Hash Tables

Given a set of possible keys U, such that $|U| = u$ and a table of m entries, a **Hash function** h is a mapping from U to $M = \{1, ..., m\}$.

A collision occurs when two hashed elements have $h(x) = h(y)$.

Definition 1. A hash function $h : U \rightarrow M$ is **perfect** for a set S if it causes no collisions for pairs in S.

For any given S such that $|S| \leq m$ there is a perfect hash function.

For any S such that $|S| > m$ there is **no** perfect hash function.

If $|U| > m$ there is no perfect hashing function for all $S \subset U$, s.t. $|S| = m$.
Chaining

$h(.)$ - hash function.

A table $T[1..n]$ such that $T[k]$ is a pointer to a linked list of all the elements hashed to $T[k]$.

Insert k: add k to the linked list $T[h(k)]$.

Search/delete k: search (+ delete) in $T[h(k)]$.

The cost is proportional to the length of the link lists.
Hash Functions

\[h(k) = k \mod m \]
\[h(k) = (ak + b) \mod m, \]

\[H = \{ h(k) \mid 1 \leq a \leq m - 1, \; 0 \leq b \leq m - 1 \} \]

If \(m \) not a prime, let \(p > m \) be a prime

\[h(k) = ((ax + b) \mod p) \mod m \]
Analysis of Hashing with Chaining

Let n be the number of keys stored in the table.

The **load factor** $\alpha = \frac{n}{m}$.

Worst case insert time either $O(1)$ or $O(n)$.

Worst case search/delete time $O(n)$.

For simple probabilistic analysis:

Simple Uniform Assumption: Keys are hashed to uniformly random and independent locations.

Assume that $h(.)$ is computed in $O(1)$ time.
Theorem 1. In a hash table in which collisions are resolved by chaining, under the assumption of simple uniform hashing,

1. An unsuccessful search takes $\Theta(1 + \alpha)$ expected time.

2. A successful search takes $\Theta(1 + \alpha)$ expected time.

Proof.

(1) The expected time of an unsuccessful search is the average length of a list, plus the time to compute $h(.)$ which is $O(1 + \alpha)$.
(2) We assume that the key being searched is equally likely any on the \(n \) keys in the tables.

Assume that a key is inserted at the head of the link list.

If the key we are searching was the \(i \)-th key to be inserted to the table, The expected number of elements in front of that key in its linked list is \(\frac{n-i}{m} \).

The expected search time is

\[
\frac{1}{n} \sum_{i=1}^{n} \left(1 + \frac{n-i}{m} \right) \tag{1}
\]

\[
= 1 + \frac{1}{nm} \sum_{i=1}^{n} (n - i) \tag{2}
\]

\[
= 1 + \frac{1}{nm} \frac{n(n - 1)}{2} = 1 + \frac{\alpha}{2} + \frac{1}{2m} \tag{3}
\]
Universal Hash Functions

Definition 2. A family \(H \) of hash functions from \(U \) to \(M \) is **2-universal** if for all \(x, y \in U \), such that \(x \neq y \), and for a randomly chosen function \(h \) from \(H \)

\[
Pr(h(x) = h(y)) \leq \frac{1}{m}.
\]

Let \(H \) be the set of all functions from \(U \) to \(M \), then \(H \) is 2-universal.

Problem: There are \(u^m \) functions from \(U \) to \(M \) - requires \(m \log u \) bits to choose, represent and store as a table.
Theorem 2. Assuming that we hash n keys to a table of size m, $n \leq m$, using a hash function chosen at random from a 2-universal family of hash functions. The expected number of collisions of a given key is less than 1.

Proof. Let $\delta(x, y, h) = 1$ iff $h(x) = h(y)$, else 0.

By definition for a given pair of keys x and y. $E[\delta(x, y, h)] = 1/m$.

There are $n - 1$ other keys in the table thus the expected number of collisions with a given key x is $(n - 1)/m$. \Box
Theorem 3. For any sequence of \(r \) operations, such that there are never more than \(s \) elements in the table, the expected total work is:

\[
r(1 + \frac{s}{m}).
\]

Proof.

Let \(\delta(x, y, h) = 1 \) iff \(h(x) = h(y) \), else 0.

Assume that when we insert (or delete) the element \(x \) while the set \(S \) is in the table. The time to insert (delete) key \(x \) is

\[
1 + C(x, S)
\]

where

\[
C(x, S) = \sum_{y \in S} \delta(x, y, h).
\]
\[E[C(x, S)] = \frac{1}{|H|} \sum_{h \in H} \sum_{y \in S} \delta(x, y, h) = \]

\[\frac{1}{|H|} \sum_{y \in S} \sum_{h \in H} \delta(x, y, h) \leq \frac{1}{|H|} \sum_{y \in S} \frac{|H|}{m} = \frac{|S|}{m}. \]

\[\square \]
Constructing 2-universal hash functions

Let m be a prime number.

Let (x_0, \ldots, x_r) be the binary representation of a key x.

Let $\bar{a} = (a_0, \ldots, a_r)$.

Let

$$h_{\bar{a}}(x) = \left(\sum_{i=0}^{r} a_i x_i \right) \mod m.$$

Let

$$H = \{ h_{\bar{a}}(x) \mid a_i \in \{0, \ldots, m-1\} \}.$$

Theorem 4. H is a family of 2-universal hash functions from U to M.
Proof.

Fix \(x, y \) such that \(x \neq y \).

We need to count the number of functions in \(H \) (vectors \(\vec{a} \)) for which

\[
h_{\vec{a}}(x) = h_{\vec{a}}(y)
\]

Assume without loss of generality that \(x_0 \neq y_0 \).

If \(h_{\vec{a}}(x) = h_{\vec{a}}(y) \) then

\[
a_0(x_0 - y_0) = \sum_{i=1}^{r} a_i(y_i - x_i)
\]

Since \(m \) is a prime, the arithmetics is in a field, and for each \(a_1, \ldots, a_r \) there is only one value of \(a_0 \) that satisfied this equation.

Thus, there are \(m^r \) functions in which \(x \) and \(y \) collide, or the probability is \(1/m \). \(\square \)
Open Addressing

Keys are stored in the table - no pointers.

The hash function has two arguments;

- the key

- the probe number

\[h : U \times \{0, \ldots, m - 1\} \rightarrow \{0, \ldots, m - 1\}. \]
Insert(T,k)

1. $i \leftarrow 0$

2. Repeat
 2.1 $j \leftarrow h(k, i)$
 2.2 If $T[j] = NIL$ then
 2.2.1. $T[j] \leftarrow k$
 2.2.2. RETURN
 2.3 else $i \leftarrow i + 1$

3. until $i = m$

4. ERROR: TABLE IS FULL.
Search(T,k)

1. $i \leftarrow 0$

2. Repeat

 2.1 $j \leftarrow h(k, i)$
 2.2 If $T[j] = k$ then RETURN j;
 2.3 $i \leftarrow i + 1$;

3. until $i = m$ or $T[j] = NIL$;

4. Return NIL.
Open Address Hash Functions

Linear Probing:

\[h(k, i) = (h'(k) + i) \mod m \]

Double Hashing:

\[h(k, i) = (h_1(k) + h_2(i)) \mod m \]
Analysis of Open Address Hashing

Assume uniform hashing, for a given key k, the probe sequence $h(k, 0), h(k, 1), \ldots$ is a random permutation on $0, \ldots, m - 1$.

Theorem 5. For a open address table with load factor $\alpha = n/m < 1$, and assuming uniform hashing, the expected number of probes in an unsuccessful search is at most $\frac{1}{1-\alpha}$.
Lemma 1. Let X be a random variable with values in the Natural numbers $\mathbb{N} = \{1, 2, 3, \ldots\}$, then

$$E[X] = \sum_{i=1}^{\infty} i \Pr(X = i) = \sum_{i=1}^{\infty} \Pr(X \geq i).$$

Proof.

$$E[X] = \sum_{i=1}^{\infty} i \Pr(X = i)$$

$$= \sum_{i=1}^{\infty} i (\Pr(X \geq i) - \Pr(X \geq i + 1))$$

$$= \sum_{i=1}^{\infty} \Pr(X \geq i)$$
Proof. Let T be the number of probes in an unsuccessful search.

Let $q_i = Pr(T - 1 \geq i)$, the probability that at least i probes accessed an occupied slot.

$q_1 = \frac{n}{m}$.

$q_2 = \left(\frac{n}{m}\right)\left(\frac{n-1}{m-1}\right)$.

For $i \leq n$,

$$q_i = \left(\frac{n}{m}\right)\left(\frac{n-1}{m-1}\right)\cdots\frac{n-i+1}{m-i+1} \leq \left(\frac{n}{m}\right)^i = \alpha^i$$

For $i > n$, $q_i = 0$.

$$E[T] = 1 + \sum_{i=1}^{n} q_i \leq \frac{1}{1 - \alpha}.$$
Theorem 6. The expected number of probes in inserting a new item to a table with load α is $\frac{1}{1-\alpha}$.

□
Theorem 7. The expected number of probes in a successful search in an open address table with load factor α is
\[
\frac{1}{\alpha} \ln \frac{1}{1 - \alpha} + \frac{1}{\alpha},
\]
assuming uniform hashing, and all keys are equally likely to be searched.

Proof.

The expected number of probes in searching for the key that was the $i + 1$-th key inserted to the table is
\[
\frac{1}{1 - \frac{i}{m}} = \frac{m}{m - i}
\]
Averaging over all keys

\[
\frac{1}{n} \sum_{i=0}^{n-1} \frac{m}{m - i}
\]

\[
= \frac{m}{n} \sum_{i=0}^{n-1} \frac{1}{m - i}
\]

\[
= \frac{1}{\alpha} (H_m - H_{m-n})
\]

\[
\leq \frac{1}{\alpha} (\ln m + 1 - \ln(m - n))
\]

\[
= \frac{1}{\alpha} (\ln \frac{m}{m - n} + 1)
\]

\[
= \frac{1}{\alpha} \ln \frac{1}{1 - \alpha} + \frac{1}{\alpha}
\]