Breadth-First Search of Graphs

Analysis of Algorithms

Prepared by
John Reif, Ph.D.
Distinguished Professor of Computer Science
Duke University
Applications of Breadth-First Search of Graphs

a) Single Source Shortest Path

b) Graph Matching
Reading on Breadth-First Search of Graphs

- Reading Selection:
 - CLR, Chapter 24
Breadth-First Search Algorithm Input

input: undirected graph $G = (V,E)$
with root $r \in V$
Breadth-First Search Algorithm

initialize: \[L \leftarrow 0 \]

for each \(v \in V \) do visit(v) \(\leftarrow \) false

LEVEL(0) \(\leftarrow \) \{r\}; visit (r) \(\leftarrow \) true

while LEVEL(L) \(\neq \) \{\} do

begin

LEVEL(L+1) \(\leftarrow \) \{\}

for each \(v \in \text{LEVEL}(L) \) do

begin

for each \(\{v,u\} \in E \) s.t. not visit(u)

\[u \rightarrow v \]

add \(u \) to \text{LEVEL}(L+1)

visit (u) \(\leftarrow \) true

end

end

\(L \leftarrow L + 1 \)

end
output : LEVEL(0), LEVEL(1), ..., LEVEL(L-1)
O(|V|+|E|) time cost
Edges in Breadth-First Search

- All edges \(\{u,v\} \in E \) have level distance \(\leq 1 \)

Example

![Graph Diagram]

- **LEVEL(0)**
- **LEVEL(1)**
- **LEVEL(2)**
Breadth-First Search Tree

- Breadth First Search Tree \(T \)

Root \(r \)

- LEVEL(0) = \{1\}
- LEVEL(1) = \{2,3,4,5\}
- LEVEL(2) = \{6,7,8\}
Single Source Shortest Paths Problem

input: digraph $G = (V,E)$ with root $r \in V$

weighting $d: E \rightarrow$ positive reals

problem: For each vertex v, determine $D(v) = \min$ length path from root r to v
Dijkstra’s Algorithm for Single Source Shortest Paths

initialize:
- \(Q \leftarrow \{ \} \)
- for each \(v \in V-\{r\} \) do \(D(v) \leftarrow \infty \)
- \(D(r) \leftarrow 0 \)

until no change do
- choose a vertex \(u \in V-Q \) with minimum \(D(u) \)
- add \(u \) to \(Q \)
- for each \((u,v) \in E \) s.t. \(v \in V-Q \) do
 - \(D(v) \leftarrow \min (D(v), D(u) + d(u,v)) \)

output: \(\forall v \in V \)

\(D(v) = \) weight of min. path from \(r \) to \(v \)
Example Single Source Shortest Paths Problem

- example
Example Execution of Dijkstra’s Algorithm

<table>
<thead>
<tr>
<th>Q</th>
<th>u</th>
<th>D(1)</th>
<th>D(2)</th>
<th>D(3)</th>
<th>D(4)</th>
<th>D(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>1</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>{1}</td>
<td>2</td>
<td>0</td>
<td>10</td>
<td>30</td>
<td>∞</td>
<td>100</td>
</tr>
<tr>
<td>{1,2}</td>
<td>3</td>
<td>0</td>
<td>10</td>
<td>30</td>
<td>60</td>
<td>100</td>
</tr>
<tr>
<td>{1,2,3}</td>
<td>4</td>
<td>0</td>
<td>10</td>
<td>30</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>{1,2,3,4}</td>
<td>5</td>
<td>0</td>
<td>10</td>
<td>30</td>
<td>50</td>
<td>90</td>
</tr>
</tbody>
</table>
Proof of Dijkstra’s Algorithm

- Use induction hypothesis:

 \begin{align*}
 (1) & \forall v \in V, \\
 & D(v) \text{ is weight of the minimum cost of path } p \text{ from } r \text{ to } v, \text{ where } p \text{ visits only vertices of } Q \cup \{v\} \\
 (2) & \forall v \in Q, \\
 & D(v) = \text{ minimum cost path from } r \text{ to } v \\
 & \text{basis } D(r) = 0 \text{ for } Q = \{r\}
 \end{align*}
induction step

if $D(u)$ is minimum for all $u \in V - Q$
then claim:

(1) $D(u)$ is minimum cost of path from r to u in G
suppose not: then path p with
weight $< D(u)$ and such that p visits
a vertex $w \in V - (Q \cup \{u\})$. Then
$D(w) < D(u)$, contradiction.

(2) is satisfied by

$$D(v) = \min_{(u,v) \in E} \ (D(v), D(u) + d(u,v))$$

for all $v \in Q \cup \{u\}$
Time Cost of Dijkstra’s Algorithm on a RAM Model

- Time cost: per iteration

\[
\begin{align*}
&\cdot O(\log|V|) \text{ to find } u \in V-Q \\
&\quad \text{with } \min D(u) \\
&\cdot O(\text{degree}(u)) \text{ to update weights}
\end{align*}
\]

- Since there are $|V|$ iterations,

Total Time $O(|V| (\log |V|) + |E|)$
Graph Matching

- Graph $G = (V, E)$
- Graph Matching M is a subset of E
 - if e_1, e_2 distinct edges in M
 - Then they have no vertex in common

example

Vertex v is matched if v is in an edge of M
Graph Matching Problem

Graph Matching Problem: Find a maximum size matching

- Suppose:
 - $G = (V, E)$ has matching M

Goal:
- find a larger matching
Augmenting Path in G given Graph Matching M

- An augmenting path $p = (e_1, e_2, ..., e_k)$

```
require \begin{align*}
&\text{begins and ends at unmatched vertices} \\
&e_1, e_3, e_5, ..., e_k \in E-M \\
&e_2, e_4, ..., e_{k-1} \in M
\end{align*}
```
Graph Matching (cont’d)

• Initial matching M in G

\[|M| = 2 \]

• Augmenting path
\[p = ((5,2), (2,6), (6,4), (4,7), (7,3)) \]
Graph Matching (cont’ d)

• New matching \(M' = P \oplus M = (P \cup M) - (P \cap M) \)

\[|P \oplus M| = 3 \]
Characterization of a Maximum Graph Matching via Lack of Augmented Path

• **Theorem**
 M is *maximum* matching
 iff there is *no* augmenting path
 relative to M
Proof of Characterization of Maximum Graph Matching (cont’d)

Proof

(1) If M is smaller matching and p is an augmenting path for $M,$
then $M \oplus P$ is a matching size $> |M|$

(2) If $M, \ M'$ are matchings with $|M| < |M'|$
then there is an augmenting path.
Claim: $M \oplus M'$ contains an augmenting path for M.

Proof

• The graph $G' = (V, M \oplus M')$ has only paths with edges alternating between M and M'.

• Repeatedly delete a cycle in G' (with equal number of edges in M, M')

• Since $|M| < |M'|$ must eventually get augmenting path remaining for M.
Maximum Matching Algorithm

- **Algorithm**

 input graph $G = (V,E)$

 1. $M \leftarrow \{\}$
 2. while there exists an augmenting path p relative to M
 do $M \leftarrow M \oplus P$
 3. *output* maximum matching M
Maximum Matching (cont’d)

- Remaining problem: Find augmenting path
- Assume

 weighting $d: E \rightarrow \mathbb{R}^+ = \text{pos. reals}$
Maximum Weighted Matching Algorithm

• Assume
 – weighting $d : E \rightarrow R^+ = \text{positive reals}$

• Theorem
 – Let M be maximum weight among matchings of size $|M|$.
 – Let P be an augmenting path for M of maximum weight.
 – Then matching $M \oplus P$ is of maximum weight among matchings of size $|M|+1$.

Proof of Maximum Weighted Matching Algorithm

- **Proof**
 - Let M' be any maximum weight matching of size $|M| + 1$.
 - Consider the graph $G' = (V, M \oplus M')$.
 - Then the maximum weight augmenting path p in G' gives a matching $M \oplus P$ of the same weight as M'.
Bipartite Graph

- Bipartite Graph $G = (V, E)$

$V = V_1 \cup V_2$, $V_1 \cap V_2 = \emptyset$

E is a subset of $\{ \{u, v\} \mid u \in V_1, v \in V_2 \}$
Breadth-First Search Algorithm for Augmented Path

• Assume G is bipartite graph with matching M.
• Use Breadth-First Search:
 LEVEL(0) = some unmatched vertex r
 for odd \(L > 0 \),
 \[
 \text{LEVEL}(L) = \{ u \mid \{ v, u \} \in E - M \} \\
 \text{when } v \in \text{LEVEL}(L - 1) \\
 \text{and when } u \text{ in no lower level}\}

 For even \(L > 0 \),
 \[
 \text{LEVEL}(L) = \{ u \mid \{ v, u \} \in M \} \\
 \text{when } v \in \text{LEVEL}(L - 1) \\
 \text{and } u \text{ in no lower level}\}
Proof of Breadth-First Search Algorithm for Augmented Path

• Cases
 (1) If for some odd $L > 0$, \(\text{LEVEL}(L) \) contains an unmatched vertex u then the Breadth First Search tree T has an augmenting path from r to u
 (2) Otherwise no augmenting path exists, so M is maximal.
Finding a Maximal Matching in a Bipartite Graph

- **Theorem**
 If $G = (V,E)$ is a bipartite graph, then the maximum matching can be constructed in $O(|V|(|V| + |E|))$ time.

- **Proof**
 Each stage requires $O(|V| + |E|)$ time for Breadth First Search construction of augmenting path.
Generalizations of Matching Algorithm

• Generalizations:

- Compute Edge Weighted Maximum Matching
- Edmonds gives a polynomial time algorithm for maximum matching of any graph
Computing Augmented Paths in General Graphs

- Let M be matching in general graph G
- Fix starting vertex r to be an unmatched vertex

Let vertex $v \in V$ be *even* if

\exists even length augmenting path from r to v

and *odd* if

\exists odd length augmenting path from r to v.
Why Algorithm for Augmented Paths in Bipartite Graphs does not work for General Graphs

Case

G is bipartite

⇒ no vertex is both even and odd

Case

G is not bipartite

⇒ some vertices may be both even and odd!
Edmond’s Algorithm for Augmented Paths in General Graphs

P is an augmenting path from r to v

STEM is a subpath of p from r to v

BLOSSOM is a subpath of p from v to w plus the edge \{w,v\}

Base w even vertex
Blossom Shrinking Maintains the Existence of Augmented Paths

- **Theorem**

 If G' is formed from G by shrinking of blossom B, then G contains an augmenting path iff G' does.
Proof of Blossom Shrinking

• **Proof**
 (1) If G' contains an augmenting path p, then if p visits blossom B we can insert an augmenting subpath p' within blossom into p to get a new *augmenting path* for G.
 (2) If G contains an *augmenting path*, then apply Edmond’s blossom shrinking algorithm to find an *augmenting path in G'*.
Edmond’s Blossom Shrinking Algorithm

Main Ideas of Edmond’s algorithm:

- The algorithm incrementally constructs a forest of trees whose paths are partial augmenting paths.
- If a cycle is formed, contract it to a vertex.
- Try to link two partial augmenting paths of distinct trees to form a full augmenting path.

input Graph $G = (V,E)$ with matching M

Initialization $\overrightarrow{E} = \{(v,w), (w,v) \mid \{v,w\} \in E\}$
Edmond’s Blossom Shrinking Algorithm (cont’d)

• Note: We will let \(P(v) = \text{parent of vertex } v \)

\[
\begin{align*}
[0] & \quad \text{for each unmatched vertex } v \in V \\
& \quad \text{do label } v \text{ as "even"}
\end{align*}
\]

\[
\begin{align*}
[1] & \quad \text{for each matched } v \in V \\
& \quad \text{do label } v \text{ "unreached" set } p(v) = \text{null} \\
& \quad \text{if } v \text{ is matched edge } \{v, w\} \\
& \quad \quad \text{then mate } (v) \leftarrow w \\
& \quad \text{od}
\end{align*}
\]
Main Loop

- Edmond’s Main Loop:

Choose an unexplored edge \((v,w) \in \vec{E}\)
where \(v\) is "even"
(if none exists, then terminate and output
current matching \(M\), since there is no
augmenting path)
Main Loop (cont’d)

- **Case 1** if w is “odd” then do nothing.
- **Case 2** if w is “unreached” and matched then set w “odd” and set mate (w) “even”

Set P(w) ← v, P(mate (w)) ← w

![Diagram](image)
Main Loop (cont’d)

• Case 3 if w is “even” and v, w are in distinct trees T, T’ then output augmenting path p from root of T to v, through {v,w}, in T’ to root.
Main Loop (cont’d)

- Case 4
 w is “even” and \(v,w \) in same tree \(T \)
 then \(\{v,w\} \) forms a blossom \(B \)
 containing all vertices which are
 both
 (i) a descendant of \(\text{LCA}(v,w) \) and
 (ii) an ancestor of \(v \) or \(w \)
 where \(\text{LCA}(v,w) = \) least common ancestor
 of \(v,w \) in \(T \)
• *Shrink* all vertices of B to a single vertex b. Define $p(b) = p(LCA(v,w))$ and $p(x) = b$ for all $x \in B$
Proof Edmond’s blossom-shrinking algorithm succeeds

- **Lemma**
 Edmond’s blossom-shrinking algorithm succeeds iff
 \[\exists \text{ an augmenting path in } G \]

- **Proof**
 Uses an induction on blossom shrinking stages
Time Bounds for Matching in General Graphs

- Edmond’s blossom-shrinking algorithm costs time $O(n^4)$

- [Gabow and Tarjan] implement in time $O(nm)$ all $O(n)$ stages of matching algorithm taking $O(m)$ time per stage for blossom shrinking

- [Micali and Vazirani] using network flow to find augmented paths and reduce time to $O(n^{1/2} m)$ for unweighted matching in general graphs
Breadth-First Search of Graphs

Analysis of Algorithms

Prepared by
John Reif, Ph.D.
Distinguished Professor of Computer Science
Duke University