Adleman's First

Demonstration of
DNA Computing
Adapted from PPT of Thierry Metais
\& Jaeyeon Jung and Jaehong Lim

Introduction to DNA:

DNA

(deoxyribonucleic acid)

Spacefill-model of symhetic B-DNA with sequence C'GCGAAITTCGCCG.

The Iinear hydrogen bonds between the complemenfary bases.

Computing with DNA

- Invented (discovered?) by Dr. Leonard M. Adleman of USC in 1994, a computer scientist and mathematician
- Basic Idea: Perform molecular biology experiment to find solution to hard problem.
- Use "Molecular Computer" (rather than using a conventional computer for solving "computational biology" problems)

Introduction:

- What is DNA computing ?
- Around 1950 first idea (precursor Feynman)
- First important experiment 1994: Leonard Adleman
- Molecular level (just greater than 10^{-9} meter)
- Massive parallelism.
- In a liter of water, with only 5 grams of DNA we get around 10^{21} bases !
- Each DNA strand represents a bit-level processor !

A bit of biology

- The DNA is a double stranded molecule.
- Each strand is based on 4 bases:
- Adenine (A)
- Thymine (T)
- Cytosine (C)
- Guanine (G)
- Those bases are linked through a sugar (desoxyribose)
- IMPORTANT:
- The linkage between bases has a direction.
- There are complementarities between bases (Watson-Crick).
$(\mathrm{A}) \leftrightarrow \rightarrow$ (T)
$(\mathrm{C}) \hookleftarrow \rightarrow(\mathrm{G})$

DNA manipulations:

- If we want to use DNA as an information bulk, we must be able to manipulate it .
- However we are talking of handling molecules...
- So instead of using physical processes, we would have to use natural ones (ENZYMES), more effective:
- for lengthening: polymerases...
- for cutting: nucleases (exo/endo-nucleases)...
- for linking: ligases...
- 1985: Kary Mullis invented PCR

Thank this reaction we get millions of identical strands, and we are allowed to think of massive parallel computing.

Coding the information:

- 1994: THE Adleman's experiment.
\rightarrow Given a directed graph can we find an hamiltonian path (more complex than the TSP).
\rightarrow In this experiment there are 2 keywords:
massive parallelism (all possibilities are generated) complementarity (to encode the information)
- This experiment proved that DNA computing wasn't just a theoretical study but could be applied to real problems like cryptanalysis (breaking DES).

2. HAMILTONIAN PATH PROBLEM

- (Posed by William Hamilton)
- Given a network of nodes and divected connections between them, is there a path through the network that begins with the start node and concludes with the end node visiting each node only once ("Hamiltonian path ${ }^{\prime \prime}$)?
- "Does a Hamiltonian path exist, or not?"

Hamiltonian path does exist!
End city)

Solving the Hamiltonian Problem

- Generation-\&-Test Algorithm:
- Step 1: Generate random paths on the network.
- Step 2: Keep only those paths that begin with start city and conclude with end city.
- Step 3: If there are N cities, keep only those paths of length N .
- Step 4: Keep only those that enter all cities at least once.
- Step 5. Any remaining paths are solutions (I.e., Hamiltonian
- [X] $\mathrm{D}->\mathrm{B}->\mathrm{A}$
- [X] $\mathrm{B} \rightarrow \mathrm{C}->\mathrm{D}->$ B $->$ A $->$ B
- [X] $\mathrm{A}->\mathrm{B}->\mathrm{C}->$ B
- [X] $\mathrm{C}->\mathrm{D}->\mathrm{B}->$ A
- [X] A -> B $->$ A $->$ D
- [O] A -> B -> C -> D

Does a Hamiltonian path exist for the following network?

Combinatorial Explosion

- The Hamiltonian Problem is NP-hard, and
- The total number of paths grows exponentially as the network size increases
- For example:
- 10^{6} paths for $\mathrm{N}=10$ cities,
- 10^{12} paths ($\mathrm{N}=20$),
- 10^{100} paths!! ($\mathrm{N}=100$)
- The Generation-e-Test algorithm takes "forever". Some sort of smart algorithm must be devised; none has been found so far (NP-hard).

Adleman experiment:

- Each node is coded randomly with 20 bases.
- Let S_{i} be a code, h be the complementarity mapping. $\mathrm{h}(\mathrm{ATCG})=\mathrm{TAGC}$.
- Each S_{i} is decomposed into 2 sub strands of length 10:

$$
S_{i}=S_{i}^{\prime} S_{i}^{\prime \prime}
$$

- Edge($1, j)$ will be encode as $h\left(S_{i}{ }^{\prime \prime} S_{j}{ }^{j}\right) \rightarrow$ (preserve edge orientation).
- Code:
- Input(N) / /All vertices and edges are mixed, Nature is working
- $\mathrm{N} \leftarrow \mathrm{B}\left(\mathrm{N}, \mathrm{S}_{0}\right) / / \mathrm{S}_{0}$ was chosen as input vertex.
- $\mathrm{N} \leftarrow \mathrm{E}\left(\mathrm{N}, \mathrm{S}_{4}\right) / / \mathrm{S}_{4}$ was chosen as output vertex.
- $\mathrm{N} \leftarrow \mathrm{E}(\mathrm{N},<=140) / /$ due to the size of the coding.
- For $\mathrm{i}=1$ to 5 do $\mathrm{N} \leftarrow+\mathrm{N}\left(\mathrm{N}, \mathrm{S}_{\mathrm{i}}\right) / /$ Testing if Hamiltonian path
- Detect(N) //conclusion ...

Example:

3. FINDING SOLUTION WITH DNA EXPERIMENT

- DNA is a double-strand polymer made up of alternating series of four bases, A, T, C, G.
- DNA makes multiple copies of itself during cell differentiation.

DNA for Hamiltonian Problem

The key to solving the problem is using DNA to perform the five steps of the Generation-\&-Test algorithm in paralle】 search, instead of serial search.

Solving the Hamiltonian Problem

Generation-Test Algorithm:

Step 1: Generate random paths on the network.
Step 2: Keep only those paths that begin with the start city and conclude with the end city.

Step 3: If there are N cities, keep only those paths of length N.
Step 4: Keep only those paths that enter all cities at least once.

Step 5. Any remaining paths are solutions.

DNA Polymerase

- Protein that produces complementary DNA strand
$-\mathrm{A}->\mathrm{T}, \mathrm{T}->\mathrm{A}, \mathrm{C}->\mathrm{G}, \mathrm{G}->\mathrm{C}$
- Enables DNA to reproduce

Polymerase in Action

- The "Bio" nano-machine:
- bops onto DNA strand
- slides along
- reads each base
- writes its complement onto new strand

DNA Experiment Set-up

Ingredients and tools needed:
\square DNA strands that encode city names and connections between them

- Ligase, water, salt, other ingredients
- Polymerase chain reaction (PCR) set
- Gel electrophoresis tool (that filters out nonsolution strands)

Gel Electrophoresis

http://www.life.uiuc.edu/molbio/geldigest/equipment.html

CITY DNA NAME

 ATLANTA BOSTON:CHICAGO GGCTATGT DETROIT \because CCGAGCAA CONNECTING PATH゙H
ATLANTA-BOSTON ATLANTA-DETROIT BOSTON-CHICAGO BOSTON-DETROIT BOSTON-ATLANTA CHICAGO-DETROIT

DNA PATH

DNA encoding of city-network

Boston

Atlanta

Atlanta -Boston

cencrcec

\section*{| Atlanta-Boston | Boston-Chicago | Chicago-Detroit |
| :--- | :--- | :--- |}

Boston-Atlanta \quad Atlanta-Detroit

Adleman's DNA Experiment

- 1. In a test tube, mix the prepared DNA pieces together
- Which will randomly link with each other, forming all different paths.
- Ligase will heal nicks between consecutive cities, allowing each path to be a DNA strand (representing a possible Hamiltonian path).

Adleman's DNA Experiment

- 2. Perform PCR with two 'start' and 'end' DNA pieces as primers
- Which creates many copies of each DNA strand (representing a possible Hamiltonian path) with the correct start and end.

Adleman's DNA Experiment

- 3. Perform gel electrophoresis to identify only those pieces of right length (e.g., $\mathrm{N}=4$).
- 4. For each city:
- Use DNA-attached magnetic probe sepearation to separate out the DNA sequences that contain that city.
- These magnetic probes are magnetic nanoparticles with an attached DNA strand that is complementary to the given city.
- Discard the DNA sequences that do not contain that city.
- 5. All DNA pieces that are left in the final test tube should be precisely those representing Hamiltonian paths.
- If the final test tube contains any DNA at all, then conclude that a Hamiltonian path exists, and otherwise not.
- When it does, the DNA sequence represents the specific path of the solution.

4. SUMMARY \& CONCLUSION

- Enormous parallelism,
- with 10^{23} DNA pieces working in parallel to find solution simultaneously.
- Takes less than a week (vs. thousands yrs for supercomputer)
- Extraordinary energy efficient
- (10^{-10} of supercomputer energy use)
- But limited by exponential size growth of amount of DNA needed

New generation of computers?

- In the second part of [1], it is proven through language theory that DNA computing "guarantees universal computations".
- Many architectures have been invented for DNA computations.
- The Adleman experiment is not the single application case of DNA computing...

Stickers model:

- Memory complex = Strand of DNA (single or semi-double).
- Stickers are segments of DNA, that are composed of a certain number of DNA bases.
- To use correctly the stickers model, each sticker must be able to anneal only at a specific place in the memory complex.

To visualize:

Memory complex:
Semi-double

A	G	C	A	T	G	A	T

About a stickers machine?

- Simple operations: merge, select, detect, clean.
$\square \rightarrow$ Tubes are considered (cylinders with two entries)
- However for a mere computation (DES):
- Great number of tubes is needed (1000).
- Huge amount of DNA needed as well.
- Practically no such machine has been created....
\rightarrow Too much engineering issues.

Why don't we see DNA computers everywhere?

- DNA computing has wonderful possibilities:
- Reducing the time of computations* (parallelism)
- Dynamic programming!
- However one important issue is to find "the killer application".
- Great hurdles to overcome...

Some hurdles:

- Operations done manually in the lab.
- Natural tools are what they are... \rightarrow Formation of a library (statistic way) \rightarrow Operations problems

Conclusion:

- The paradigm of DNA computing has lead to a very important theoretical research.
- However DNA computers won't flourish soon in our daily environment due to the technologic issues.
- Adleman renouncement toward electronic computing.
- Is all this work lost?
$\square \mathrm{NO}!\rightarrow$ "Wet computing"

