)

\(\text{add } u \text{ to LEVEL}(L+1) \)

\(\text{visit}(u) \leftarrow true \)

\(\text{end} \)

\(\text{end} \)

\(L \leftarrow L + 1 \)

\(\text{end} \)
Breadth-First Search (BFS) Algorithm Output

output: LEVEL(0), LEVEL(1), ..., LEVEL(L-1)
O(|V|+|E|) time cost
Edges in Breadth-First Search (BFS):

All edges of E have level distance ≤ 1 in BFS Tree

Example

```
root r 1
  /   \
2     3 4
  |     |
  6   7  8
```

LEVEL(0) LEVEL(1) LEVEL(2)
Breadth-First Search (BFS) Tree T

- Root r is node 1.
- Level 0: {1}
- Level 1: {2, 3, 4, 5}
- Level 2: {6, 7, 8}
Single Source Shortest Paths Problem

input: digraph \(G = (V,E) \) with root \(r \in V \)
weighting \(d : E \to \) positive reals

problem: For each vertex \(v \), determine
\[D(v) = \text{min length path from root } r \text{ to } v \]
Dijkstra’s Algorithm for Single Source Shortest Paths

initialize:

\[Q \leftarrow \{\} \]

for each \(v \in V - \{r\} \) do \(D(v) \leftarrow \infty \)
\(D(r) \leftarrow 0 \)

until no change do

choose a vertex \(u \in V - Q \)
with minimum \(D(u) \)
add \(u \) to \(Q \)

for each \((u,v) \in E \) s.t. \(v \in V - Q \) do

\(D(v) \leftarrow \min (D(v), D(u) + d(u,v)) \)

output: \(\forall v \in V \)
\(D(v) = \text{weight of min. path from } r \text{ to } v \)
Example Single Source Shortest Paths Problem

- *example*
Example Execution of *Dijkstra’s Algorithm*

<table>
<thead>
<tr>
<th>Q</th>
<th>u</th>
<th>D(1)</th>
<th>D(2)</th>
<th>D(3)</th>
<th>D(4)</th>
<th>D(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>1</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>{1}</td>
<td>2</td>
<td>0</td>
<td>10</td>
<td>30</td>
<td>∞</td>
<td>100</td>
</tr>
<tr>
<td>{1,2}</td>
<td>3</td>
<td>0</td>
<td>10</td>
<td>30</td>
<td>60</td>
<td>100</td>
</tr>
<tr>
<td>{1,2,3}</td>
<td>4</td>
<td>0</td>
<td>10</td>
<td>30</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>{1,2,3,4}</td>
<td>5</td>
<td>0</td>
<td>10</td>
<td>30</td>
<td>50</td>
<td>90</td>
</tr>
</tbody>
</table>
Proof of Dijkstra’s Algorithm

- Use induction hypothesis:

\[
\begin{align*}
(1) \quad & \forall v \in V, \\
& D(v) \text{ is weight of the minimum cost of path } p \text{ from } r \text{ to } v, \text{ where } p \text{ visits only vertices of } Q \cup \{v\} \\
(2) \quad & \forall v \in Q, \\
& D(v) = \text{minimum cost path from } r \text{ to } v \\
& \text{basis } D(r) = 0 \text{ for } Q = \{r\}
\end{align*}
\]
Proof of Dijkstra’s Algorithm (cont’ d)

induction step

if $D(u)$ is minimum for all $u \in V-Q$ then **claim:**

(1) $D(u)$ is minimum cost of path from r to u in G

suppose not: then path p with weight $< D(u)$ and such that p visits a vertex $w \in V-(Q \cup \{u\})$. Then $D(w) < D(u)$, contradiction.

(2) is satisfied by

$$D(v) = \min_{(u,v) \in E} (D(v), D(u) + d(u,v))$$

for all $v \in Q \cup \{u\}$
Time Cost of Dijkstra’s Algorithm on a RAM Model

- **Time cost:** per iteration

\[
\begin{align*}
- & \quad O(\log |V|) \text{ to find } u \in V-Q \\
& \quad \text{with min } D(u) \\
- & \quad O(\text{degree}(u)) \text{ to update weights}
\end{align*}
\]

- Since there are $|V|$ iterations,
 \[\text{Total Time } O(|V| (\log |V|) + |E|)\]
Graph Matching

- Graph $G = (V,E)$
- **Graph Matching** M is a subset of E
 - *if* e_1, e_2 distinct edges in M
 - *Then* they have no vertex in common

Vertex v is **matched** if v is in an edge of M
Graph Matching Problem

Graph Matching Problem:
Find a maximum size matching

• Suppose:
 – $G = (V,E)$ has matching M

Goal:
 – find a larger matching
Augmenting Path in G given Graph Matching M

- An augmenting path $p = (e_1, e_2, ..., e_k)$

<table>
<thead>
<tr>
<th>require</th>
<th>begins and ends at unmatched vertices</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$e_1, e_3, e_5, ..., e_k \in E-M$</td>
</tr>
<tr>
<td></td>
<td>$e_2, e_4, ..., e_{k-1} \in M$</td>
</tr>
</tbody>
</table>
Graph Matching Example

- Initial matching M in G

- Augmenting path

$p = ((5, 2), (2, 6), (6, 4), (4, 7), (7, 3))$
Graph Matching Example

- **Augmenting path**
 \[p = ((5,2), (2,6), (6,4), (4,7), (7,3)) \]
- **New matching**
 \[M' = P \oplus M = (P \cup M) \setminus (P \cap M) \]

\[|P \oplus M| = 3 \]
Graph Matching Example

- New matching M'

- Augmenting path
 $$p = ((1, 6), (6, 4), (4, 8))$$

$|M'| = 3$
Graph Matching Example

- Augmenting path $p = ((1,6), (6,4), (4,8))$

- Max matching $M'' = P \oplus M' = (P \cup M') - (P \cap M')$

$|M''| = 4$
Graph Matching Example

- New matching \(M' = P \oplus M = (P \cup M) - (P \cap M) \)

\[
\begin{align*}
\text{Augmenting path } p &= ((1,6), (6,4), (4,8)) \\
|P \oplus M| &= 3
\end{align*}
\]
Characterization of a Maximum Graph Matching via Lack of Augmented Path

• Theorem M is maximum matching iff there is no augmenting path relative to M
• **Theorem** M is maximum matching iff there is no augmenting path relative to M

Proof of Characterization of Maximum Graph Matching

• **Proof**
 1. If M is smaller matching and p is an augmenting path for M,
 then M ⊕ p is a matching size > |M| |
 2. If M, M' are matchings with |M| < |M'| |
 then there is an augmenting path.
Claim: \(M \oplus M' \) contains an augmenting path for \(M \).

Proof

- The graph \(G' = (V, M \oplus M') \) has only paths with edges alternating between \(M \) and \(M' \).
- Repeatedly delete a cycle in \(G' \) (with equal number of edges in \(M \), \(M' \))
- Since \(|M| < |M'| \) must eventually get augmenting path remaining for \(M \).
Maximum Matching Algorithm

Algorithm

input graph $G = (V,E)$

[1] $M \leftarrow \emptyset$

[2] while there exists an augmenting path p relative to M

 do $M \leftarrow M \oplus p$

[3] **output** maximum matching M
Maximum Weighted Matching Algorithm

• Assume
 – *weighting* \(d: E \to \mathbb{R}^+ \) = positive reals

• Theorem
 – Let \(M \) be maximum weight among matchings of size \(|M| \).
 – Let \(P \) be an augmenting path for \(M \) of maximum weight.
 – Then matching \(M \oplus P \) is of maximum weight among matchings of size \(|M| + 1 \).
Proof of Maximum Weighted Matching Algorithm

• Proof
 – Let \(M' \) be any maximum weight matching of size \(|M| + 1 \).
 – Consider the graph \(G' = (V, M \oplus M') \).
 – Then the maximum weight augmenting path \(p \) in \(G' \) gives a matching \(M \oplus P \) of the same weight as \(M' \).
Finding Augmented Paths

Remaining problem:
Find augmenting path

• For Bipartite Graphs:
 => Use modified Breadth First Search

• Otherwise:
 => Use Edmond’s Algorithm
Bipartite Graph

- Bipartite Graph $G = (V,E)$

$$V = V_1 \cup V_2, \quad V_1 \cap V_2 = \emptyset$$

E is a subset of $\{ \{u,v\} \mid u \in V_1, v \in V_2\}$
Breadth-First Search Algorithm for Augmented Path

• Assume G is bipartite graph with matching M.
• Use Breadth-First Search:

 LEVEL(0) = some unmatched vertex r

For odd $L > 0$,
 \[LEVEL(L) = \{u \mid \{v, u\} \in E - M \text{ when } v \in LEVEL(L - 1) \text{ and } u \text{ in no lower level}\}\]

For $even$ $L > 0$,
 \[LEVEL(L) = \{u \mid \{v, u\} \in M \text{ when } v \in LEVEL(L - 1) \text{ and } u \text{ in no lower level}\}\]
Proof of Breadth-First Search Algorithm for Augmented Path

• Cases
 (1) If for some odd $L > 0$,
 \[\text{LEVEL}(L) \] contains an unmatched vertex u
 then the Breadth First Search tree T has an augmenting path from r to u
 (2) Otherwise no augmenting path exists, so M is maximal.
Finding a Maximal Matching in a Bipartite Graph

- **Theorem**
 If $G = (V,E)$ is a bipartite graph, then the maximum matching can be constructed in $O(|V|(|V|+|E|))$ time.

- **Proof**
 Each stage requires $O(|V|+|E|)$ time for Breadth First Search construction of augmenting path.
Finding Augmented Paths

Remaining problem:
Find augmenting path

- For Bipartite Graphs:
 => Use modified Breadth First Search

- Otherwise:
 => Use Edmond’s Algorithm
Computing Augmented Paths in General Graphs

- Let M be matching in general graph G
- Fix starting vertex r to be an unmatched vertex

Let vertex $v \in V$ be *even* if

\exists even length augmenting path from r to v

and *odd* if

\exists odd length augmenting path from r to v.
Why Algorithm for Augmented Paths in Bipartite Graphs does not work for General Graphs

Case

G is bipartite

⇒ no vertex is both even and odd

Case

G is not bipartite

⇒ some vertices may be both even and odd!
Edmond’s Algorithm for Augmented Paths in General Graphs

- **P** is an augmenting path from \(r \) to \(v \)
- **STEM** is a subpath of \(P \) from \(r \) to \(v \)
- **BLOSSOM** is a subpath of \(P \) from \(v \) to \(w \) plus edge \(\{w,v\} \)
- Shrinking Blossom
Blossom Shrinking Maintains the Existence of Augmented Paths

- **Theorem**
 If \(G' \) is formed from \(G \) by shrinking of blossom \(B \), then \(G \) contains an augmenting path iff \(G' \) does.
Proof of Blossom Shrinking

• Proof

(1) If G' contains an augmenting path p, then if p visits blossom B we can insert an augmenting subpath p' within blossom into p to get a new augmenting path for G.

(2) If G contains an augmenting path, then apply Edmond’s blossom shrinking algorithm to find an augmenting path in G'.
Edmond’s Blossom Shrinking Algorithm

Input Graph $G=(V,E)$ with matching M

Initialization $\vec{E} = \{(v,w), (w,v) \mid \{v,w\} \in E\}$

Main Ideas of Edmond’s algorithm:

- The algorithm incrementally constructs a forest of trees whose paths are partial augmenting paths.
- If a cycle is formed, contract it to a vertex.
- Try to link two partial augmenting paths of distinct trees to form a full augmenting path.
Edmond ’s Blossom Shrinking Algorithm (cont’ d)

- **Note:** We will let $P(v) = \text{parent of vertex } v$

\[
\begin{align*}
[0] & \quad \text{for each unmatched vertex } v \in V \\
& \quad \text{do label } v \text{ as } "\text{even}" \\
[1] & \quad \text{for each matched } v \in V \\
& \quad \text{do label } v \text{ "unreached" set } p(v) = null \\
& \quad \text{if } v \text{ is matched edge } \{v, w\} \\
& \quad \text{then mate } (v) \leftarrow w \\
& \quad \text{od}
\end{align*}
\]
Main Loop

- Edmond’s Main Loop:

 \[
 \text{Choose an unexplored edge } (v,w) \in \mathcal{E}
 \]
 \[
 \text{where } v \text{ is } "\text{even}"
 \]
 \[
 \text{(if none exists, then terminate and output current matching } M, \text{ since there is no augmenting path)}
 \]
Main Loop (cont’d)

- **Case 1** if \(w \) is “odd” then do nothing.
- **Case 2** if \(w \) is “unreached” and matched then set \(w \) “odd” and set \(\text{mate}(w) \) “even”

Set \(P(w) \leftarrow v \), \(P(\text{mate}(w)) \leftarrow w \)
Case 3

if w is “even” and v, w are in distinct trees T, T’ then output augmenting path p from root of T to v, through \{v,w\}, in T’ to root.
Main Loop (cont’ d)

• Case 4
 w is “even” and v,w in same tree T
 then {v,w} forms a blossom B
 containing all vertices which are
 both
 (i) a descendant of LCA(v,w) and
 (ii) an ancestor of v or w
 where LCA(v,w) = z = least common ancestor of v,w
 in T
Main Loop (cont’d)

- Shrink all vertices of B to a single vertex b. Define \(p(b) = p(LCA(v,w)) \) and \(p(x) = b \) for all \(x \in B \).
Proof Edmond’s blossom-shrinking algorithm succeeds

• **Lemma**
 Edmond’s blossom-shrinking algorithm succeeds iff
 \[\exists \text{ an augmenting path in } G \]

• **Proof**
 Uses an induction on blossom shrinking stages
Time Bounds for Matching in General Graphs

- Edmond’s blossom-shrinking algorithm costs time $O(n^4)$

- [Gabow and Tarjan] implement in time $O(nm)$ all $O(n)$ stages of matching algorithm taking $O(m)$ time per stage for blossom shrinking

- [Micali and Vazirani] using network flow to find augmented paths and reduce time to $O(n^{1/2} m)$ for unweighted matching in general graphs