
princeton university cos 522: computational complexity

Lecture 3: Diagonalization

Lecturer: Sanjeev Arora Scribe:scribename

To separate two complexity classes we need to exhibit a machine in one class
that is different (namely, gives a different answer on some input) from every
machine in the other class. This lecture describes diagonalization, essentially
the only general technique known for constructing such a machine. We also
indicate why this technique has been unable thus far to resolve P =? NP and
other interesting questions.

1 Time Hierarchy Theorem

The Time Hierarchy Theorem shows that allowing Turing Machines more com-
putation time strictly increases the class of languages that they can decide.

Theorem 1
If f, g are running times satisfying f(n) log f(n) = o(g(n)), then

DTIME(f(n)) � DTIME(g(n)) (1)

To showcase the essential idea of the proof of Theorem 1, we prove the sim-
pler statement DTIME(n) � DTIME(n2). We use diagonalization. Suppose
M1, M2, M3, . . . is a numbering of all Turing Machines, where the description
of Mi can be produced from i in time O(log i). (Such numberings exist. For
example, one can order TMs according to the number of states in their tran-
sition diagrams, and use lexicographic ordering among then all TMs that have
the same number of states. Note that we allow machines that do not halt on all
inputs.)

Consider the following Turing Machine, D: “On input x, if x = 0j1k for
some j, k then construct Mk and simulate it on x for |x|1.5 steps. If Mk halts
and accepts, reject. If Mk halts and rejects, accept. In every other situation (for
example if Mk does not halt), accept.”

This machine runs in time at most 2n2. Specifically, it has to maintain a
timer that keeps tracks of the number of steps in the simulation of Mk. Main-
taining this counter introduces an overhead so the running time of the modified
machine will be O(n1.5 log n) = o(n2).

Now we show that language accepted by D is not in DTIME(n). Suppose
Mk is a machine that runs in linear time, specifically, in time at most cn + d.
Then for every integer j satisfying j+k > max

{
(c + 1)2, d

}
, the input y = 0j1k

is such that D’s computation on this input involves simulating Mk on the same
input and flipping the answer. Since |y|1.5

> c |y| + d, the diagonalizer has
enough time to complete its simulation of Mk and determine its answer.

1

2

The proof of Theorem 1 is similar, and involves the observation that the
diagonalizing Turing machine D wants to simulate a machine that runs in time
f(n), and also maintain a counter to keep track of the running time. The
overhead of maintaining the counter increases the running time of D by a factor
O(log f(n)).

2 Nondeterministic Time Hierarchy Theorem

The analogous hierarchy theorem for nondeterministic computation is even TBE later:
why no extra
log term?

tighter than for deterministic computation: it drops the extra log term.

Theorem 2
If f, g are running times satisfying f(n) = o(g(n)), then

NTIME(f(n)) � NTIME(g(n)) (2)

Again, we just showcase the main idea of the proof by proving NTIME(n) �
NTIME(n2). The technique from the previous section does not directly apply.
A nondeterminisitic machine that runs in O(n) time may have 2O(n) branches
in its computation. It is unclear how to determine in O(n2) time whether or
not it accepts and then flip this answer. Instead we use a technique called lazy
diagonalization, which is only guaranteed to flip the answer on some input in a
fairly large range.

For a pair of integers i, j, define f(i, j) to be

f(i, j) = 2222
i3j

. (3)

Clearly, f is one-to-one. We say (i, j) � (k, l) if f(i, j) < f(k, l). Then �
is a linear ordering. Thus for any integer n, there is a largest pair i, j and
smallest pair k, l such that f(i, j) < n ≤ f(k, l). We use the shorthands Ln =
f(i, j), Hn = f(k, l). Note that Ln, Hn are easily computed given n, certainly
in o(n2) time. Furthermore, Hn > 2(Ln)2 , so the interval [Ln, Hn) is quite large.
The diagonalizing machine tries to flip the answer in such large intervals.

Let M1, M2, M3, . . . be an enumeration of all NDTMs. We construct the
following NDTM D1.

“On input x, if x �∈ 1∗, accept. If x = 1n, then compute Ln, Hn. If n =
1Hn , accept 1n iff Mi rejects 1Ln+1 in |Ln|1.5 time. (Note that this requires
going through all possible exp(|Ln|1.5) nondeterministic branches of Mi on input
1Ln+1.) Otherwise simulate Mi on input 1n+1 using nondeterminism in n1.5

time and output its answer. ”
Clearly, D1 runs in O(n2) time. We show that D1 accepts a different lan-

guage from any NDTM Mi that runs in O(n) time. For contradiction’s sake
assume Mi runs in cn + d time and accepts the same language as D1. From the
construction of Mi, we know that for all all input sizes n such that f(i, j) = Ln

for some j and Ln < n ≤ Hn, D1 accepts 1n (and hence so does Mi) iff Mi

accepts 1n+1. Now if Mi and D1 accept the same language, we conclude that Mi

3

accepts 1n iff Mi accepts 1n+1. This chain of implications leads to the conclusion
that Mi accepts 1Ln+1 iff it accepts 1Hn . But this leads to a a contradiction,
since when j is large enough (specifically, larger than c+d), machine D1 accepts
1Hn iff Mi rejects 1Ln+1. Hence Mi and D1 cannot accept the same language.

3 Can diagonalization resolve P vs NP?

Quantifying the limits of “diagonalization” is not easy. Certainly, the diagonal-
ization in Section 2 seems more clever than the one in Section 1 or the one that
proves the undecidability of the halting problem.

For concreteness, let us say that “diagonalization” is any technique that
relies upon the ability of one TM to simulate another. In order to identify the
limitations of such techniques, we observe that they treat TMs as blackboxes:
the machine’s internal workings do not matter. In particular, the simulations
also work if all Turing Machines are provided with the same oracle. (Whenever
the TM being simulated queries the oracle, so does the simulating TM.) If we
could resolve P vs NP —in whichever direction— using such techniques then the
proof would also work in the presence of any oracle. However, we now exhibit
oracles B, C such that PC = NPC and PB �= NPB , which implies that such a
proof cannot exist.

For C we may take any PSPACE-complete problem, say TQBF, since
PTQBF = NPTQBF = PSPACE. Now we construct B. For any language A,
let Au be the unary language

Au = {1n : some string of length n is in A} .

For every oracle A, the language Au is clearly in NPA. Below we construct
an oracle B such that Bu �∈ PB . Hence Bu ∈ NPB \ PB , and we conclude
PB �= NPB .

Construction of B: Let M1, M2, M3, . . . be all polynomial-time Oracle Turing
Machines. (This enumeration need not be effective, since we are merely showing
the existence of the desired oracle.) We construct B in stages, where stage i
ensures that MB

i does not decide Bu. We construct B by initially letting it be
empty, and gradually deciding which strings are in it or outside it. Each stage
determines the status of a finite number of strings.

Stage i: So far, we have declared for a finite number of strings whether or
not they are in B. Choose n large enough so that it exceeds the length of any
such string, and 2n exceeds the running time of Mi on inputs of length n. Now
run Mi on input 1n. Whenever it queries the oracle about strings whose status
has been determined, we answer consistently. When it queries strings whose
status is undetermined, we declare that the string is not in B. We continue
until Mi halts. Now we make sure its answer on 1n is incorrect. If Mi accepts,
we declare that all strings of length n are not in B, thus ensuring 1n �∈ Bu. If
Mi rejects, we pick a string of length n that it has not queried (such a string

4

exists because 2n exceeds the running time of Mi) and declare that it is in B,
thus ensuring 1n ∈ Bu. In either case, the answer of Mi is incorrect.

Thus our construction of B ensures that no Mi decides Bu.
Let us now answer our original question: Can diagonalization or any simu-

lation method resolve P vs NP? Answer: Possibly, but it has to use some fact
about TMs that does not hold in presence of oracles. Such facts are termed
nonrelativizing and we will later encounter examples of such facts. Whether
or not they have any bearing upon P vs NP (or other interesting complexity
theoretic questions) is open.

Oracle Turing Machines

We give a quick introduction to oracle Turing machines, which were used above. If B
is a language, then a machine M with access to oracle B, denoted MB , is a machine
with a special query tape. It can write down any string on this tape, and learn from
the oracle in a single step whether or not the string is in the language B. We denote
by PB is the class of languages accepted by deterministic polynomial time machines
that have access to oracle B.

Example 1 SAT ∈ PSAT. To decide whether a formula ϕ ∈ SAT, the machine asks
the oracle if ϕ ∈ SAT, and then gives the opposite answer as its output.

Exercises

§1 Show that maintaining a time counter can be done with logarithmic over-
head. (Hint??)

§2 Show that PTQBF = NPTQBF.

§3 Show that SPACE(n) �= NP. (Note that we do not know if either class
is contained in the other.)

§4 Say that a class C1 is superior to a class C2 if there is a machine M1
in class C1 such that for every machine M2 in class C2 and every large
enough n, there is an input of size between n and n2 on which M1 and
M2 answer differently.

(a) Is DTIME(n1.1) superior to DTIME(n)?

(b) Is NTIME(n1.1) superior to NTIME(n)?

§5 Show that the following language is undecidable:
{
< M >: M is a machine that runs in 100n2 + 200 time

}
.

