Breadth-First Search of Graphs

Analysis of Algorithms

Prepared by
John Reif, Ph.D.
Distinguished Professor of Computer Science
Duke University
Applications of Breadth-First Search of Graphs

a) Single Source Shortest Path

b) Graph Matching
Reading on Breadth-First Search of Graphs

- Reading Selection:
 - CLR, Chapter 24
input: undirected graph $G = (V, E)$
with root $r \in V$
Breadth-First Search Algorithm

initialize: \ L \leftarrow 0

for each \ \in V \ do \ \text{visit}(v) \leftarrow false
\LEVEL(0) \leftarrow \{r\}; \ \text{visit} (r) \leftarrow true

while \ \LEVEL(L) \neq \{\} \ do

begin

\LEVEL(L+1) \leftarrow \{\}

for each \ v \in \LEVEL(L) \ do

begin

for each \ (v,u) \in E \ s.t. \ \text{not} \ \text{visit}(u)

\ do

add u to \LEVEL(L+1)

\text{visit} (u) \leftarrow true

\ od

end

L \leftarrow L + 1

end
Breadth-First Search Algorithm Output

output : LEVEL(0), LEVEL(1), ..., LEVEL(L-1)
O(|V|+|E|) time cost
Edges in Breadth-First Search

- All edges \(\{u,v\} \in E\) have level distance \(\leq 1\)

Example
Breadth-First Search Tree

- *Breadth First Search Tree* T

- **root** r

- LEVEL(0) = {1}
- LEVEL(1) = {$2, 3, 4, 5$}
- LEVEL(2) = {$6, 7, 8$}
Single Source Shortest Paths Problem

input: digraph $G = (V,E)$ with root $r \in V$
weighting $d: E \rightarrow$ positive reals

problem: For each vertex v, determine $D(v) = \min$ length path from root r to v
Dijkstra’s Algorithm for Single Source Shortest Paths

initialize:

\[\begin{align*}
Q & \leftarrow \{\} \\
\text{for each } v \in V - \{r\} & \text{ do } D(v) \leftarrow \infty \\
D(r) & \leftarrow 0
\end{align*} \]

until no change do

choose a vertex \(u \in V - Q \)

with minimum \(D(u) \)

add \(u \) to \(Q \)

\[\begin{align*}
\text{for each } (u,v) & \in E \text{ s.t. } v \in V - Q \text{ do} \\
D(v) & \leftarrow \min (D(v), D(u) + d(u,v))
\end{align*} \]

output:

\[\forall v \in V \]

\[D(v) = \text{weight of min. path from } r \text{ to } v \]
Example Single Source Shortest Paths Problem

- example
Example Execution of Dijkstra’s Algorithm

<table>
<thead>
<tr>
<th>Q</th>
<th>u</th>
<th>D(1)</th>
<th>D(2)</th>
<th>D(3)</th>
<th>D(4)</th>
<th>D(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>1</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>{1}</td>
<td>2</td>
<td>0</td>
<td>10</td>
<td>30</td>
<td>∞</td>
<td>100</td>
</tr>
<tr>
<td>{1,2}</td>
<td>3</td>
<td>0</td>
<td>10</td>
<td>30</td>
<td>60</td>
<td>100</td>
</tr>
<tr>
<td>{1,2,3}</td>
<td>4</td>
<td>0</td>
<td>10</td>
<td>30</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>{1,2,3,4}</td>
<td>5</td>
<td>0</td>
<td>10</td>
<td>30</td>
<td>50</td>
<td>90</td>
</tr>
</tbody>
</table>
Proof of Dijkstra’s Algorithm

• Use induction hypothesis:

\[\begin{align*}
&\text{(1) } \forall v \in V, \\
&\quad D(v) \text{ is weight of the minimum cost of path } p \text{ from } r \text{ to } v, \text{ where } p \text{ visits only vertices of } Q \cup \{v\} \\
&\text{(2) } \forall v \in Q, \\
&\quad D(v) = \text{minimum cost path from } r \text{ to } v \\
&\text{basis } D(r) = 0 \text{ for } Q = \{r\}\end{align*}\]
Proof of Dijkstra’s Algorithm (cont’d)

induction step

if $D(u)$ is minimum for all $u \in V - Q$

then *claim:*

1. $D(u)$ is minimum cost of path from r to u in G

 suppose not: then path p with weight $< D(u)$ and such that p visits a vertex $w \in V - (Q \cup \{u\})$. Then $D(w) < D(u)$, contradiction.

2. is satisfied by

 $$D(v) = \min_{(u,v) \in E} (D(v), D(u) + d(u,v))$$

 for all $v \in Q \cup \{u\}$
Time Cost of Dijkstra’s Algorithm on a RAM Model

- **Time cost:** per iteration

 \[
 \begin{align*}
 &- O(\log|V|) \text{ to find } u \in V-Q \\
 &\text{ with min } D(u) \\
 &- O(\text{degree}(u)) \text{ to update weights}
 \end{align*}
 \]

- Since there are $|V|$ iterations,

 \[
 \text{Total Time } O(|V| (\log |V|) + |E|)
 \]
Graph Matching

- Graph $G = (V,E)$
- Graph Matching M is a subset of E
 - if e_1, e_2 distinct edges in M
 - Then they have no vertex in common

Vertex v is matched if v is in an edge of M
Graph Matching Problem:

Find a maximum size matching

Suppose:
- \(G = (V,E) \) has matching \(M \)

Goal:
- find a larger matching
Augmenting Path in G given Graph Matching M

- An augmenting path $p = (e_1, e_2, ..., e_k)$

\[
\text{require} \begin{cases}
\text{begins and ends at unmatched vertices} \\
\quad e_1, e_3, e_5, ..., e_k \in E-M \\
\quad e_2, e_4, ..., e_{k-1} \in M
\end{cases}
\]
Graph Matching (cont’d)

- Initial matching M in G

- Augmenting path $p = ((5, 2), (2, 6), (6, 4), (4, 7), (7, 3))$

$|M| = 2$
Graph Matching (cont’ d)

- New matching $M' = P \oplus M = (P \cup M) - (P \cap M)$

\[|P \oplus M| = 3 \]
Characterization of a Maximum Graph Matching via Lack of Augmented Path

- **Theorem**
 M is maximum matching
 iff there is no augmenting path relative to M
Proof of Characterization of Maximum Graph Matching (cont’d)

• **Proof**

 (1) If M is smaller matching and p is an augmenting path for M, then $M \oplus P$ is a matching size $> |M|$

 (2) If $M, \ M'$ are matchings with $|M| < |M'|$
Claim: \(M \oplus M' \) contains an augmenting path for \(M \).

Proof

- The graph \(G' = (V, M \oplus M') \) has only paths with edges alternating between \(M \) and \(M' \).
- Repeatedly delete a cycle in \(G' \) (with equal number of edges in \(M, M' \))
- Since \(|M| < |M'| \) must eventually get augmenting path remaining for \(M \).
Maximum Matching Algorithm

Algorithm

\[\text{input } \text{graph } G = (V,E)\]

\[\begin{align*}
[1] & \; M \leftarrow \{\} \\
[2] & \; \text{while there exists an augmenting path } p \text{ relative to } M \\
& \; \quad \text{do } M \leftarrow M \oplus P \\
[3] & \; \text{output } \text{maximum matching } M
\end{align*}\]
Maximum Matching (cont’d)

• Remaining problem:
 Find augmenting path

• Assume
 weighting \(d : E \rightarrow \mathbb{R}^+ = \text{pos. reals} \)
Maximum Weighted Matching Algorithm

- Assume
 - *weighting* $d: E \to \mathbb{R}^+ = \text{positive reals}$
- Theorem
 - Let M be maximum weight among matchings of size $|M|$.
 - Let P be an augmenting path for M of maximum weight.
 - Then matching $M \oplus P$ is of maximum weight among matchings of size $|M| + 1$.

Proof of Maximum Weighted Matching Algorithm

- **Proof**
 - Let M' be any maximum weight matching of size $|M| + 1$.
 - Consider the graph $G' = (V, M \oplus M')$.
 - Then the maximum weight augmenting path p in G' gives a matching $M \oplus P$ of the same weight as M'.
Bipartite Graph

- Bipartite Graph \(G = (V,E) \)

\[
V = V_1 \cup V_2 , \ V_1 \cap V_2 = \Phi \\
E \text{ is a subset of } \{ \{u,v\} \mid u \in V_1, v \in V_2 \}
\]
Breadth-First Search Algorithm for Augmented Path

- Assume G is bipartite graph with matching M.
- Use Breadth-First Search:

 $LEVEL(0) =$ some unmatched vertex r
 for odd $L > 0$,

 $LEVEL(L) = \{u \mid \{v, u\} \in E - M$
 when $v \in LEVEL(L -1)$
 and when u in no lower level$\}$

 For even $L > 0$,

 $LEVEL(L) = \{u \mid \{v, u\} \in M$
 when $v \in LEVEL(L -1)$
 and u in no lower level$\}$
Proof of Breadth-First Search Algorithm for Augmented Path

• Cases
 (1) If for some odd $L > 0$, $\text{LEVEL}(L)$ contains an unmatched vertex u then the Breadth First Search tree T has an augmenting path from r to u
 (2) Otherwise no augmenting path exists, so M is maximal.
Finding a Maximal Matching in a Bipartite Graph

- **Theorem**
 If \(G = (V,E) \) is a bipartite graph, then the maximum matching can be constructed in \(O(|V| |E|) \) time.

- **Proof**
 Each stage requires \(O(|E|) \) time for Breadth First Search construction of augmenting path.
Generalizations of Matching Algorithm

- Generalizations:

 \[
 \begin{align*}
 (1) & \text{ Compute Edge Weighted Maximum Matching} \\
 (2) & \text{ Edmonds gives a polynomial time algorithm for maximum matching of any graph}
 \end{align*}
 \]
Computing Augmented Paths in General Graphs

- Let M be matching in general graph G
- Fix starting vertex r to be an unmatched vertex

Let vertex $v \in V$ be \textit{even} if
\[\exists \text{ even length augmenting path from } r \text{ to } v \]
and \textit{odd} if
\[\exists \text{ odd length augmenting path from } r \text{ to } v. \]
Why Algorithm for Augmented Paths in Bipartite Graphs does not work for General Graphs

Case
G is bipartite
⇒ no vertex is both even and odd

Case
G is not bipartite
⇒ some vertices may be both even and odd!
Edmond’s Algorithm for Augmented Paths in General Graphs

- **P** is an *augmenting path* from **r** to **v**
- **STEM** is subpath of **p** from **r** to **v**
- **BLOSSOM** is subpath of **p** from **v** to **w** plus edge \{w,v\}

Diagram Notes:
- **t** and **v** are even vertices
- **w** is the base vertex
- **Shrink Blossom**
Blossom Shrinking Maintains the Existence of Augmented Paths

- **Theorem**

 If G' is formed from G by shrinking of blossom B, then G contains an augmenting path iff G' does.
Proof of Blossom Shrinking

- **Proof**
 1. If G' contains an augmenting path p, then if p visits blossom B we can insert an augmenting subpath p' within blossom into p to get a new *augmenting path* for G.
 2. If G contains an *augmenting path*, then apply Edmond’s blossom shrinking algorithm to find an *augmenting path in G'*.

Edmond’s Blossom Shrinking Algorithm

input Graph $G=(V,E)$ with matching M

initialization $\vec{E} = \{(v,w), (w,v) \mid \{v,w\} \in E\}$

comment
Edmond’s algorithm will construct a forest of trees whose paths are partial augmenting paths
Edmond’s Blossom Shrinking Algorithm (cont’d)

- **Note:** We will let $P(v) = \text{parent of vertex } v$

```
[0] for each unmatched vertex $v \in V$
  do label $v$ as "even"
[1] for each matched $v \in V$
  do label $v$ "unreached" set $p(v) = null$
  if $v$ is matched edge $\{v,w\}$
    then mate $(v) \leftarrow w$
  od
```
Edmond’s Main Loop:

Choose an unexplored edge \((v,w) \in \overrightarrow{E}\)
where \(v\) is "even"
(if none exists, then terminate and output current matching \(M\), since there is no augmenting path)
Main Loop (cont’ d)

- **Case 1** if \(w \) is “odd” then do nothing.
- **Case 2** if \(w \) is “unreached” and matched then set \(w \) “odd” and set \(\text{mate}(w) \) “even”

Set \(P(w) \leftarrow v \), \(P(\text{mate}(w)) \leftarrow w \)

even odd even

\(v \) \(w \) \(\text{mate}(w) \)
Main Loop (cont’ d)

- **Case 3**
 if
 w is “even” and v, w are in distinct trees T, T'
 then output augmenting path p from root of T to v, through \{v, w\}, in T' to root.
Main Loop (cont’ d)

- Case 4
 w is “even” and v,w in same tree T
 then \{v,w\} forms a blossom B
 containing all vertices which are
 both
 (i) a descendant of LCA(v,w) and
 (ii) an ancestor of v or w
 where LCA(v,w) = least common ancestor
 of v,w in T
Main Loop (cont’d)

- **Shrink** all vertices of B to a single vertex b. Define $p(b) = p(LCA(v,w))$ and $p(x) = b$ for all $x \in B$
Proof Edmond’s blossom-shrinking algorithm succeeds

- **Lemma**
 Edmond’s blossom-shrinking algorithm succeeds iff
 \[\exists \text{ an augmenting path in } G \]

- **Proof**
 Uses an induction on blossom shrinking stages
Time Bounds for Matching in General Graphs

- Edmond’s blossom-shrinking algorithm costs time $O(n^4)$

- [Gabow and Tarjan] implement in time $O(nm)$ all $O(n)$ stages of matching algorithm taking $O(m)$ time per stage for blossom shrinking

- [Micali and Vazirani] using network flow to find augmented paths and reduce time to $O(n^{1/2}m)$ for unweighted matching in general graphs
Breadth-First Search of Graphs

Analysis of Algorithms

Prepared by
John Reif, Ph.D.
Distinguished Professor of Computer Science
Duke University