
DRAFT

Chapter 3

Space complexity

“(our) construction... also suggests that what makes “games”
harder than “puzzles” (e.g. NP-complete problems) is the fact
that the initiative (“the move”) can shift back and forth between
the players.”
Shimon Even and Robert Tarjan, 1976

In this chapter we will study the memory requirements of computational
tasks. To do this we define space-bounded computation, which has to be per-
formed by the TM using a restricted number of tape cells, the number being
a function of the input size. We also study nondeterministic space-bounded
TMs. As in the chapter on NP, our goal in introducing a complexity class is
to “capture” interesting computational phenomena— in other words, iden-
tify an interesting set of computational problems that lie in the complexity
class and are complete for it. One phenomenon we will “capture” this way
(see Section 3.3.2) concerns computation of winning strategies in 2-person
games, which seems inherently different from (and possibly more difficult
than) solving NP problems such as SAT, as alluded to in the above quote.
The formal definition of deterministic and non-deterministic space bounded
computation is as follows (see also Figure 3.1):

Definition 3.1 (Space-bounded computation.)
Let S : N → N and L ⊆ {0, 1}∗. We say that L ∈ SPACE(s(n)) (resp. L ∈
NSPACE(s(n))) if there is a constant c and TM (resp. NDTM) M deciding L
such that on every input x ∈ {0, 1}∗, the total number of locations that are at some
point non-blank during M ’s execution on x is at most c·s(|x|). (Non-blank locations
in the read-only input tape do not count.)

Web draft 2006-09-28 18:09
Complexity Theory: A Modern Approach. c© 2006 Sanjeev Arora and Boaz Barak.
References and attributions are still incomplete.

61

DRAFT

62

Input
tape

Work
tape

Output
tape

Register

read only head

read/write head

read/write head

Figure 3.1: Space bounded computation. Only cells used in the read/write tapes count
toward the space bound.

As in our definitions of all nondeterministic complexity classes, we re-
quire all branches of nondeterministic machines to always halt.

Remark 3.2
Analogously to time complexity, we will restrict our attention to space
bounds S : N → N that are space-constructible functions, by which we mean
that there is a TM that computes S(n) in O(S(n)) space when given 1n as
input. (Intuitively, if S is space-constructible, then the machine “knows”
the space bound it is operating under.) This is a very mild restriction since
functions of interest, including log n,n and 2n, are space-constructible.

Also, realize that since the work tape is separated from the input tape,
it makes sense to consider space-bounded machines that use space less than
the input length, namely, S(n) < n. (This is in contrast to time-bounded
computation, where DTIME(T (n)) for T (n) < n does not make much sense
since the TM does not have enough time to read the entire input.) We will
assume however that S(n) > log n since the work tape has length n, and
we would like the machine to at least be able to “remember” the index of
the cell of the input tape that it is currently reading. (One of the exercises
explores classes that result when S(n) � log n.)

Note that DTIME(S(n)) ⊆ SPACE(S(n)) since a TM can access only
one tape cell per step. Also, notice that space can be reused : a cell on the
work tape can be overwritten an arbitrary number of times. A space S(n)
machine can easily run for as much as 2Ω(S(n)) steps —think for example of
the machine that uses its work tape of size S(n) to maintain a counter which

Web draft 2006-09-28 18:09

DRAFT

3.1. CONFIGURATION GRAPHS. 63

it increments from 1 to 2S(n)−1. The next easy theorem (whose proof ap-
pears a little later) shows that this is tight in the sense that any languages in
SPACE(S(n)) (and even NSPACE(S(n))) is in DTIME(2O(S(n))). Sur-
prisingly enough, up to logarithmic terms, this theorem contains the only re-
lationships we know between the power of space-bounded and time-bounded
computation. Improving this would be a major result.

Theorem 3.3
For every space constructible S : N → N,

DTIME(S(n)) ⊆ SPACE(S(n)) ⊆ NSPACE(S(n)) ⊆ DTIME(2O(S(n)))

3.1 Configuration graphs.

Cstart

Caccept
αqβ

Figure 3.2: The configuration graph GM,x is the graph of all configurations of M ’s
execution on x where there is an edge from a configuration C to a configuration C′ if
C′ can be obtained from C in one step. It has out-degree one if M is deterministic and
out-degree at most two if M is non-deterministic.

To prove Theorem 3.3 we use the notion of a configuration graph of a
Turing machine. This notion will also be quite useful for us later in this
chapter and the book. Let M be a (deterministic or non-deterministic) TM.
A configuration of a TM M consists of the contents of all non-blank entries
of M ’s tapes, along with its state and head position, at a particular point
in its execution. For every TM M and input x ∈ {0, 1}∗, the configuration
graph of M on input x, denoted GM,x, is a directed graph whose nodes
correspond to possible configurations that M can reach from the starting
configuration Cx

start (where the input tape is initialized to contain x). The
graph has a directed edge from a configuration C to a configuration C ′ if C ′

can be reached from C in one step according to M ’s transition function (see

Web draft 2006-09-28 18:09

DRAFT

64 3.1. CONFIGURATION GRAPHS.

Figure 3.2). Note that if M is deterministic then the graph has out-degree
one, and if M is non-deterministic then it has an out-degree at most two.
Also note that we can assume that M ’s computation on x does not repeat
the same configuration twice (as otherwise it will enter into an infinite loop)
and hence that the graph is a directed acyclic graph (DAG). By modifying
M to erase all its work tapes before halting, we can assume that there is only
a single configuration Caccept on which M halts and outputs 1. This means
that M accepts the input x iff there exists a (directed) path in GM,x from
Cstart to Caccept. We will use the following simple claim about configuration
graphs:

Claim 3.4
Let GM,x be the configuration graph of a space-S(n) machine M on some
input x of length n. Then,

1. Every vertex in GM,x can be described using cS(n) bits for some con-
stant c (depending on M ’s alphabet size and number of tapes) and in
particular, GM,x has at most 2cS(n) nodes.

2. There is an O(S(n))-size CNF formula ϕM,x such that for every two
strings C,C ′, ϕM,x(C,C ′) = 1 if and only if C,C ′ encode two neigh-
boring configuration in GM,x.

Proof sketch: Part 1 follows from observing that a configuration is
completely described by giving the contents of all work tapes, the position of
the head, and the state that the TM is in (see Section 1.2.1). We can encode
a configuration by first encoding the snapshot (i.e., state and current symbol
read by all tapes) and then encoding in sequence the non-blank contents
of all the work-tape, inserting a special “marker” symbol, to denote the
locations of the heads.

Part 2 follows using similar ideas as in the proof of the Cook-Levin
theorem (Theorem 2.11). There we showed that deciding whether two con-
figurations are neighboring can be expressed as the AND of many checks,
each depending on only a constant number of bits, where such checks can
be expressed by constant-sized CNF formulae by Claim 2.15. �

Now we can prove Theorem 3.3.
Proof of Theorem 3.3: Clearly SPACE(S(n)) ⊆ NSPACE(S(n))
and so we just need to show NSPACE(S(n)) ⊆ DTIME(2O(S(n))). By
enumerating over all possible configurations we can construct the graph
GM,x in 2O(S(n))-time and check whether Cstart is connected to Caccept in

Web draft 2006-09-28 18:09

DRAFT

3.2. SOME SPACE COMPLEXITY CLASSES. 65

GM,x using the standard (linear in the size of the graph) breadth-first search
algorithm for connectivity (e.g., see [?]). �

We also note that there exists a universal TM for space bounded com-
putation analogously to Theorems 1.6 and ?? for deterministic and non-
deterministic time bounded computation, see Section ?? below.

3.2 Some space complexity classes.

Now we define some complexity classes, where PSPACE,NPSPACE are
analogs of P and NP respectively.

Definition 3.5
PSPACE = ∪c>0SPACE(nc)
NPSPACE = ∪c>0NSPACE(nc)
L = SPACE(log n)
NL = NSPACE(log n)

Example 3.6
We show how 3SAT ∈ PSPACE by describing a TM that decides 3SAT
in linear space (that is, O(n) space, where n is the size of the 3SAT in-
stance). The machine just uses the linear space to cycle through all 2k

assignments in order, where k is the number of variables. Note that once
an assignment has been checked it can be erased from the worktape, and
the worktape then reused to check the next assignment. A similar idea of
cycling through all potential certificates applies to any NP language, so in
fact NP ⊆ PSPACE.

Example 3.7
The reader should check (using the gradeschool method for arithmetic) that
the following languages are in L:

EVEN = {x : x has an even number of 1s} .

MULT = {(xny, xmy, xnmy) : n ∈ N} .

Web draft 2006-09-28 18:09

DRAFT

66 3.3. PSPACE COMPLETENESS

Its seems difficult to conceive of any complicated computations apart
from arithmetic that use only O(log n) space. Nevertheless, we cannot cur-
rently even rule out that 3SAT ∈ L (in other words —see the exercises—
it is open whether NP 6= L). Space-bounded computations with space
S(n) � n seem relevant to computational problems such as web crawling.
The world-wide-web may be viewed crudely as a directed graph, whose nodes
are webpages and edges are hyperlinks. Webcrawlers seek to explore this
graph for all kinds of information. The following problem PATH is natural
in this context:

PATH = {〈G, s, t〉 : G is a directed graph in which there is a path from s to t}
(1)

We claim that PATH ∈ NL. The reason is that a nondeterministic ma-
chine can take a “nondeterministic walk” starting at s, always maintaining
the index of the vertex it is at, and using nondeterminism to select a neigh-
bor of this vertex to go to next. The machine accepts iff the walk ends at t
in at most n steps, where n is the number of nodes. If the nondeterministic
walk has run for n steps already and t has not been encountered, the ma-
chine rejects. The work tape only needs to hold O(log n) bits of information
at any step, namely, the number of steps that the walk has run for, and the
identity of the current vertex.

Is PATH in L as well? This is an open problem, which, as we will shortly
see, is equivalent to whether or not L = NL. That is, PATH captures the
“essence” of NL just as 3SAT captures the “essence” of NP. (Formally, we
will show that PATH is NL-complete.) A recent surprising result shows
that the restriction of PATH to undirected graphs is in L; see Chapters 7
and 17.

3.3 PSPACE completeness

As already indicated, we do not know if P 6= PSPACE, though we strongly
believe that the answer is YES. Notice, P = PSPACE implies P = NP.
Since complete problems can help capture the essence of a complexity class,
we now present some complete problems for PSPACE.

Web draft 2006-09-28 18:09

DRAFT

3.3. PSPACE COMPLETENESS 67

Definition 3.8
A language A is PSPACE-hard if for every L ∈ PSPACE, L ≤p A. If in
addition A ∈ PSPACE then A is PSPACE-complete.

Using our observations about polynomial-time reductions from Chapter ??
we see that if any PSPACE-complete language is in P then so is every other
language in PSPACE. Viewed contrapostively, if PSPACE 6= P then a
PSPACE-complete language is not in P. Intuitively, a PSPACE-complete
language is the “most difficult” problem of PSPACE. Just as NP trivially
contains NP-complete problems, so does PSPACE. The following is one
(Exercise 3):

SPACETM = {〈M,w, 1n〉 : DTM M accepts w in space n} . (2)

Now we see some more interesting PSPACE-complete problems. We
use the notion of a quantified boolean formula, which is a boolean formula in
which variables are quantified using ∃ and ∀ which have the usual meaning
“there exists” and “for all” respectively. It is customary to also specify the
universe over which these signs should be interpreted, but in our case the
universe will always be the truth values {0, 1}. Thus a quantified boolean
formula has the form Q1x1Q2x2 · · ·Qnxnϕ(x1, x2, . . . , xn) where each Qi is
one of the two quantifiers ∀ or ∃ and ϕ is an (unquantified) boolean formula1.

If all variables in the formula are quantified (in other words, there are
no free variables) then a moment’s thought shows that such a formula is
either true or false —there is no “middle ground”. We illustrate the notion
of truth by an example.

Example 3.9
Consider the formula ∀x∃y (x ∧ y) ∨ (x ∧ y) where ∀ and ∃ quantify over
the universe {0, 1}. Some reflection shows that this is saying “for every
x ∈ {0, 1} there is a y ∈ {0, 1} that is different from it”, which we can
also informally represent as ∀x∃y(x 6= y). This formula is true. (Note: the

1 We are restricting attention to quantified boolean formulae which are in prenex normal
form, i.e., all quantifiers appear to the left. However, this is without loss of generality
since we can transform a general formula into an equivalent formula in prenex form in
polynomial time using identities such as p∨∃xϕ(x) = ∃xp∨ϕ(x) and ¬∀xφ(x) = ∃x¬φ(x).
Also note that unlike in the case of the SAT and 3SAT problems, we do not require that
the inner unquantified formula ϕ is in CNF or 3CNF form. However this choice is also not
important, since using auxiliary variables in a similar way to the proof of the Cook-Levin
theorem, we can in polynomial-time transform a general quantified Boolean formula to an
equivalent formula where the inner unquantified formula is in 3CNF form.

Web draft 2006-09-28 18:09

DRAFT

68 3.3. PSPACE COMPLETENESS

symbols = and 6= are not logical symbols per se, but are used as informal
shorthand to make the formula more readable.)

However, switching the second quantifier to ∀ gives ∀x∀y (x∧y)∨(x∧y),
which is false.

Example 3.10
Recall that the SAT problem is to decide, given a Boolean formula ϕ that
has n free variables x1, . . . , xn, whether or not ϕ has a satisfying assignment
x1, . . . , xn ∈ {0, 1}n such that ϕ(x1, . . . , xn) is true. An equivalent way
to phrase this problem is to ask whether the quantified Boolean formula
ψ = ∃x1, . . . , xnϕ(x1, . . . , xn) is true.

The reader should also verify that the negation of the formula
Q1x1Q2x2 · · ·Qnxnϕ(x1, x2, . . . , xn) is the same as

Q′
1x1Q

′
2x2 · · ·Q′

nxn¬ϕ(x1, x2, . . . , xn),

where Q′
i is ∃ if Qi was ∀ and vice versa. The switch of ∃ to ∀ in case of SAT

gives instances of TAUTOLOGY, the coNP-complete language encountered
in Chapter ??.

We define the language TQBF to be the set of quantified boolean formu-
lae that are true.

Theorem 3.11
TQBF is PSPACE-complete.

Proof: First we show that TQBF ∈ PSPACE. Let

ψ = Q1x1Q2x2 . . . Qnxnϕ(x1, x2, . . . , xn) (3)

be a quantified Boolean formula with n variables, where we denote the size
of ϕ bym. We show a simple recursive algorithm A that can decide the truth
of ψ in O(n+m) space. We will solve the slightly more general case where, in
addition to variables and their negations, ϕ may also include the constants
0 (i.e., “false”) and 1 (i.e., “true”). If n = 0 (there are no variables) then
the formula contains only constants and can be evaluated in O(m) time and

Web draft 2006-09-28 18:09

DRAFT

3.3. PSPACE COMPLETENESS 69

space. Let n > 0 and let ψ be as in (3). For b ∈ {0, 1}, denote by ψ�x1=b the
modification of ψ where the first quantifier Q1 is dropped and all occurrences
of x1 are replaced with the constant b. Algorithm A will work as follows: if
Q1 = ∃ then output 1 iff at least one of A(ψ�x1=0) and A(ψ�x1=1) returns 1.
If Q1 = ∀ then output 1 iff both A(ψ�x1=0) and A(ψ�x1=1). By the definition
of ∃ and ∀, it is clear that A does indeed return the correct answer on any
formula ψ.

Let sn,m denote the space A uses on formulas with n variables and de-
scription size m. The crucial point is —and here we use the fact that space
can be reused—that both recursive computations A(ψ�x1=0) and A(ψ�x1=1)
can run in the same space. Specifically, after computing A(ψ�x1=0), the algo-
rithm A needs to retain only the single bit of output from that computation,
and can reuse the rest of the space for the computation of A(ψ�x1=1). Thus,
assuming that A uses O(m) space to write ψ� x1 = b for its recursive calls,
we’ll get that sn,m = sn−1,m +O(m) yielding sn,m = O(n ·m). 2

We now show that L ≤p TQBF for every L ∈ PSPACE. Let M be a
machine that decides L in S(n) space and let x ∈ {0, 1}n. We show how
to construct a quantified Boolean formula ψ of size O(S(n)2) that is true
iff M accepts x. Recall that by Claim 3.4, there is a Boolean formula ϕM,x

such that for every two strings C,C ′ ∈ {0, 1}m (where m = O(S(n)) is the
number of bits require to encode a configuration of M), ϕM (C,C ′) = 1 iff
C and C ′ are valid encodings of two adjacent configurations in the config-
uration graph GM,x. We will use ϕM,x to come up with a polynomial-sized
quantified Boolean formula ψ′ that has polynomially many Boolean vari-
ables bound by quantifiers and additional 2m unquantified Boolean variables
C1, . . . , Cm, C

′
1, . . . , C

′
m (or, equivalently, two variables C,C ′ over {0, 1}m)

such that for every C,C ′ ∈ {0, 1}m, ψ(C,C ′) is true iff C has a directed
path to C ′ in GM,x. By plugging in the values Cstart and Caccept to ψ′ we
get a quantified Boolean formula ψ that is true iff M accepts x.

We define the formula ψ′ inductively. We let ψi(C,C ′) be true if and
only if there is a path of length at most 2i from C to C ′ in GM,x. Note that
ψ′ = ψm and ψ0 = ϕM,x. The crucial observation is that there is a path of

2The above analysis already suffices to show that TQBF is in PSPACE. However, we
can actually show that the algorithm runs in linear space, specifically, O(m + n) space.
Note that algorithm always works with restrictions of the same formula ψ. So it can keep
a global partial assignment array that for each variable xi will contain either 0, 1 or ’q’

(if it’s quantified and not assigned any value). Algorithm A will use this global space for
its operation, where in each call it will find the first quantified variable, set it to 0 and
make the recursive call, then set it to 1 and make the recursive call, and then set it back
to ’q’. We see that A’s space usage is given by the equation sn,m = sn−1,m + O(1) and
hence it uses O(n+m) space.

Web draft 2006-09-28 18:09

DRAFT

70 3.3. PSPACE COMPLETENESS

length at most 2i from C to C ′ if and only if there is a configuration C ′′

with such that there are paths of length at most 2i−1 path from C to C ′′

and from C ′′ to C ′. Thus the following formula suggests itself: ψi(C,C ′) =
∃C ′′ ψi−1(C,C ′) ∧ ψi−1(C ′′, C).

However, this formula is no good. It implies that ψi’s is twice the size of
ψi−1, and a simple induction shows that ψm has size about 2m, which is too
large. Instead, we use additional quantified variables to save on description
size, using the following more succinct definition for ψi(C,C ′):

∃C ′′∀D1∀D2
(
(D1 = C ∧D2 = C ′)∨ (D1 = C ′ ∧D2 = C ′′)

)
⇒ ψi−1(D1, D2)

(Here, as in Example 3.9, = and ⇒ are convenient shorthands, and can be
replaced by appropriate combinations of the standard Boolean operations
∧ and ¬.) Note that size(ψi) ≤ size(ψi−1) + O(m) and hence size(ψm) ≤
O(m2). We leave it to the reader to verify that the two definitions of ψi are
indeed logically equivalent. As noted above we can convert the final formula
to prenex form in polynomial time. �

3.3.1 Savitch’s theorem.

The astute reader may notice that because the above proof uses the notion
of a configuration graph and does not require this graph to have out-degree
one, it actually yields a stronger statement: that TQBF is not just hard
for PSPACE but in fact even for NPSPACE!. Since TQBF ∈ PSPACE
this implies that PSPACE = NSPACE, which is quite surprising since
our intuition is that the corresponding classes for time (P and NP) are
different. In fact, using the ideas of the above proof, one can obtain the
following theorem:

Theorem 3.12 (Savitch [?])
For any space-constructible S : N → N with S(n) ≥ logn, NSPACE(S(n)) ⊆
SPACE(S(n)2)

We remark that the running time of the algorithm obtained from this
theorem can be as high as 2Ω(s(n)2).
Proof: The proof closely follows the proof that TQBF is PSPACE-complete.
Let L ∈ NSPACE(S(n)) be a language decided by a TM M such that
for every x ∈ {0, 1}n, the configuration graph G = GM,x has at most
M = 2O(S(n)) vertices. We describe a recursive procedure reach?(u, v, i)
that returns “YES” if there is a path from u to v of length at most 2i

and “NO” otherwise. Note that reach?(s, t, d logM e) is “YES” iff t is

Web draft 2006-09-28 18:09

DRAFT

3.3. PSPACE COMPLETENESS 71

reachable from s. Again, the main observation is that there is a path
from u to v of length at most 2i iff there’s a vertex z with paths from
u to z and from z to v of lengths at most 2i−1. Thus, on input u, v, i,
reach? will enumerate over all vertices z (at a cost of O(logM) space)
and output “YES” if it finds one z such that reach?(u, z, i − 1)=“YES”
and reach?(z, v, i− 1)=“YES”. Once again, the crucial observation is that
although the algorithm makes n recursive invocations, it can reuse the space
in each of these invocations. Thus, if we let sM,i be the space complexity of
reach?(u, v, i) on an M -vertex graph we get that sM,i = sM,i−1 +O(logM)
and thus sM,log M = O(log2M) = O(S(n)2). �

3.3.2 The essence of PSPACE: optimum strategies for game-
playing.

Recall that the central feature of NP-complete problems is that a yes an-
swer has a short certificate. The analogous unifying concept for PSPACE-
complete problems seems to be that of a winning strategy for a 2-player
game with perfect information. A good example of such a game is Chess:
two players alternately make moves, and the moves are made on a board
visible to both. Thus moves have no hidden side effects; hence the term
“perfect information.” What does it mean for a player to have a “winning
strategy?” The first player has a winning strategy iff there is a 1st move
for player 1 such that for every possible 1st move of player 2 there is a 2nd
move of player 1 such that.... (and so on) such that at the end player 1
wins. Thus deciding whether or not the first player has a winning strategy
seems to require searching the tree of all possible moves. This is reminiscent
of NP, for which we also seem to require exponential search. But the cru-
cial difference is the lack of a short “certificate” for the statement “Player
1 has a winning strategy,” since the only certificate we can think of is the
winning strategy itself, which as noticed, requires exponentially many bits
to even describe. Thus we seem to be dealing with a fundamentally different
phenomenon than the one captured by NP.

The interplay of existential and universal quantifiers in the description
of the the winning strategy motivates us to invent the following game.

Example 3.13 (The QBF game)
The “board” for the QBF game is a Boolean formula ϕ whose free variables
are x1, x2, . . . , x2n. The two players alternately make moves, which involve
picking values for x1, x2, . . . , in order. Thus player 1 will pick values for the

Web draft 2006-09-28 18:09

DRAFT

72 3.3. PSPACE COMPLETENESS

odd-numbered variables x1, x3, x5, . . . (in that order) and player 2 will pick
values for the even-numbered variables x2, x4, x6, . . . ,. We say player 1 wins
iff at the end ϕ becomes true.

Clearly, player 1 has a winning strategy iff

∃x1∀x2∃x3∀x4 · · · ∀x2nϕ(x1, x2, . . . , x2n),

namely, iff this quantified boolean formula is true.
Thus deciding whether player 1 has a winning strategy for a given board

in the QBF game is PSPACE-complete.

At this point, the reader is probably thinking of familiar games such as
Chess, Go, Checkers etc. and wondering whether complexity theory may
help differentiate between them—for example, to justify the common intu-
ition that Go is more difficult than Chess. Unfortunately, formalizing these
issues in terms of asymptotic complexity is tricky because these are finite
games, and as far as the existence of a winning strategy is concerned, there
are at most three choices: Player 1 has has a winning strategy, Player 2 does,
or neither does (they can play to a draw). However, one can study general-
izations of these games to an n×n board where n is arbitrarily large —this
may involve stretching the rules of the game since the definition of chess
seems tailored to an 8 × 8 board— and then complexity theory can indeed
by applied. For most common games, including chess, determining which
player has a winning strategy in the n × n version is PSPACE-complete
(see [?]or [?]). Note that if NP 6= PSPACE then in general there is no
short certificate for exhibiting that either player in the TQBF game has a
winning strategy, which is alluded to in Evens and Tarjan’s quote at the
start of the chapter.

Proving PSPACE-completeness of games may seem like a frivolous pur-
suit, but similar ideas lead to PSPACE-completeness of some practical
problems. Usually, these involve repeated moves that are in turn coun-
teracted by an adversary. For instance, many computational problems of
robotics are PSPACE-complete: the “player” is the robot and the “adver-
sary” is the environment. (Treating the environment as an adversary may
appear unduly pessimistic; but unfortunately even assuming a benign or “in-
different” environment still leaves us with a PSPACE-complete problem;
see the Chapter notes.)

Web draft 2006-09-28 18:09

DRAFT

3.4. NL COMPLETENESS 73

3.4 NL completeness

Now we consider problems that form the “essence” of non-deterministic log-
arithmic space computation, in other words, problems that are complete for
NL. What kind of reduction should we use? We cannot use the polynomial-
time reduction since NL ⊆ P. Thus every language in NL is polynomial-
time reducible to the trivial language {1} (reduction: “decide using polyno-
mial time whether or not the input is in the NL language, and then map
to 1 or 0 accordingly”). Intuitively, such trivial languages should not be the
“hardest” languages of NL.

When choosing the type of reduction to define completeness for a com-
plexity class, we must keep in mind the complexity phenomenon we seek to
understand. In this case, the complexity question is whether or not NL = L.
The reduction should not be more powerful than the weaker class, which is
L. For this reason we use logspace reductions —for further, justification, see
part (b) of Lemma 3.15 below). To define such reductions we must tackle the
tricky issue that a reduction typically maps instances of size n to instances
of size at least n, and so a logspace machine computing such a reduction
does not have even the memory to write down its output. The way out
is to require that the reduction should be able to compute any desired bit
of the output in logarithmic space. In other words, if the reduction were
given a separate output tape, it could in principle write out the entire new
instance by first computing the first bit, then the second bit, and so on.
(Many texts define such reductions using a “write-once” output tape.) The
formal definition is as follows.
Definition 3.14 (logspace reduction)
Let f :{0, 1}∗ → {0, 1}∗ be a polynomially-bounded function (i.e., there’s a
constant c > 0 such that f(x) ≤ |x|c for every x ∈ {0, 1}∗). We say that f
is implicitly logspace computable, if the languages Lf = {〈x, i〉 | f(x)i = 1}
and L′

f = {〈x, i〉 | i ≤ |f(x)|} are in L.
Informally, we can think of a single O(log |x|)-space machine that given

input (x, i) outputs f(x)|i provided i ≤ |f(x)|.
Language A is logspace reducible to language B, denoted A ≤l B, if there

is a function f :{0, 1}∗ → {0, 1}∗ that is implicitly logspace computable and
x ∈ A iff f(x) ∈ B for every x ∈ {0, 1}∗.

Logspace reducibility satisfies usual properties one expects.

Lemma 3.15
(a) If A ≤l B and B ≤l C then A ≤l C. (b) If A ≤l B and B ∈ L then
A ∈ L.

Web draft 2006-09-28 18:09

DRAFT

74 3.4. NL COMPLETENESS

Proof: We prove that if f, g are two functions that are logspace implicitly
computable, then so is the function h where h(x) = g(f(x)). Then part (a)
of the Lemma follows by letting f be the reduction from A to B and g be
the reduction from B to C. Part (b) follows by letting f be the reduction
from A to B and g be the characteristic function of B (i.e. g(y) = 1 iff
y ∈ B).

So let Mf ,Mg be the logspace machines that compute the mappings
x, i 7→ f(x)i and y, j 7→ g(y)j respectively. We construct a machine Mh

that computes the mapping x, j 7→ g(f(x))j , in other words, given input
x, j outputs g(f(x))j provided j ≤ |g(f(x))|. Machine Mh will pretend that
it has an additional (fictitious) input tape on which f(x) is written, and
it is merely simulating Mg on this input (see Figure 3.3). Of course, the
true input tape has x, j written on it. To maintain its fiction, Mh always
maintains on its worktape the index, say i, of the cell on the fictitious
tape that Mg is currently reading; this requires only log |f(x)| space. To
compute for one step, Mg needs to know the contents of this cell, in other
words, f(x)|i. At this point Mh temporarily suspends its simulation of Mg

(copying the contents of Mg’s worktape to a safe place on its own worktape)
and invokes Mf on inputs x, i to get f(x)|i. Then it resumes its simulation
of Mg using this bit. The total space Mh uses is O(log |g(f(x))| + s(|x|) +
s′(|f(x)|)) = O(log |x|). �

Input
tape

Work
tape

Output
tape

> 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0

read only headread/write head

Mf

Work
tape

Output
tape

Virtual
input
tape

Mg

Figure 3.3: Composition of two implicitly logspace computable functions f, g. The
machine Mg uses calls to f to implement a “virtual input tape”. The overall space used
is the space of Mf + the space of Mg + O(log |f(x)|) = O(log|x|).

We say that A is NL-complete if it is in NL and for every B ∈ NL,
A ≤l B. Note that an NL-complete language is in L iff NL =L.

Web draft 2006-09-28 18:09

DRAFT

3.4. NL COMPLETENESS 75

Theorem 3.16
PATH is NL-complete.

Proof: We have already seen that PATH is in NL. Let L be any language
in NL and M be a machine that decides it in space O(log n). We describe a
logspace implicitly computable function f that reduces L to PATH. For any
input x of size n, f(x) will be the configuration graph GM,x whose nodes are
all possible 2O(log n) configurations of the machine on input x, along with the
start configuration Cstart and the accepting configuration Cacc. In this graph
there is a path from Cstart to Cacc iff M accepts x. The graph is represented
as usual by an adjacency matrix that contain 1 in the 〈C,C ′〉th position
(i.e., in the Cth row and C ′th column if we identify the configurations with
numbers between 0 and 2O(log n)) iff there’s an edge C from C ′ in GM,x. To
finish the proof we need to show that this adjacency matrix can be computed
by a logspace reduction. This is easy since given a 〈C,C ′〉 a deterministic
machine can in space O(|C| + |C ′|) = O(log |x|) examine C,C ′ and check
whether C ′ is one of the (at most two) configurations that can follow C
according to the transition function of M . �

3.4.1 Certificate definition of NL: read-once certificates

In Chapter 2 we gave two equivalent definitions of NP— one using non-
deterministic TM’s and another using the notion of a certificate. The idea
was that the nondeterministic choices of the NDTM that lead it to accept
can be viewed as a “certificate” that the input is in the language, and vice
versa. We can give a certificate-based definition also for NL, but only after
addressing one tricky issue: a certificate may be polynomially long, and a
logspace machine does not have the space to store it. Thus, the certificate-
based definition of NL assumes that the logspace machine on a separate
read-only tape. Furthermore, on each step of the machine the machine’s
head on that tape can either stay in place or move to the right. In particular,
it cannot reread any bit to the left of where the head currently is. (For this
reason the this kind of tape is called “read once”.) It is easily seen that the
following is an alternative definition of NL (see also Figure 3.4):

Definition 3.17 (NL- alternative definition.)
A language L is in NL if there exists a deterministic TM M and a with an
additional special read-once input tape polynomial p : N → N such that for
every x ∈ {0, 1}∗,

x ∈ L⇔ ∃u ∈ {0, 1}p(|x|) s.t. M(x, u) = 1

Web draft 2006-09-28 18:09

DRAFT

76 3.4. NL COMPLETENESS

Input
tape

Work
tape

Output
tape

Register

read only head

read/write head

read/write head

Certificate
tape

read once head

Figure 3.4: Certificate view of NL. The certificate for input x is placed on a special
“read-once” tape on which the machine’s head can never move to the left.

where by M(x, u) we denote the output of M where x is placed on its input
tape and u is placed on its special read-once tape, and M uses at most
O(log |x|) space on its read/write tapes for every input x.

3.4.2 NL = coNL

Consider the problem PATH, i.e., the complement of PATH. A decision
procedure for this language must accept when there is no path from s to
t in the graph. Unlike in the case of PATH, there is no natural certificate
for the non-existence of a path from s to t and thus it seemed “obvious” to
researchers that PATH 6∈ NL, until the discovery of the following theorem
in the 1980s proved them wrong.

Theorem 3.18 (Immerman-Szlepcsenyi)
PATH ∈ NL.

Proof: As we saw in Section 3.4.1, we need to show an O(log n)-space
algorithm A such that for every n-vertex graph G and vertices s and t,
there exists a polynomial certificate u such that A(〈G, s, t〉, u) = 1 if and
only if t is not reachable from u in G, where A has only read-once access to
u.

What can we certify to an O(log n)-space algorithm? Let Ci be the set
of vertices that are reachable from s in G within at most i steps. For every
i ∈ [n] and vertex v, we can easily certify that v is in Ci. The certificate
simply contains the labels v0, v1, . . . , vk of the vertices along the path from

Web draft 2006-09-28 18:09

DRAFT

3.4. NL COMPLETENESS 77

s to v (we can assume without loss of generality that vertices are labeled
by the numbers 1 to n and hence the labels can be described by log n bit
strings). The algorithm can check the certificate using read-once access by
verifying that (1) v0 = s, (2) for j > 0, there is an edge from vj−1 to vj ,
(3) vk = v and (using a counter) that (4) the path ends within at most i
steps. Note that the certificate is indeed of size at most polynomial in n.

Our algorithm uses the following two procedures:

1. Procedure to certify that a vertex v is not in Ci given the size of Ci.

2. Procedure to certify that |Ci| = c for some number c, given the size of
Ci−1.

Since C0 = {s} and Cn contains all the vertices reachable from s, we
can apply the second procedure iteratively to learn the sizes of the sets
C1, . . . , Cn, and then use the first procedure to certify that t 6∈ Cn.

Certifying that v is not in Ci, given |Ci|. The certificate is simply the
list of certificates that u is in Ci for every u ∈ Ci sorted in ascending order
of labels (recall that we identify labels with numbers in [n]). The algorithm
checks that (1) each certificate is valid, (2) the label of a vertex u for which
a certificate is given is indeed larger than the label of the previous vertex,
(3) no certificate is provided for v, and (4) the total number of certificates
provided is exactly |Ci|. If v 6∈ Ci then the algorithm will accept the above
certificate, but if v ∈ Ci there will not exist |Ci| certificates that vertices
u1 < u2 < . . . < u|Ci| are in Ci where uj 6= v for every j.

Certifying that v is not in Ci, given |Ci−1|. Before showing how we
certify that |Ci| = c given |Ci−1|, we show how to certify that v 6∈ Ci with
this information. This is very similar to the above procedure: the certificate
is the list of |Ci−1| certificates that u ∈ Ci−1 for every u ∈ Ci−1 in ascending
order. The algorithm checks everything as before except that in step (3) it
verifies that no certificate is given for v or for a neighbor of v. Since v ∈ Ci

if and only if there exists u ∈ Ci−1 such that u = v or u is a neighbor of v
in G, the procedure will not accept a false certificate by the same reasons
as above.

Certifying that |Ci| = c given |Ci−1|. For every vertex v, if v ∈ Ci then
there is a certificate for this fact, and by the above procedure, given |Ci−1|,
if v 6∈ Ci then there is a certificate for this fact as well. The certificate
that |Ci| = c will consist of n certificates for each of the vertices 1 to n in
ascending order. For every vertex u, there will be an appropriate certificate

Web draft 2006-09-28 18:09

DRAFT

78 3.4. NL COMPLETENESS

depending on whether u ∈ Ci or not. The algorithm will verify all the
certificate and count the number of certificate that a vertex is in Ci. It
accepts if this count is equal to c. �

Using the notion of the configuration graph we can modify the proof of
Theorem 3.18 to prove the following:

Corollary 3.19
For every space constructible S(n) > log n, NSPACE(S(n)) = coNSPACE(S(n)).

Our understanding of space-bounded complexity.
The following is our understanding of space-bounded complexity.

DTIME(s(n))⊆SPACE(s(n))⊆NSPACE(s(n))=coNSPACE(s(n))⊆DTIME(2O(s(n))).

None of the inclusions are known to be strict though we believe they all are.

Chapter notes and history

The concept of space complexity had already been explored in the 1960s; in
particular, Savitch’s theorem predates the Cook-Levin theorem. Stockmeyer
and Meyer proved the PSPACE-completeness of TQBF soon after Cook’s
paper appeared. A few years later Even and Tarjan pointed out the con-
nection to game-playing and proved the PSPACE-completeness of a game
called Generalized Hex. Papadimitriou’s book gives a detailed account of
PSPACE-completeness. He also shows PSPACE-completeness of several
Games against nature first defined in [?]. Unlike the TQBF game, where
one player is Existential and the other Universal, here the second player
chooses moves randomly. The intention is to model games played against
nature—where “nature” could mean not just weather for example, but also
large systems such as the stock market that are presumably “indifferent” to
the fate of individuals. Papadimitriou gives an alternative characterization
PSPACE using such games. A stronger result, namely, a characterization
of PSPACE using interactive proofs, is described in Chapter 9.

Exercises

§1 Show that SPACE(S(n)) = SPACE(0) when S(n) = log log n.

Web draft 2006-09-28 18:09

DRAFT

3.4. NL COMPLETENESS 79

§2 Prove the existence of a universal TM for space bounded computation
(analogously to the deterministic universal TM of Theorem 1.6). That
is, prove that there exists a a TM SU such that for every string α, and
input x, if the TM Mα represented by α halts on x before using t cells
of its work tapes then SU(α, t, x) = Mα(x), and moreover, SU uses
at most Ct cells of its work tapes, where C is a constant depending
only on Mα. (Despite the fact that the bound here is better than the
bound of Theorem 1.6, the proof of this statement is actually easier
than the proof of Theorem 1.6.)

§3 Prove that the language SPACETM of (2) is PSPACE-complete.

§4 Show that the following language is NL-complete:

{ xGy : G is a strongly connected digraph} .

§5 Show that 2SAT is in NL.

§6 Suppose we define NP-completeness using logspace reductions instead
of polynomial-time reductions. Show (using the proof of the Cook-
Levin Theorem) that SAT and 3SAT continue to be NP-complete un-
der this new definition. Conclude that SAT ∈ L iff NP = L.

§7 Show that TQBF is complete for PSPACE also under logspace reduc-
tions.

§8 Show that in every finite 2-person game with perfect information (by
finite we mean that there is an a priori upperbound n on the number
of moves after which the game is over and one of the two players is
declared the victor —there are no draws) one of the two players has a
winning strategy.

§9 Define polyL to be ∪c>0SPACE(logc n). Steve’s Class SC (named in
honor of Steve Cook) is defined to be the set of languages that can be
decided by deterministic machines that run in polynomial time and
logc n space for some c > 0.

It is an open problem whether PATH ∈ SC. Why does Savitch’s The-
orem not resolve this question?

Is SC the same as polyL ∩P?

Web draft 2006-09-28 18:09

DRAFT

80 3.4. NL COMPLETENESS

Web draft 2006-09-28 18:09

	Space complexity
	Configuration graphs.
	Some space complexity classes.
	PSPACE completeness
	Savitch's theorem.
	The essence of PSPACE: optimum strategies for game-playing.

	NL completeness
	Certificate definition of NL: read-once certificates
	NL =coNL

	Chapter notes and history
	Exercises

