The Incompressibility Method using Kolmogorov Complexity

- A key problem in computer science: analyze the average case performance of a program.
- Using the Incompressibility Method:
 - Give the program a random input (with high Kolmogorov complexity)
 - Analyze the program with respect to this single and fixed input. This is usually easier using the fact this input is incompressible.
 - The running time for this single input is the average case running time of all inputs!

Using the Incompressibility Method for Solution to open questions

- We will tell the histories of some open questions and the ideas of how they were solved by the incompressibility method.
- We will not be able to give detailed proofs to these problems ... but hopefully by telling you the ideas, you will be convinced enough and able to reconstruct the details on your own.
- Illustrates the power of Kolmogorov complexity with proofs that are short and elegant.

Selected list of results proved by the incompressibility method

- Lower Bound \(\Omega(n^2)\) for simulating 2 tapes by 1 (open 20 years)
- \(k\) heads > \(k-1\) heads for PDAs (open 15 years)
- \(k\) one-ways heads can’t do string matching (open 13 yrs)
- 2 heads are better than 2 tapes (open 10 years)
- Average case analysis for heapsort (open 30 years)
- \(k\) tapes are better than \(k-1\) tapes. (open 20 years)
- Many theorems in combinatorics, formal language/automata, parallel computing, VLSI
- Simplify old proofs (Hastad Lemma).
- Shellsort average case lower bound (open 40 years)

The Incompressibility Method applied to Formal language theory

- Example: Show \(L=\{0^k1^k \mid k>0\}\) not regular. By contradiction, assume that DFA \(M\) accepts \(L\).
 Choose \(k\) so that \(C(k) >> 2|M|\). Simulate \(M\):
 \[
 \begin{array}{c}
 k \\
 000 \ldots 0 \ 111 \ldots 1
 \end{array}
 \]
 Then \(C(k) < |M| + q + O(1)\) which is < 2|M|, a Contradiction.
- Remark. Generalize to iff condition: more powerful & easier to use than “pumping lemmas”.
Consider one-tape TM. Input tape is also work tape, allow read/write, two-way head.

Theorem. It takes $\Omega(n^2)$ time for such TM M to accept $L = \{ww \mid w \in \Sigma^*\}$.

Proof (W. Paul). Take an incompressible w where $C(w) \geq |w| = n$. Consider M''s computation on input: $0^n w 0^n w$. Consider, for each $i = 1, \ldots, n$, the $(i+2n)$th tape cell's crossing sequence (giving the moves of the TM's head on that tape cell):

- If the crossing sequence is $o(n)$, we can use this crossing sequence to find w by simulating on the "right side" of the crossing sequence by trying all the strings of length n. Then $C(w) = o(n)$, contradiction.
- If the crossing sequence is $\Omega(n)$, then the computation time is $\Omega(n^2)$. QED

More on formal language theory

**Lemma (Li-Vitanyi) Let $L \subseteq V^*$, and $L_x = \{y : xy \in L\}$. Then L is regular implies that if y is the n-th element of a lexical order enumeration of L_x, we have $C(y) \leq C(n)+c$ for a constant c (for all x,y,n).

Proof. The nth string y can be described by (i) n, (ii) the finite state machine recognizing L, and (iii) the state of that machine after processing x, requiring total information is $C(n)+O(1)$. QED

Characterizing regular sets

For any enumeration of $\Sigma^* = \{y_1, y_2, \ldots\}$, define characteristic sequence of $L_x = \{y : xy \in L\}$ by $X_i = 1$ iff $xy \in L$.

Theorem. L is regular iff there is a c for all x,n, $C(X_i|n) < c$. QED
1 tape vs 2 tape Turing machines

- **Standard (on-line) TM Model:**
 - Input tape: One way
 - Finite Control
 - Work tape: Two way

- **Question since the 1960’s:** Are two work tapes better than 1 work tape? How many work tapes are needed?

History
- 1969. Hartmanis & Stearns: 1 work tape TM can simulate $k > 1$ tape TM in $O(n^2)$ time.
- 1963. Rabin: 2 work tapes are better than 1.
- 1966. Hennie-Stearns: 2 work tapes can simulate k tapes in $O(n \log n)$ time.
- 1982. Paul: $\Omega(n \log n)$ lower bound for 1 vs 2 work tapes.
- 1983. Duris-Galil: Improved to $\Omega(n \log n)$.
- 1985. Maass, Li, Vitanyi: $\Omega(n^2)$ tight bound, by incompressibility method, settling the 20 year effort.

Proof Sketch
- Here is the language we have used to prove an $\Omega(n^{1.5})$ lower bound:
 - $L = \{x_1\alpha x_2\alpha \ldots x_k\alpha y_1\beta \ldots y_l\beta \#0^i \#1^j : x_i = y_j \}$
- Choose random x. $|x| = k= \sqrt{n}$.
- Then the two work tape machine can easily put x_i blocks on one tape and y_j blocks on the other. Then it accepts this language in linear time.
- However, the one work tape machine has trouble where to put these blocks. Whichever way it does it, there bounds to be some x_i and y_j blocks that are far away, then our previous proof works.
- The proof needs to worry about not many blocks can be stored in a small region (they are non-compressible strings, hence intuitively we know they can’t be). The nice thing about Kolmogorov complexity is that it can directly formulate your intuition into formal arguments.
- To improve to $\Omega(n^2)$ lower bound, we just need to make each x_i to be constant size. Then argue there are $O(n)$ pairs of (x_i, y_j) need to be matched and they are $O(n)$ away.

K-head PDA’s
- **Model:** Normal finite or pushdown automaton with k one-way input heads. Thus k-FA or k-PDA.
- These are natural extensions of our standard definition of FA and PDA.
- **Two conjectures:**
 - 1965. Rosenberg Conjecture: $(k+1)$-FA > k-FA
 - 1968. Harrison-Ibarra Conjecture: $(k+1)$-PDA > k-PDA
A tale of twin conjectures

- 1965 Rosenberg actually claimed a proof for \((k+1)\)-FA > \(k\)-FA. But Floyd subsequently found error and the proof fail apart.
- 1971 (FOCS), Sudborough proved 3-FA > 2-FA.
- Ibarra-Kim: 3-FA > 2-FA
- 1976 (FOCS) Yao-Rivest: \((k+1)\)-FA > \(k\)-FA.
- 1973 Ibarra: both conjectures true for 2-way input. This is by diagonalization, does not work for 1-way machines.
- 1982, Miyano: If change pushdown store to counter, then Harrison-Ibarra conjecture is true.
- 1983, Miyano: If input is not bounded, then HI true.
- 1985 Chrobak: HI-conjecture true for deterministic case – using traditional argument, extremely complicated and tedious.
- 1987 (FOCS), Chrobak-Li: Complete solution to Harrison-Ibarra conjecture, using incompressibility method. (The same argument also gives a cute simplification to Yao-Rivest proof.)

Proof Sketch

- The language we have used is:
 \(L_b = \{ w_1 \# \ldots \# w_b \;\; | \;\; w_i \in \{0,1\}^* \}\)

 Theorem. \(L_b\) can be accepted by a \(k\)-PDA iff \(b \leq \binom{k}{2}\).

 When \(b > \binom{k}{2}\), then we can again choose random \(w\) and break it into \(w_i\) blocks. Then we say there must be a pair of \(w_i, w_j\) that are indirectly matched (via the pushdown store). But when storing into pushdown store, \(w_i\) is reversed, so it cannot be properly matched with its counter part \(w_j\). We will also need to argue information cannot be reversed, compressed etc. But these are all easy with Kolmogorov complexity.

String-matching by k-DFA

- String matching problem:
 \(L = \{xy | x\) is a substring of \(y\}\)
- This one of the most important problems in computer science (grep function for example)
- Hundreds of papers written.
- Many efficient algorithms – KMP, BM, KR. Main features of these algorithms:
 - Linear time
 - Constant space (not KMP, BM), i.e. multthead finite automaton. In fact, a two-way 6-head FA can do string matching in linear time (Galil-Seiferas, 1981, STOC)
 - No need to back up pointers in the text (e.g. KMP).
- Galil-Seiferas Conjecture: Can \(k\)-DFA for any \(k\) do string matching?

History

- Li-Yesha: 2-DFA cannot.
- Gereb-Graus-Li: 3-DFA cannot
- Jiang-Li 1993 STOC: \(k\)-DFA cannot, for any \(k\).
Sketch of Proof

- I will just tell you how we did it for 2-DFA.
- Remember the heads are one-way, and DFA does not remember much.
- We can play a game with the 2-DFA with input (of course with Kolmogorov random blocks):

 \[xy \neq y'x'\]

 such that \(x'\) can be \(x\) and \(y'\) can be \(y\), so if the 2-DFA decides to match \(x, x'\) directly, then it won’t be able to match \(y, y'\) directly (and vice versa), so then we simply make \(x'\) different from \(x\), but \(y' = y\). Then without the two heads simultaneously at \(y\) and \(y'\), we will argue, as before, that finite control cannot do it.

Boolean matrix rank (J. Seiferas and Y. Yesha)

- Consider matrix over GF(2): 0,1 elements, with usually Boolean \(x +\) operations. Lower bounds on Rank are needed for example in proving tradeoff optimal bound \(TS = O(n^3)\) for multiplying 2 matrices.

Theorem. For each \(n\), there is an \(nxn\) matrix over GF(2) s.t. every submatrix of \(s\) rows and \(n-r\) columns has at least rank \(s/2\), \(2\log n < r < s < n/4\).

Proof. Take \(|x| = n^2, C(x) = n^2\). Form an \(nxn\) matrix with \(x\), one bit per entry. For any submatrix \(R\) with \(s\) rows and \(n-r\) columns, if \(R\) does not have rank \(s/2\), then \(s/2+1\) rows can be linearly described by other rows. Then you can compress the original matrix, hence \(x\) has desired lower bound on rank. QED

Sorting

- Given \(n\) elements (in an array). Sort them into ascending order.
- This is the most studied fundamental problem in computer science.
- Heapsort: Open for 40 years: Which is better in average case: Williams or Floyd?
- Shellsort (1959): \(P\) passes. In each pass, move the elements “in some stepwise fashion” (Bubblesort)
 - Open for over 40 years: a nontrivial general average case complexity lower bound of Shellsort?

Heapsort

- Immediately it was improved by RW Floyd.
- Worst case \(O(n\log n)\).
- Open for 40 years: Which is better in average case: Williams or Floyd?
Heapsort average analysis (I. Munro)

Average-case analysis of Heapsort.

Heapsort: (1) Make Heap. O(n) time. (2) Deletemin, restore heap, repeat.

Williams

\[2 \log n - 2d\]

\[\log n + d\]

Floyd

Fix random heap H, C(H) > n \log n. Simulate Step (2). Each round, encode the red path in \log n - d bits. The n paths describe the heap!

Hence, total n paths, length \geq n \log n, d must be a constant.

Floyd takes n \log n comparisons, and Williams takes 2n \log n.

Shellsort Algorithm

- Using p increments \(h_1, \ldots, h_p\) with \(h_p = 1\)
- At k-th pass, the array is divided in \(h_k\) separate sublists of length \(n/h_k\) taking every \(h_k\)-th element.
- Each sublist is sorted by insertion/bubble sort.

Application: Sorting networks --- nlog² n comparators.

Shellsort history

- Invented by D.L. Shell [1959], using \(p_k = n/2^k\) for step \(k\). It is a \(\Theta(n^2)\) time algorithm.
- Papernow&Stasevitch [1965]: O(n²) time.
- Pratt [1972]: O(nlog² n) time.
- Incerpi-Sedgewick, Chazelle, Plaxton, Poonen, Suel (1980)’s – worst case, roughly, \(\Theta(n \log n / (\log \log n)^2)\).

Average case:

- Knuth [1970’ s]: \(\Theta(n^{5/3})\) for \(p=2\)
- Yao [1980]: \(p=3\)
- Janson-Knuth [1997]: \(\Omega(n^{23/15})\) for \(p=3\).
- Jiang-Li-Vitanyi [J.ACM, 2000]: \(\Omega(p^{p+1/p})\) for any \(p\).

Shellsort Average Case Lower bound

Theorem. p-pass Shellsort average case \(T(n) \geq pn^{1+1/p}\)

Proof. Fix a random permutation \(\Pi\) with Kolmogorov complexity \(n \log n\), i.e. \(C(\Pi) \approx n \log n\). Use \(\Pi\) as input.

For pass \(i\), let \(m_1\) be the number of steps the \(i\)th element moves. Then \(T(n) = \sum m_1\).

From these \(m_1\’s\), one can reconstruct the input \(\Pi\), hence \(\sum \log m_1 \geq C(\Pi) \geq n \log n\)

Maximizing the left, all \(m_1\’s\) must be the same. Call it \(m\).

\[\sum \log m = pn \log m \geq \sum \log m_1 \geq n \log n\]

\(m \geq n\).

So \(T(n) = pn m > pn^{1+1/p}\).

Corollary: \(p=1\): Bubblesort \(\Omega(n^2)\) average case lower bound.

\(p=2\): \(n^{5/3}\) lower bound.

\(p=3\): \(n^{23/15}\) lower bound.
How far can we go?

- We have presented at least a dozen of problems that were solved by the incompressibility methods. There are many more … such problems (these include the important switching lemma in circuit complexity as well quantum complexity bounds).
- But can Kolmogorov complexity help to prove higher bounds? Or it is limited to linear, nlogn, n^2 bounds?
- Can we import some probabilistic method tools?
- If such a tool simply does not work for certain things, like $\text{NP} \neq \text{P}$, can we be certain about it? (prove this?)