3D Origami: Sculpting and Bending Tubes of DNA

Duke Biomolecular Journal Club
Fall 2009
Harish Chandran
What is this talk about?
Research out of Shih Lab

William Shih

Hendrik Dietz

Shawn Douglas
Origami Refresher

M13mp18 viral genome 7249 bases long

+250 helper strands in Mg++ buffer

Anneal

Anneal

100 nm
Design of 2D Origami

- Scaffold crossover
- Staple crossover
Design Rules for the Honeycomb Lattice

- Potential crossovers every 7 bases
 - 7 bases = \(\frac{2}{3} \) turns (240° or -120°)
 - 14 bases = 1 \(\frac{1}{3} \) \(\text{rd} \) turns (480° or 120°)
 - 21 bases = 2 turns (720° or 0°)
- Entire origami made up of 7 base cylinder
- Scaffold crosses over at position 2 or 5
- We make staple crossover at every potential crossover point
 - Except when the scaffold crossover is 5 bases away
 - Maintains uniform cross over density
- Cut staples such that length = (18,49)
 - Mean = (30, 42)
Crossover Rules
Crossover Rules
Crossover Rules
Design Examples: Monolith
Design Examples: Square Nut
Design Examples: Slotted Cross
Design Examples:
Design Examples: Slotted Cross
Design Examples: Slotted Cross
Oligos

• Seven different scaffolds prepared in the lab
 • p7308, p7560, p7704, p8064, p8100, p8364, pEGFP

• Reverse phase cartridge purified staples
 • DMT protecting group retained at the 5'-end upon the completion of the last cycle of synthesis
 • Synthesized oligos are transferred to a resin that can bind to this protecting group
 • Impurities are washed away
 • DNA is cleaved off the resin
 • Low-cost enrichment of full-length product
 • A substantial reduction in yield
Experiments

- DNA: 10 nM scaffold + 50 nM staples
- Buffer: 5mM Tris + 1mM EDTA (pH 7.9 at 20 °C)
- Salt: 16mM MgCl₂
- Annealing schedule:
 - 80 °C – 60 °C : 80 mins
 - 60 °C – 24 °C : 173 hrs
Gel Runs and TEM

- 2% Agarose
- Running Buffer: 45mM Tris borate + 1mM EDTA (pH 8.3 at 20 °C) and 11mM MgCl₂
- 4 hrs at 70 V, ice cold bath
- DNA extracted from excised band
- Uranyl formate negative stain for TEM
Results
Factors Affecting Yield

- Duration of thermal ramp
- Divalent cation concentration
- Monovalent cation concentration
Gel Data
<table>
<thead>
<tr>
<th>Factor</th>
<th>Low</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Ramp</td>
<td>Slow migration Poorly formed Structures</td>
<td>Fast migration Well formed Structures</td>
</tr>
<tr>
<td>Divalent Cations</td>
<td>Slow migration Poorly formed Non Aggregate Structures</td>
<td>Fast migration Well formed Aggregate Structures</td>
</tr>
<tr>
<td>Monovalent Cations</td>
<td>Slow migration Well formed Aggregate Structures</td>
<td>Fast migration Poorly formed Non Aggregate Structures</td>
</tr>
</tbody>
</table>
More Gel Data

- Genie Bottle (pEGFP)
- Genie Bottle (p7308)
- Six-helix bundle (pEGFP)
- Six-helix bundle (p7560)
Typical Conditions

• Duration of thermal ramp: 173 hrs
• Divalent cation concentration: 16 mM Mg
• Monovalent cation concentration: 5 mM Na
Twisting and Bending
Bending, No Twisting
More Exotic Stuff
Claim: Clear stripes indicate well formed structures.
Yield Analysis

* are not included in the yield calculation since the stripes are not clear
• Yield ~ 50% at radius of curvature 10 nm

• Yield decreases as radius of curvature decreases

• Low yield for multimeric object such as gears, sometimes less than 10%
Conclusion

• 3D extension of origami

• Implemented using the honeycomb lattice

• Sculpt away unnecessary parts of the lattice

• Change the number of bases per turn to twist or bend the honeycomb

• Long annealing schedule

• Carefully controlled cationic concentration

• Average to low yields