Kolmogorov complexity and its applications

Ming Li
University of Waterloo
We live in an information society. Information science is our profession.

Fundamental Questions:

• What is “information”, mathematically, and how to use it to prove theorems?
• What is a computable “random number”…what properties does it have?
• What is an “incompressible string”…what properties does it have?
Motivation:
A case of Dr. Samuel Johnson
(1709-1784)

… Dr. Beattie observed, as something remarkable which had happened to him, that he chanced to see both No.1 and No.1000 hackney-coaches. “Why sir,” said Johnson “there is an equal chance for one’s seeing those two numbers as any other two.”

Boswell’s Life of Johnson
Further Motivation: Alice goes to the court

- Alice complains: T^{100} is not random.
- Bob asks Alice to produce a random coin flip sequence.
- Alice flipped her coin 100 times and got $THTTHHTHTHHHHTTTTTH \ldots$
- But Bob claims Alice’s sequence has probability 2^{-100}, and so does his.
- How do we define randomness?
Further Motivation, Cont

Alice goes to the court

Bob proposes to flip a coin with Alice:
- Alice wins a dollar if Heads;
- Bob wins a dollar if Tails

Result: TTTTTTTT …. 100 Tails in a roll.

Alice lost $100. She feels being cheated.
History: What is the Information in Individual String?

- What is the information content of an individual string?
 - 111 1 (n 1’s)
 - \(\pi = 3.1415926 \ldots \)
 - \(n = 2^{1024} \)
 - Champernowne’s number:

 \[
 0.1234567891011121314 \ldots
 \]

 is normal in scale 10 (every block has same frequency)
 - All these numbers share one commonality: there are “small” programs to generate them.

- Popular youtube explanation:

 http://www.youtube.com/watch?v=KyB13PD-UME
History: What is the Information in Individual String?

(1) **Information Theory**: Shannon-Weaver theory is on an ensemble. But what is information in an individual object? Shannon’s information theory does not seem to help here.

(2) **Inductive inference**: Bayesian approach using universal prior distribution

(3) **Kolmogorov Theory**: TM state size
Andrey Nikolaevich Kolmogorov (1903-1987, Tambov, Russia)

- Measure Theory
- Probability
- Analysis
- Intuitionistic Logic
- Cohomology
- Dynamical Systems
- Hydrodynamics
- Kolmogorov complexity
Preliminaries and Notations

- Binary Strings: x, y, z.
- \(x = x_1x_2 \ldots \) an infinite binary sequence
 - Finite subsequence \(x_{i:j} = x_i x_{i+1} \ldots x_j \)
 - \(|x|\) is number of bits in \(x \).
- Sets, A, B, C …
 - \(|A|\), number of elements in set A.
- Fix an **effective enumeration of all Turing machines (TMs)**: \(M_1, M_2, M_3, \ldots \)
 - \(< M_n >\) is description of TM \(M_n \)
- **Universal Turing machine** \(U: \)
 - \(U(0^n1x) = M_n(x) = \) gives output of TM \(M_n \) with input \(x \)
Kolmogorov Theory

Let U be a universal TM that takes as input the description p=<M> of a TM M and produces as output U(p).

The amount of information in a string x is the size of the smallest description <M> of any TM M generating x.

\[K_U(x) = \min_n \{ |<M_n>| : U \text{ simulates TM } M_n \text{ with no input, which gives output } x \} \]

Invariance Theorem: It does not matter which universal Turing machine U we choose. I.e. all “encoding methods” are ok.
Proof of the Invariance theorem

- For a fixed effective enumeration of all Turing machines (TM’s): M_1, M_2, …
- U is a universal TM such that with no input to nth TM M_n produces x
 \[U(0^n1) = M_n() = x \]
- Then for all x: $K_U(x) < K_n(x) + O(1)$
 - Note: The constant $O(1)$ depends on n, but not x.
- Fixing U, we write $K(x)$ instead of $K_U(x)$. \[\text{QED} \]

Formal statement of Invariance Theorem:

There exists a computable function f_0 such that for all computable functions f, there is a constant c_f such that for all strings $x \in \{0,1\}^*$

\[K_{f_0}(x) \leq K_f(x) + c_f \]
Intuitively: \(K(x) = \text{length of shortest description of } x \)

Properties of \(K(x) \):

\[K(xy) \leq K(x) + K(y) + O(\log(\min\{K(x), K(y)\})) \]

\[K(xx) = K(x) + O(1) \] Why?

\[K(1^n) \leq O(\log n) \] Why?

\[K(n!) \leq O(\log n) \] Why?

For all \(x \), \(K(x) \leq |x| + O(1) \) Why?
Kolmogorov Theory Properties

- Intuitively: $K(x) =$ length of shortest description of x

Properties of $K(x)$:
- $K(xy) \leq K(x) + K(y) + O(\log(\min\{K(x), K(y)\}))$
- $K(xx) = K(x) + O(1)$ since just need TM generating x
- $K(1^n) \leq O(\log n)$ since can use binary encoding of n
- $K(\pi_{1:n}) \leq O(\log n)$ since can use binary encoding of n
- For all x, $K(x) \leq |x| + O(1)$ since can encode x in TM
Recall $K(x) =$ length of shortest description of x

Define conditional Kolmogorov complexity similarly,

$K(x|y) =$ length of shortest description of x given y.

Properties of $K(x|y)$:

- $K(x|\varepsilon) = K(x)$ Why?
- $K(x|x) = O(1)$ Why?
Kolmogorov Theory Conditional Properties

- $K(x) =$ length of shortest description of x
- Define conditional Kolmogorov complexity similarly, $K(x|y) =$ length of shortest description of x, given y as input

Properties of $K(x|y)$:
- $K(x|\epsilon) = K(x)$ since empty string ϵ provides no additional info on x
- $K(x|x) = O(1)$ since just need TM that generates x
Incompressibility: For constant $c > 0$, a string $x \in \{0,1\}^*$ is \textit{c-incompressible} if $K(x) \geq |x| - c$.

For constant c, we often simply say that x is \textit{incompressible}.

Incompressible strings have properties similar to random strings.

Lemma. There are at least $2^n - 2^{n-c} + 1$ \textit{c-incompressible} strings of length n.

Proof. The number of programs with length $< n-c$ is

$$\sum_{k=0,...,n-c-1} 2^k = 2^{n-c} - 1.$$

Hence only that many strings (out of total 2^n strings of length n) can have shorter programs (descriptions) than $n-c$.

QED.
Recall: a finite string x is incompressible if $K(x) \geq |x| - c$ for a constant c.

If $x = uvw$ is incompressible, then $K(v) \geq |v| - O(\log |x|)$.

If $<M>$ is the shortest TM description for x, then

$K(<M>) \geq |<M>| - O(1)$ and

$K(x|<M>) = O(1)$.

A is recursively enumerable (r.e.) if the elements of A can be listed by a Turing machine.
Properties of Kolmogorov Theory

Theorem (Kolmogorov) \(K(x) \) is not partially recursive. (That is, there is no Turing machine \(M \) such that \(M \) accepts \((x,m)\) if \(K(x) \geq m \) and undefined otherwise.)

Proof. If such \(M \) exists, then design \(M' \) as follows:
Choose \(n \gg |<M'>| = \text{length of description of } M' \).
Choose a sufficiently large constant \(c>0 \).
Let \(M' \) simulate \(M \) on input \((x,n)\), for all \(|x|=n+c \) in "parallel" (one step each), and then output the first \(x \) such that \(M \) says yes.
Thus we have a contradiction:
• \(K(x) \geq n \) by \(M \),
• but \(M' \) outputs \(x \).
Hence \(|M'| \geq K(x) \geq n\), but by choice \(|x|=n \gg |<M'>|\), a contradiction.

QED
Kolmogorov Theory Applications to Complexity Theory

Kolmogorov Theory can give elegant proofs in Complexity Theory:

- Proofs that certain sets are not regular
- Complexity Lower Bounds for 1 Tape TMs
- Communication Lower Bounds: What is the distance between two pieces of information carrying entities? For example, distance from an internet query to an answer.
Other Kolmogorov Theory
Applications

- **Mathematics**: probability theory, logic.
- **Physics**: chaos, thermodynamics.
- **Computer Science**: average case analysis, inductive inference and learning, shared information between documents, data mining and clustering, incompressibility method -- examples:
 - Lower bounds on Turing machines, formal languages
 - Shellsort average case
 - Heapsort average case
 - Circuit complexity
 - Combinatorics: Lovaz's local lemma and related proofs.
 - Distributed protocols
- **Philosophy, biology etc**: randomness, inference, complex systems, sequence similarity
- **Information theory**: information in individual objects, information distance
 - Classifying objects: documents, genomes
 - Query Answering systems
Kolmogorov Theory: Further Results
Kolmogorov Theory: Further Results

Theorem. The statement “x is random” (x is incompressible) is not provable.

Proof (G. Chaitin). Let F be an axiomatic theory. Let \(K(F) = K \) be the size of the compressed encoding of F. If the theorem is false and statement “x is random” is provable in F, then we can enumerate all proofs in F to find a proof of “x is random” and \(|x| \gg K \), output (first) such x. Then \(K(x) < K + O(1) \). But the proof for “x is random” implies that \(K(x) \geq |x| \gg K \), a contradiction. QED
A characteristic sequence of set A is an infinite binary sequence $\chi=\chi_1\chi_2 \ldots$, where $\chi_i=1$ iff $i \in A$.

Theorem. (i) The characteristic sequence χ of an r.e. set A satisfies $K(\chi_{1:n}|n) \leq \log n + c_A$ for all n.
(ii) There is an r.e. set, $K(\chi_{1:n}|n) \geq \log n$ for all n.

Proof.

Proof of (i): Use the number 1’s in the prefix $\chi_{1:n}$ as a termination condition, implies $K(\chi_{1:n}|n) \leq \log n + c_A$.

Proof of (ii): By diagonalization: Let U be the universal TM. Define $\chi=\chi_1\chi_2 \ldots$, by $\chi_i=1$ if U(i-th program, i)=0, otherwise $\chi_i=0$. χ defines an r.e. set. And, for each n, we have $K(\chi_{1:n}|n) \geq \log n$ since the first n programs of length $< \log n$ are all different from $\chi_{1:n}$ by definition.

QED