Adleman's First Demonstration of DNA Computing

Adapted from PPT of Thierry Metais & Jaeyeon Jung and Jaehong Lim

Introduction to DNA:

(deoxyribonucleic acid)

DNA

Spacefill-model of synthetic B-DNA with sequence CGCGAATTCGCG.

The linear hydrogen bonds between the complementary bases.

 Computing with DNA
 Invented (discovered?) by Dr. Leonard M. Adleman of USC in 1994, a computer scientist and mathematician

 <u>Basic Idea</u>: Perform molecular biology experiment to find solution to hard problem.
 Use "Molecular Computer" (rather than using a conventional computer for solving "computational biology" problems)

Introduction:

What is DNA computing ? Around 1950 first idea (precursor Feynman) First important experiment 1994: Leonard Adleman Molecular level (just greater than 10⁻⁹ meter) Massive parallelism. ■ In a liter of water, with only 5 grams of DNA we get around 10²¹ bases ! Each DNA strand represents a bit-level processor !

A bit of biology

The DNA is a double stranded molecule.

Each strand is based on 4 bases:

- Adenine (A)
- Thymine (T)
- Cytosine (C)
- Guanine (G)
- Those bases are linked through a sugar (desoxyribose)
 IMPORTANT:
 - The linkage between bases has a **direction**.
 - There are **complementarities** between bases (Watson-Crick).

 $\begin{array}{c} (A) \bigstar \rightarrow (T) \\ (C) \bigstar \rightarrow (G) \end{array}$

DNA manipulations:

- If we want to use DNA as an information bulk, we must be able to manipulate it.
- However we are talking of handling molecules...
- So instead of using physical processes, we would have to use natural ones (ENZYMES), more effective:
 - for lengthening: **polymerases**...
 - for cutting: nucleases (exo/endo-nucleases)...
 - for linking: ligases...

1985: Kary Mullis invented PCR

Thank this reaction we get millions of identical strands, and we are allowed to think of massive parallel computing.

Coding the information:

- 1994: THE Adleman's experiment.
 Given a *directed* graph can we find an hamiltonian path (more complex than the TSP).
 In this experiment there are 2 keywords: *massive parallelism* (all possibilities are generated) *complementarity* (to encode the information)
- This experiment proved that DNA computing wasn't just a theoretical study but could be applied to real problems like cryptanalysis (breaking DES).

2. HAMILTONIAN PATH PROBLEM

- (Posed by William Hamilton)
- Given a network of nodes and directed connections between them, is there a path through the network that begins with the start node and concludes with the end node visiting each node only once ('Hamiltonian path'')?

"Does a Hamiltonian path exist, or not?"

Solving the Hamiltonian Problem

- Generation-&-Test Algorithm:
- Step 1: Generate random paths on the network.
- Step 2: Keep only those paths that begin with start city and conclude with end city.
- Step 3: If there are N cities, keep only those paths of length N.
- Step 4: Keep only those that enter all cities at least once.
- Step 5. Any remaining paths are solutions (I.e., Hamiltonian

 $D \rightarrow B \rightarrow A$ B -> C -> D -> $B \rightarrow A \rightarrow B$ $A \rightarrow B \rightarrow C \rightarrow$ B $C \to D \to B \to$ A $A \rightarrow B \rightarrow A \rightarrow$ D $A \rightarrow B \rightarrow C \rightarrow$ **0** D

Does a Hamiltonian path exist for the following network?

Combinatorial Explosion The Hamiltonian Problem is NP-hard, and The total number of paths grows exponentially as the network size increases ■ For example: • 10^6 paths for N=10 cities, $\blacksquare 10^{12} \text{ paths (N=20),}$ $\blacksquare 10^{100} \text{ paths!! (N = 100)}$ ■ The Generation-&-Test algorithm takes "forever". Some sort of smart algorithm must be devised; none has been found so far (NP-hard).

Adleman experiment:

- Each node is coded randomly with 20 bases.
- Let S_i be a code, h be the complementarity mapping. h(ATCG) = TAGC.
- Each S_i is decomposed into 2 sub strands of length 10: $S_i = S_i^2 S_i^2$
- Edge(i,j) will be encode as h(S_i"S_j")→(preserve edge orientation).
 Code:
 - Input(N) //All vertices and edges are mixed, *Nature is working*
 - N←B(N,S₀) //S₀ was chosen as input vertex.
 - N←E(N,S₄) //S₄ was chosen as output vertex.
 - $N \leftarrow E(N, \le 140) / / due to the size of the coding.$
 - For i=1 to 5 do N \leftarrow +N(N, S_i) //Testing if Hamiltonian path
 - Detect(N) //conclusion ...

S ₀		S ₂		S ₅		S ₃		S ₁		S ₄		S ₆	
	E0	-2	E2-5		E5-3		E3-1		E1-4		E4-6		

3. FINDING SOLUTION WITH DNA EXPERIMENT

DNA is a double-strand polymer made up of alternating series of four bases, A, T, C, G.

 DNA makes multiple copies of itself during cell differentiation.

DNA for Hamiltonian Problem

The key to solving the problem is using DNA to perform the five steps of the Generation-&-Test algorithm in **parallel search**, instead of serial search. Solving the Hamiltonian Problem

Generation-Test Algorithm:

Step 1: Generate random paths on the network.

Step 2: Keep only those paths that begin with the start city and conclude with the end city.

Step 3: If there are N cities, keep only those paths of length N.

Step 4: Keep only those paths that enter all cities at least once.

Step 5. Any remaining paths are solutions.

CS776	13	KAIST

DNA Polymerase

 Protein that produces complementary DNA strand

- A -> T, T -> A, C -> G, G -> C
- Enables DNA to reproduce

DNA Polymerase

Polymerase in Action

The "Bio" nano-machine: *hops* onto DNA strand *slides* along *reads* each base *writes* its complement onto new strand

DNA Experiment Set-up

Ingredients and tools needed:

- DNA strands that encode city names and connections between them
- Ligase, water, salt, other ingredients
- Polymerase chain reaction (PCR) set
- Gel electrophoresis tool (that filters out nonsolution strands)

Gel Electrophoresis

http://www.life.uiuc.edu/molbio/geldigest/equipment.html

DNA encoding of city-network

Atlanta -Boston

TGAACGTC AGCCTGAC

Atlanta Boston

Adleman's DNA Experiment

- I. In a test tube, mix the prepared DNA pieces together
 - Which will randomly link with each other, forming all different paths.
 - Ligase will heal nicks between consecutive cities, allowing each path to be a DNA strand (representing a possible Hamiltonian path).

Adleman's DNA Experiment

2. Perform PCR with two 'start' and 'end' DNA pieces as primers

 Which creates many copies of each DNA strand (representing a possible Hamiltonian path) with the correct start and end.

Adleman's DNA Experiment

3. Perform gel electrophoresis to identify only those pieces of right length (e.g., N=4).

■ 4. For each city:

- Use DNA-attached magnetic probe sepearation to separate out the DNA sequences that contain that city.
- These magnetic probes are magnetic nanoparticles with an attached DNA strand that is complementary to the given city.
- Discard the DNA sequences that do not contain that city.

5. All DNA pieces that are left in the final test tube should be precisely those representing Hamiltonian paths.

- If the final test tube contains any DNA at all, then conclude that a Hamiltonian path exists, and otherwise not.
- When it does, the DNA sequence represents the specific path of the solution.

4. SUMMARY & CONCLUSION

Enormous parallelism,

- with 10²³ DNA pieces working in parallel to find solution simultaneously.
- Takes less than a week (vs. thousands yrs for supercomputer)
- Extraordinary energy efficient

 (10⁻¹⁰ of supercomputer energy use)

 But limited by exponential size growth of amount of DNA needed

New generation of computers?

- In the second part of [1], it is proven through language theory that DNA computing "guarantees universal computations".
- Many architectures have been invented for DNA computations.
- The Adleman experiment is not the single application case of DNA computing...

Stickers model:

- Memory complex = Strand of DNA (single or semi-double).
- Stickers are segments of DNA, that are composed of a certain number of DNA bases.
 To use correctly the stickers model, each sticker
 - must be able to anneal only at a specific place in the memory complex.

To visualize:

About a stickers machine?

Simple operations: merge, select, detect, clean. \rightarrow Tubes are considered (cylinders with two entries) However for a mere computation (DES): Great number of tubes is needed (1000). ■ Huge amount of DNA needed as well. Practically no such machine has been created.... \rightarrow Too much engineering issues.

Why don't we see DNA computers everywhere?

- DNA computing has wonderful possibilities:
 Reducing the time of computations* (parallelism)
 Dynamic programming !
 However one important issue is to find "the
- killer application".
- Great hurdles to overcome...

Some hurdles:

Operations done manually in the lab.

Natural tools are what they are...
 Formation of a library (statistic way)
 Operations problems

Conclusion:

- The paradigm of DNA computing has lead to a very important theoretical research.
- However DNA computers won't flourish soon in our daily environment due to the technologic issues.
- Adleman renouncement toward electronic computing.
- Is all this work lost ?
- NO ! \rightarrow "Wet computing"