
Recurrence Relations

Many algorithms� particularly divide and conquer al�
gorithms� have time complexities which are naturally
modeled by recurrence relations�

A recurrence relation is an equation which is de�ned in
terms of itself�

Why are recurrences good things

�� Many natural functions are easily expressed as re�
currences�

an � an����� a� � � �� an � n �polynomial�

an � ��an��� a� � ���� an � �n�� �exponential�

an � n�an��� a� � ���� an � n �weird function�

�� It is often easy to �nd a recurrence as the solution
of a counting problem� Solving the recurrence can
be done for many special cases as we will see�
although it is somewhat of an art�

Recursion is Mathematical
Induction�

In both� we have general and boundary conditions� with
the general condition breaking the problem into smaller
and smaller pieces�

The initial or boundary condition terminate the recur�
sion�

As we will see� induction provides a useful tool to solve
recurrences 	 guess a solution and prove it by induction�

Tn � � � Tn����� T� � �

n � � � � � � � �
Tn � � � � �� �� �� ���

Guess what the solution is

Prove Tn � �n� � by induction�

�� Show that the basis is true� T� � �� � � � ��

�� Now assume true for Tn���

�� Using this assumption show�

Tn � � � Tn���� � ���n�� � �� � � � �n � �

Solving Recurrences
No general procedure for solving recurrence relations is
known� which is why it is an art� My approach is�

Realize that linear� �nite history�
constant coe�cient recurrences

always can be solved

Check out any combinatorics or di�erential equations
book for a procedure�

Consider an � �an����an��� �� a� � �� a� � �

It has history � �� degree � �� and coe�cients of �
and �� Thus it can be solved mechanically Proceed�

� Find the characteristic equation� eg� �� � �� �
� � ��

� Solve to get roots� which appear in the exponents�

� Take care of repeated roots and inhomogeneous
parts�

� Find the constants to �nish the job�

an � ��������
p
��n���

p
��������

p
��n����

p
����

Systems like Mathematica and Maple have packages
for doing this�

Guess a solution and prove by
induction

To guess the solution� play around with small values
for insight�

Note that you can do inductive proofs with the big�O�s
notations � just be sure you use it right�

Example� Show that T �n� � c � n lgn for large enough
c and n�

Assume that it is true for n��� then

T �n� � �cbn��c lg�bn��c� � n

� cn lg�bn��c� � n dropping �oors makes it bigger

� cn�lgn� �lg � � ��� � n log of division

� cn lgn� cn� n

� cn lgn whenever c � �

Starting with basis cases T ��� � �� T ��� � �� lets us
complete the proof for c � ��

Try backsubstituting until you
know what is going on

Also known as the iteration method� Plug the recur�
rence back into itself until you see a pattern�

Example� T �n� � �T �bn��c��n� Try backsubstituting�

T �n� � n���bn��c��T �bn���c�
� n��bn��c� ��bn���c��T�bn���c��
� n��bn��c� �bn���c���T �bn���c�

The �����n term should now be obvious�

Although there are only log� n terms before we get to
T ���� it doesn�t hurt to sum them all since this is a
fast growing geometric series�

T �n� � n

�X

i��

�

�

i
���nlog� � � T ����

T �n� � �n� o�n� � O�n�

Recursion Trees

Drawing a picture of the backsubstitution process gives
you a idea of what is going on�

We must keep track of two things 	 ��� the size of
the remaining argument to the recurrence� and ��� the
additive stu� to be accumulated during this call�

Example� T �n� � �T �n��� � n�

T(n/2)

T(n/4) T(n/4) T(n/4) T(n/4)

T(n/2)

T(n)

n
2

(n/2)
2

(n/4)
2

(n/4)
2

(n/4)
2

(n/4)
2

(n/2)
2

n
2

n/2
2

n/4
2

The remaining arguments are on the left� the additive
terms on the right�

Although this tree has height lgn� the total sum at
each level decreases geometrically� so�

T �n� �

�X

i��

n���i � n�
�X

i��

���i � ��n��

The recursion tree framework made this much easier
to see than with algebraic backsubstitution�

See if you can use the Master
theorem to provide an instant

asymptotic solution

The Master Theorem� 	 Let a � � and b � � be con�
stants� let f�n� be a function� and let T �n� be de�ned
on the nonnegative integers by the recurrence

T �n� � aT �n�b� � f�n�

where we interpret n�b to mean either bn�bc or dn�be�
Then T �n� can be bounded asymptotically as follows�

�� If f�n� � O�nlogb a��� for some constant � � ��

then T �n� � O�nlogb a����

�� If f�n� � ��nlogb a�� then T �n� � ��nlogb a lgn��

�� If f�n� � ��nlogb a��� for some constant � � ��
and if af�n�b� � cf�n� for some constant c � ��
and all su�ciently large n� then T �n� � ��f�n���

Examples of the Master
Theorem

Which case of the Master Theorem applies

� T �n� � �T �n��� � n

Reading from the equation� a � �� b � �� and
f�n� � n�

Is n � O�nlog� ���� � O�n����

Yes� so case � applies and T �n� � O�n���

� T �n� � �T �n��� � n�

Reading from the equation� a � �� b � �� and
f�n� � n��

Is n� � O�nlog� ���� � O�n����

No� if � � �� but it is true if �� �� so case � applies
and T �n� � ��n� logn��

� T �n� � �T �n��� � n�

Reading from the equation� a � �� b � �� and
f�n� � n��

Is n� � ��nlog� ���� � ��n����

Yes� for � � ��� so case � might apply�

Is ��n���� � c � n�

Yes� for c � ���� so there exists a c � � to sat�
isfy the regularity condition� so case � applies and
T �n� � ��n���

Why should the Master
Theorem be true�

Consider T �n� � aT �n�b� � f�n��

Suppose f�n� is small enough

Say f�n� � �� ie� T �n� � aT �n�b��

Then we have a recursion tree where the only contri�
bution is at the leaves�

There will be logb n levels� with al leaves at level l�

T �n� � alogb n � nlogb a Theorem ��� in CLR

0

0 0

1 1 1 1

so long as f�n� is small enough that it is dwarfed by
this� we have case � of the Master Theorem

Suppose f�n� is large enough

If we draw the recursion tree for T �n� � aT �n�b��f�n��

T(n) f(n)

T(n/b) T(n/b) f(n/b) f(n/b)...

If f�n� is a big enough function� the one top call can
be bigger than the sum of all the little calls�

Example� f�n� � n� � �n���� � �n���� � �n����� In
fact this holds unless a � ��

In case � of the Master Theorem� the additive term
dominates�

In case �� both parts contribute equally� which is why
the log pops up� It is �usually� what we want to have
happen in a divide and conquer algorithm�

Famous Algorithms and their
Recurrence

Matrix Multiplication

The standard matrix multiplication algorithm for two
n� n matrices is O�n���

2 3

3 4

4 5

2 3 4

3 4 5

13 18 23

18 25 32

23 32 41

Strassen discovered a divide�and�conquer algorithmwhich
takes T �n� � �T �n��� � O�n�� time�

Since O�nlg �� dwarfs O�n��� case � of the master the�
orem applies and T �n� � O�n������

This has been �improved� by more and more compli�
cated recurrences until the current best in O�n������

Polygon Triangulation

Given a polygon in the plane� add diagonals so that
each face is a triangle None of the diagonals are allowed
to cross�

Triangulation is an important �rst step in many geo�
metric algorithms�

The simplest algorithm might be to try each pair of
points and check if they see each other� If so� add the
diagonal and recur on both halves� for a total of O�n���

However� Chazelle gave an algorithm which runs in
T �n� � �T �n����O�

p
�n�� time� Since n��� � O�n�����

by case � of the Master Theorem� Chazelle�s algorithm
is linear� ie� T �n� � O�n��

Sorting

The classic divide and conquer recurrence is Merge�
sort�s T �n� � �T �n��� � O�n�� which divides the data
into equal�sized halves and spends linear time merging
the halves after they are sorted

Since n � O�nlog� �� � O�n� but not n � O�n�����
Case � of the Master Theorem applies and T �n� �
O�n logn��

In case �� the divide and merge steps balance out per�
fectly� as we usually hope for from a divide�and�conquer
algorithm�

Mergesort Animations

XEROX FROM SEDGEWICK

Approaches to Algorithms
Design

Incremental

Job is partly done � do a little more� repeat until done�

A good example of this approach is insertion sort

Divide�and�Conquer

A recursive technique

� Divide problem into sub�problems of the same kind�

� For subproblems that are really small �trivial�� solve
them directly� Else solve them recursively� �con�
quer�

� Combine subproblem solutions to solve the whole
thing �combine�

A good example of this approach is Mergesort�

