A Whirlwind Tour of Group Theory and Number Theory (Not Fair Game on Exams)

By Grayson York
A Little Bit of History

- Some debate over when the field was started, many other fields used group theory ideas before the objects were studied formally
- The term “group” was coined by Evariste Galois in the early 1800s
- In 2004, the mathematical community finished the total classification of all finite simple groups.
 - The longest mathematical proof ever written (10,000+ pages, 100+ authors)
 - Work is still ongoing to make it readable
 - One of the biggest successes of modern mathematics
- Group theory has applications to many fields including computer science, physics (the standard model), music (the circle of fifths)
What is a group?

- We will start with an example, the integers under addition.
- A group has 2 things, a set and an operation.
- The set and operation must satisfy 4 axioms:
 - The set is closed under the operation (the sum of 2 integers is an integer).
 - The operation is associative ((a+b) + c = a + (b+c)).
 - The group has an identity element (0 + x = x for every integer x).
 - Every element has an inverse (-x + x = 0 for every integer x).
- It turns out, there are a lot of groups that we encounter in the mathematical world!
The Positive Real Numbers Under Multiplication

- Is the set closed?
 - Yes! The product of two positive real numbers is a positive real number.
- Is the set associative?
 - Yes! a(bc) = (ab)c.
- Does the set have an identity?
 - Yes! 1*x = x for every x.
- Does every element have an inverse?
 - Yes! x * 1/x = 1 for every x.
- It is a group!
The Integers Modulo n Under Modular Addition

- Is the set closed?
 - Yes! When we add two numbers, then take the sum mod n, the result is an integer mod n.
- Is the set associative?
 - Yes! $a + (b + c) = (a + b) + c$.
- Does the set have an identity?
 - Yes! $0 + x = x$ for every x.
- Does every element have an inverse?
 - Yes! $x + (n-x) = 0$ for every x.
- It is a group!
The Nonzero Integers Modulo p for Prime p

- **Is the set closed?**
 - Yes! When we multiply two numbers, then take the product mod p, the result is an integer mod p.

- **Is the set associative?**
 - Yes! Because multiplication is associative.

- **Does the set have an identity?**
 - Yes! $1 \times x \mod p = x \mod p$ for every x.

- **Does every element have an inverse?**
 - Yes! More difficult to show, but it turns out for every x, there is a y such that $xy = 1 \mod p$.
 - Note that when we write $y = x^{-1}$, that does not mean that we raise x to the -1 power, just that we find the inverse somehow.

- **It is a group!**
Rubik’s Cube Positions Under Face Rotations

- Is the set closed?
 - Yes! When we make any valid set of rotations, we get a new valid Rubik’s cube position.
- Is the set associative?
 - Yes! A bit more difficult to visualize, but it is associative.
- Does the set have an identity?
 - Yes! The lack of any rotations keeps the cube the same.
- Does every element have an inverse?
 - Yes! We can do any combination of rotations backwards to get back the cube with no rotations.
- It is a group!
The Integers Between 5 and 10 Under Addition

- Are the integers between 5 and 10 a group under addition?
- What if we add 7 and 8?
 - Not an integer between 5 and 10!
- Does it have an identity element?
 - No! 0 is not in this group!
- Does it have inverses?
 - No! There are no negative numbers in the group!
- We only needed to fail one test to not be a group, but we have failed 3!
- Not a group!
What is a Subgroup?

- A subset of a group which is also a group
- Imagine the even integers, a subgroup of the integers under addition
 - Sum of 2 even integers is an even integer
 - Still associative
 - Contains 0
 - If x is even, -x is even
- Are the odd integers a subgroup?
 - No! 0 is not odd, so there is no identity
The Powers of x Modulo n

- Are the powers of x Modulo n for x relatively prime to n a subgroup of the nonzero integers modulo n under multiplication?
- Is the set closed?
 - Yes! $x^a x^b \mod n = x^{a+b} \mod n$, also a power of x modulo n!
- Is the set associative?
 - Yes! Multiplication is associative
- Does the set have an identity?
 - Yes! $x^0 = 1 \mod p$
- Does every element have an inverse?
 - Yes! $(x^{-1})^a$ is the inverse of x^a
- This is a subgroup!
A particularly interesting class of subgroups

- What about the even integers mod 12?
 - The sum of 2 even integers mod 12 is an even integer mod 12
 - Still associative
 - 0 mod 12 is even
 - If x mod 12 is even, 12 - x mod 12 is also even and x + 12 - x = 12 = 0 mod 12
 - This is a subgroup!

- We can think of this as all the integers in the form 2x mod 12

- Under what conditions on k,n are the integers of the form kx mod n a subgroup?
 - Any time that k divides n, these integers will be a subgroup
Lagrange’s Theorem

- The most important result in all of group theory
- The size of every subgroup must divide the size of the larger group
- As a corollary, the length of any cycle must divide the size of the group
- As another corollary, a group whose size is a prime can only have a cycle if it touches the whole group
- This might be starting to look familiar...
Open Address Probing Sequences

- What if we build the open addressing scheme \(h(x,i) = h_1(x) + i h_2(x) \mod n \)?
- What if we thought of the subgroup of multiples of \(h_2(x) \)?
 - How large would this group be?
 - If we wanted to make this group as large as possible, \(h_2(x) \) should not divide \(n \)
 - Hopefully this sounds like a best practice from the slides on hashing
- What happens if the subgroup is very small?
 - The subgroup is closed under addition!
 - No matter how large of an \(i \) we choose, we will always get the same table entries as the multiples of the subgroup entries will also be in the subgroup
Number Theory!

- The study of the properties of numbers e.g. primes
- One of the oldest branches of math
- Surprisingly interdisciplinary within the math world, uses group theory, field theory, even complex analysis
- Very important applications to cryptography
A Motivating Question, Primality Testing for RSA

- The first step of RSA involves finding 2 large primes
- How can we tell if an n bit number is prime?
- There are 2^n possible divisors, so testing all of them is infeasible
- Being a bit more clever, we can just try $2^{n/2}$ divisors, still infeasible
- Can we make a test that does not involve testing divisors?
Another Motivating Question, Modular Inverses for RSA

- Given a number a and prime p, we know that there is some b such that \(ab = 1 \pmod{p} \)
- how do we find b?
- If p has n bits, then brute force requires trying \(2^n \) possibilities
- Can we do better?
Fermat’s (Little) Theorem

- A very useful result for studying primes
- NOT THE SAME THING AS FERMAT’S LAST THEOREM
 - That one involves generalizations of the pythagorean theorem
 - That will not be covered in this class
- For a prime p, $a^{p-1} = 1 \mod p$
- A very surprising result, what tools could we use to prove it?
Proof Using Group Theory and Lagrange’s Theorem

- The nonzero integers modulo p are a group under multiplication!
- The powers of an element a are a subgroup of the nonzero integers modulo p.
- Multiplication by the element a must cycle us through all of the elements of the subgroup, as all powers of a can be reached by doing this.
 - We see that if \(a^i = a^j \), then \(a^{i+1} = a^{j+1} \) and so on
 - Therefore, once one element repeats, all the elements must repeat
- Notice that 1 must be in the subgroup, and \(1 \cdot a = a \)
- Therefore, 1 must be the last element in the cycle, because after we reach 1, the cycle repeats starting with a
- That is, if the cycle has length k, \(a^k = 1 \)
More Proof Via Lagrange

- If the cycle has length k, $a^k = 1$
- Using Lagrange's theorem, what is the size of the subgroup of powers of a?
 - Must divide $p-1$ because there are $p-1$ nonzero integers mod p
- Therefore, $p-1 = hk$ where k is the length of the cycle and h is some integer
- Recall that $a^k = 1 \text{ mod } p$
- Therefore $a^{p-1} = a^{hk} = (a^k)^h = 1^h = 1 \text{ mod } p$
Let’s Look at Some Examples

- Each of the above a values is chosen arbitrarily, and each p value is prime
- Each time, we get 1, as predicted by Fermat’s theorem
- Good news, the theorem works!
Can We Use This To Calculate Inverses mod P Quickly?

- What if, given a number a and prime p, we want to find $a^{-1} \mod p$, can we do it quickly?
- If $a^{p-1} \mod p = 1$, then $a \cdot a^{p-2} \mod p = 1$
- Therefore, $a^{-1} = a^{p-2}$ as they are two numbers that multiply to 1
- We can calculate a^{p-2} in $O(\log p)$ multiplications using repeated squaring!
- If p has n bits, then $\log(p) = O(n)$
- This is a critical step in calculating RSA keys
Can We Use This to Test Primality?

- We know that if p is prime, then $a^{p-1} = 1 \mod p$, but is this true in the other direction?
- If $a^{p-1} = 1 \mod p$, then does that imply that p is prime?
- Unfortunately the answer is no
- Numbers like 341 are called pseudoprimes or Carmichael numbers

```python
>>> 11*31
341
>>> (2**340)%341
1
```
Is There Any Hope?

- Let’s try some other numbers mod 341:
- Informally it looks like 1’s are rare
- What if we try a Monte-Carlo approach?
The Miller-Rabin Primality Test

- It turns out that if \(p \) is composite, the probability that \(a^{p-1} = 1 \mod p \) is at most \(\frac{1}{4} \).
- Therefore, if pick \(k \) random \(a \) values, \(a_1, a_2, \ldots, a_k \), and for every \(i \), we get \(a_i^{p-1} = 1 \mod p \), then the probability that \(p \) is composite is at most \(\frac{1}{4^k} \).
- Because each Fermat test can be run so fast, we can easily make this probability negligible by running the test many times.
Can We Do Even Better?

- Not really, Miller Rabin is usually used in practice
- Gary Miller’s original test, on which Miller Rabin was based was deterministic
 - The test cleverly chose a set of a values which always works
 - Unfortunately, the correctness proof relies on the Riemann Hypothesis
 - The Riemann Hypothesis is almost as significant an open problem as P vs NP
- Pomerance et al. use a more complex primality test (1980)
 - Foiled by Lucas numbers, which are far rarer than Carmichael numbers
 - More difficult to compute in practice
- Agrawal et al. found a deterministic polynomial test (2003)
 - Does not rely on unproven hypotheses
 - Involves a very complex test
 - Too slow to be practical