DNA Reaction-Diffusion Systems

Dan Fu & John Reif

Adapted from PPT of:

- [Diogo Bolster, Notre Dame Univ]
- [A. Sacan & S. Girgin, Drexel Univ]
Reaction Diffusion (RD) Processes

- A chemical mechanism for pattern formation.
- First described by Alan Turing (1952).
- *Two chemicals* diffusing across a *surface* and reacting with one another can form stable patterns of chemical concentration.
Reaction Diffusion in Nature

Animal Markings

Wikipedia
Turing’s Pioneering Study of Reaction-Diffusion Systems

• Turing (1952)
 • Proposed Mathematical Model for Morphogenesis:
 • the shaping of an organism by embryological processes of differentiation of cells, tissues, and organs and the development of organ systems according to the genetic “blueprint” of the potential organism and environmental conditions.
 • Also proposed natural examples: RD system on a sphere may be responsible for *triggering gastrulation* in the embryo.

3 Examples of Turing Patterns
Further History of Reaction-Diffusion (RD) Systems

- **Bard and Lauder (1974)**
 - Computer simulations \(\rightarrow \) Patterns generated by RD not regular enough to explain patterns in development.
 - Explained less regular patterns: *leaf organization, distribution of hair follicles*.

- **Bard (1981), Murray (1981) independently**
 - RD can explain the patterns on *coats of animals*.

- **Bard (1981)**
 - Spot and stripe patterns.
 - Small, white *spots on a deer*.
 - Large, dark spots on a *giraffe*.
Further History of Reaction-Diffusion (RD) Systems

- Murray (1981)
 - Spot-size dependent on size of animal.
 - Patterns found on butterfly wings.

- Meinhardt (1982)
 - Stripe patterns (by 5-morphogen RD)
 - Veins on a leaf.

- Swindale (1980)
 - Simulation by activation/inhibition between synapses.

- Young (1984)
 - Irregular striped patterns
 - Ocular dominance columns in mammalian visual system.

- Meinhardt and Klinger (1987)
 - Patterns of pigment found on mollusc shells
Further History of Reaction-Diffusion (RD) Systems

- Kauffman et al. (1978), Lacalli (1990), Hunding et al. (1990)
 - Segmentation of fruit fly (Drosophila) embryos
- Turk (1991)
 - Cascading
 - Clusters of spots on leopards and jaguars (rosettes)
 - Zebra’s pajamas.
 - Mapping on arbitrary surfaces.

Reaction-Diffusion by A. Sacan & S. Girgin
History of Reaction-Diffusion (RD) Systems, Cont

Turk (1991)

- Cascading
- Clusters of spots on leopards, jaguars (rosettes)
- Zebra’s pajamas.
- Mapping on arbitrary surfaces.
Reaction-Diffusion (RD) System used for Texture Completion

- Acton, Mukherjee, Havlicek, Bovik (2001)
 - Reconstruction of large missing regions of homogeneous oriented textures.
 - RD seeded with noise identically distributed to surrounding region to match gray-level distribution.

occluded stripe formation AM-FM RD

Reaction-Diffusion by A.Sacan & S.Girgin
Reaction-Diffusion (RD) System used for Texture Completion

RD seeded with noise identically distributed to surrounding region to match gray-level distribution.
General Principles of Reaction Diffusion (RD)

Two chemicals diffusing across a surface and reacting with one another can form stable patterns of chemical concentration.

Let’s Start Simple – Recall Chemistry 101:
Turing’s Model of Reaction-Diffusion Systems

• Turing (1952)
 • Proposed Mathematical Model for Morphogenesis:
 • the shaping of an organism by embryological processes of differentiation of cells, tissues, and organs and the development of organ systems according to the genetic “blueprint” of the potential organism and environmental conditions.
Reaction Diffusion Surface Processes

Local Amplification, Lateral Inhibition
General Principles of Reaction Diffusion (RD)

- Consider a reactive system made up of species A, B and C, where A and B can react to form C at some rate k_f and C can degrade back into A and B at some rate k_b:

$$A + B \xleftrightarrow{k_f \leftrightarrow k_b} C$$

- If the system is well-mixed (i.e. no spatial variability in concentration), reaction are governed by the law of mass action:

$$\frac{d[A]}{dt} = \frac{d[B]}{dt} = -k_f [A][B] + k_b [C]$$

$$\frac{d[C]}{dt} = k_f [A][B] - k_b [C]$$

Diogo Bolster@Notre Dame
Diffusion-Reaction System

• Now, rather than assuming that the system is well mixed, we allow A, B and C to move through space by diffusion, but they still react by the law of mass action

\[
\begin{align*}
\frac{\delta [C]}{dt} - D_A \frac{\delta^2 [A]}{dx^2} &= -k_f [A][B] + k_b [C] \\
\frac{\delta [B]}{dt} - D_B \frac{\delta^2 [B]}{dx^2} &= -k_f [A][B] + k_b [C] \\
\frac{\delta [C]}{dt} - D_C \frac{\delta^2 [C]}{dx^2} &= k_f [A][B] - k_b [C]
\end{align*}
\]

How can you solve these equations?

Diogo Bolster@Notre Dame
Diffusion-Reaction in a line of cells:

- The amount of chemical a in a cell changes based on the quantity of the chemicals a and b are already in the cell.

- If a particular cell has a higher concentration of chemical b than its neighbors, then that cell’s concentration of b will decrease over time by diffusion to its neighbors.

- Likewise, if the concentration of b is at minimum at a particular place along the row of cells, then more of b will diffuse from adjacent cells to this cell to raise the concentration of b at that cell.
Mathematical Model for Diffusion-Reactions: Fisher-Kolmogorov–Petrovsky–Piskunov equation

\[
\frac{\delta [A]}{\delta t} = D_A \nabla^2 [A] + F ([A], [B])
\]

\[
\frac{\delta [B]}{dt} = D_B \nabla^2 [B] + G ([A], [B])
\]

Diffusion term

Reaction term

Reaction-Diffusion by A.Sacan & S.Girgin
Analytical Solution?

• Closed-form solution: difficult/impossible (except when F,G very simple).

• Therefore,
 • Discretize and
 • Solve numerically.

Turing’s Approximate Solution:

\[\Delta a_i = D_a (a_{i+1} + a_{i-1} - 2a_i) + k (16 - a_i b_i) \]
\[\Delta b_i = D_b (b_{i+1} + b_{i-1} - 2b_i) + k (a_i b_i - b_i - 12 - \beta_i) \]

• \(a_i\) : concentration of 1st morphogen at \(i^{th}\) cell. (inhibitor)
• \(b_i\) : concentration of 2nd morphogen at \(i^{th}\) cell. (activator)
• \(D_a\) : diffusion rate of \(a\).
• \(D_b\) : diffusion rate of \(b\).
• \(\beta\) : random substrate
• \(k\) : reaction rate
• Initial concentrations of \(a, b\): 4

Reaction-Diffusion by A. Sacan & S. Girgin
Simulating parameters and resultant patterns of Reaction-Diffusion

Case of No Diffusion:

\[D_a = 0.0 \quad D_b = 0.0 \quad \beta = 0.1 \quad k = 0.01 \]

\(D_a \): diffusion rate of \(a \)
\(D_b \): diffusion rate of \(b \)
\(k \): reaction rate

Reaction-Diffusion by A. Sacan & S. Girgin
Parameter: reaction rate k

$k=0.001$

$k=0.005$

$k=0.01$

$D_a=0.1$ $D_b=0.02$ $\beta=0.1$
Parameter: random substrate β

$D_a=0.1 \quad D_b=0.02 \quad k=0.005$

Reaction-Diffusion by A. Sacan & S. Girgin
Parameter: random substrate β

$D_a = 0.1 \quad D_b = 0.02$

Reaction-Diffusion by A. Sacan & S. Girgin
Parameter: D_a / D_b

D_a: diffusion rate of a.
D_b: diffusion rate of b.

$D_a=0.08$
$D_a=0.1$
$D_a=0.2$

$D_b=0.02$ $\beta=0.1$ $k=0.005$

Reaction-Diffusion by A. Sacan & S. Girgin
\[D_a \text{ vs } D_b \]

\[D_a : \text{diffusion rate of } a. \]
\[D_b : \text{diffusion rate of } b. \]

\[\beta = 0.1 \]
\[k = 0.005 \]
D_a vs k

D_a : diffusion rate of a
k : reaction rate

$\beta=0.1$
$D_b=0.01$
Cascading

$k=0.001$, $n=30000$

D_a : diffusion rate of a

D_b : diffusion rate of b

k : reaction rate

Freeze b: $[0-4]$

$k=0.01$

Cheetah

Freeze b: $[0-4] \rightarrow 4$

$k=0.01$

Leopard

$D_a=0.1$ $D_b=0.02$ $\beta=0.05$

Reaction-Diffusion by A.Sacan & S.Girgin
Reaction Diffusion using DNA

• In nature: R-D systems:
 • Traditionally based on Belousov-Zhabotinsky (BZ) reaction with redox or acid-base reactions with small inorganic or organic molecules
 • Hard to predict/model
 • Difficult to program reaction and diffusion values. Depends on chemical.
 • Hard to experimentally demonstrate simulated results

• DNA-based CRNs:
 • Simple rules, base complementarity and hybridization
 • Predictable kinetics
 • Sequence programming can modify coefficients
What is a DNA reaction equivalent to a Belousov-Zhabotinsky (BZ) reaction?

- An autocatalytic reaction that produces more [A]
- Inject T, Enzymes, single bases into single-channel reactor
Can Increase reaction speed:
Increase:
(1) autocatalyst template concentration &
(2) Polymerase Concentration

Figure 3: The growth rate of the autocatalyst and its propagation velocity can be tuned specifically with the template concentration and non-specifically with the polymerase concentration. A) Log-lin plots of the growth kinetics with different concentrations of the template, \(T_0 \). B) Fluorescent images of the front position at 0 min and 50 min for different \(T_0 \). For clarity, the brightness of the images with different \(T_0 \) has been normalized (SI video S2). C) First order rate constant \(r'(0) \) vs \(T_0 \), the red line is a linear fit for \(T_0 = 0 \)–100 nM. D) Square of the front velocity \(v^2 \) vs \(T_0 \), the blue line is the prediction using Eqs. 3-5 with \(\gamma = 1.3 \). E) \(r'(0) \) vs normalized polymerase concentration, \(pol/pol_0 \), the red line is a linear fit. F) \(v^2 \) vs \(pol/pol_0 \), the blue line is the prediction using Eqs. 3-5 with \(\gamma = 1.3 \) (SI video S3). Experimental conditions: A-D) 38°C, \(pol = 16 \text{ U/mL} \), nick = 300 U/mL, E-F) \(T_0 = 200 \text{ nM}, pol_0 = 16 \text{ U/mL}, \) nick = 500 U/mL, 44°C. Error bars were estimated from the 10% experimental precision (both on \(r'(0) \) and \(v^2 \)) measured for 4 independent experiments at \(T_0 = 200 \text{ nM} \) (Table 1-2).
Diffusion equivalent System:
Add Diffusion Slowing Binding Molecule

- \(R \approx M^2 \), \(D \approx R^{-1} \)
 - \(D \) = diffusion coefficient

- \(R \) = hydrodynamic radius of molecule
- \(M \) = molecular mass
- Molecular mass must increase a lot for this to work
- OR, attach another molecular that has low \(D \) and it will average out

Anton S. Zadorin, Yannick Rondelez, Jean-Christophe Galas, and André Estevez-Torres, 2015
Basic pattern formation via Colliding Fronts

- 1x EvaGreen DNA binder fluorescence
Does the theoretical model hold up?

- Has a known form: **Fischer’s Equation (or Fischer-KPP Equation)**

Fischer’s equation

From Wikipedia, the free encyclopedia

Not to be confused with the Fisher equation in financial mathematics.

In mathematics, Fischer’s equation (named after statistician and biologist Ronald Fisher; also known as Kolmogorov–Petrovsky–Piskunov equation—named after Andrey Kolmogorov, Ivan Petrovsky, and N. Piskunov—or KPP equation or Fischer–KPP equation) is the partial differential equation:

\[
\frac{\partial u}{\partial t} - D \frac{\partial^2 u}{\partial x^2} = ru(1 - u).
\]

Details [edit]

Fisher’s equation belongs to the class of reaction-diffusion equation. In fact, it is one of the simplest semilinear r d e., the one which has the inhomogeneous term

\[f(u, x, t) = ru(1 - u). \]

which can exhibit traveling wave solutions that switch between equilibrium states given by \(f(u) = 0 \). Such equations occur, e.g., in ecology, physiology, combustion, crystallization, plasma physics, and in general phase transition problems.

Fisher proposed this equation in his 1937 paper *The wave of advance of advantageous genes* in the context of population dynamics to describe the spatial spread of an advantageous allele and explored its travelling wave solutions. For every wave speed \(c \geq 2\sqrt{D} \) (\(c \geq 2 \) in dimensionless form) it admits travelling wave solutions of the form

\[u(x, t) = v(x + ct) \equiv v(z), \]

Anton S. Zadorin, Yannick Rondelez, Jean-Christophe Galas, and André Estevez-Torres, 2015
Does the theoretical model hold up?

- Velocity of wave-front only depends on reaction-diffusion at leading wave front
 \[v_m = 2\sqrt{r'(0)D_{\text{eff}}(0)}. \]

- Diffusion constant \(D_{\text{eff}} \) depends on \([A]\)

- \(v_{\text{observed}} = 65 +/- 5 \ \mu\text{m/min} \); \(v_m = 59 +/- 7 \ \mu\text{m/min} \)
Modeling scalable pattern generation in DNA reaction networks:

Peter B. Allen, Xi Chen, Zack B. Simpson, Andrew D. Ellington,
Modeling scalable pattern generation in DNA reaction networks,
Pattern Generation in DNA reaction networks operating in Agarose Gel

• Embedded DNA at 2D positioned sites
Periodic patterns of DNA in Agarose Gel

• CRN Oscillator:

\[A + B \rightarrow 2A \quad k = 1.5 \text{ M}^{-1} \text{s}^{-1} \]
\[B \rightarrow 2B \quad k = 1 \text{ s}^{-1} \]
\[B \rightarrow C \quad k = 1 \text{ s}^{-1} \]
Stable DNA-based reaction–diffusion patterns

How to keep DNA patterns stable in Agarose Gel?

- Diffusion will keep happening until well-mixed
- Need to keep sufficient concentration
- Also need a process for degradation

John Zenk, Dominic Scalise, Kaiyuan Wang, Phillip Dorsey, Joshua Fern, Ariana Cruz and Rebecca Schulman 2017
2D Patterns on Agarose Gel using DNA strand-displacement Circuits

John Zenk, Dominic Scalise, Kaiyuan Wang, Phillip Dorsey, Joshua Fern, Ariana Cruz and Rebecca Schulman 2017
Computing with Reaction Diffusion Systems:

Emulating cellular automata in chemical reaction–diffusion networks

DOI 10.1007/s11047-015-9503-8
Rule Sets for Computing with Reaction Diffusion (RD) Systems

• Rule sets for finite state automata defined by 2D patterning of DNA
Rule Sets for Computing with Reaction Diffusion (RD) Systems

(a) Rule 60

(b) Rule 110

(c) Rule 110

(d) Rule 110

transition
Rule Sets for Computing with Reaction Diffusion (RD) Systems

NAME	**SYMBOL**	**FUNCTION**	**MECHANISM**
Arithmetic
(a) SUM | | | \[I_1 + M \xrightarrow{k_{\text{medium}}} O \]
(b) DIFFERENCE | \(S_{\text{in}} \rightarrow S_{\text{out}} \) | \(S_{\text{in}} + M \xrightarrow{k_{\text{medium}}} S_{\text{out}} \) restore \(M : 2, O : 0 \)
where "restore \(X : n \)" represents production and decay reactions that slowly push species \(X \) towards \([X]=n\) source \(n \xrightarrow{k_{\text{light}}} X \) and \(X \xrightarrow{k_{\text{light}}} \) waste

Amplification
(c) AMP | \(\Rightarrow \) | \(I + A \xrightarrow{k_{\text{medium}}} I + O \) restore \(A : 1, O : 0 \)
(d) COPY | \(\Rightarrow \) | \(I \xrightarrow{k_{\text{light}}} I + O \) restore \(O : 0 \)
(e) BLUR | \(\Leftarrow \) | \(I \xrightarrow{k_{\text{blur}}} I + O \xrightarrow{k_{\text{blurDecay}}} O \rightarrow \) waste
\(k_{\text{blurProd}} \gg k_{\text{blurDecay}} \)

Communication
(f) RECEIVE | | receives signal \(S \) in the presence of catalyst \(C \)
\(S + C \xrightarrow{k_{\text{light}}} S + C + O \) restore \(O : 0 \)
(g) BROADCAST | | transmits signal \(S \) in the presence of catalyst \(C \)
\(S + C \xrightarrow{k_{\text{broadcast}}} S + C + O \xrightarrow{k_{\text{broadcastDecay}}} O \rightarrow \) waste
\(k_{\text{broadcastProd}} \gg k_{\text{broadcastDecay}} \)

Boolean Logic
(h) COMPARATOR | \(\Rightarrow \) | \(I + O \xrightarrow{k_{\text{light}}} I + O \) restore \(O : 1 \)
(i) NOT | \(\Rightarrow \) | \(I \xrightarrow{k_{\text{light}}} O \)
(j) AND | \(\Rightarrow \) | \(I \xrightarrow{k_{\text{light}}} O \)
(k) OR | \(\Rightarrow \) | \(I \xrightarrow{k_{\text{light}}} O \)
(l) NAND | \(\Rightarrow \) | \(I \xrightarrow{k_{\text{light}}} O \)
(m) NOR | \(\Rightarrow \) | \(I \xrightarrow{k_{\text{light}}} O \)

Memory
(n) FLIP - FLOP | \(\Rightarrow \) | stores latest input as output \(\{O\}=1 \) if last input was set \(\{O\}=0 \) if last input was reset
Rule Sets for Computing with Reaction Diffusion (RD) Systems

(a) Encoding Persistent Cell State
Repeating pattern of `key` concentrations defines cells. Local `state` concentration encodes on/off. Off cells have low [state], on cells have high [state]. Global `clock` is off until cells compute new state, then on.

\[\text{on} \quad \text{on} \quad \text{on} \quad \text{off} \]

(b) Broadcasting Each Cell's Own State
On cells broadcast signal, off cells do not broadcast (e.g. for keyA cells, keyA + S -> keyA + S + signal A). Broadcast species diffuse out, diluting with distance.

\[\text{clock}=\text{off} \]

(c) Receiving Neighbor States
Cells interpret broadcasts locally based on keys (e.g. for keyA cells, keyA + signal B -> keyA + signal B + R, and keyA + signal D -> keyA + signal D + L).

\[\text{clock}=\text{off} \]

(d) Calculating Next States
A composite Boolean function \(f(L, S, R) \), executed by the global reaction network calculates next state. When clock goes high, calculation is stored in [state].

Legend:
- State
- KeyA
- KeyB
- KeyC
- KeyD
- SignalA
- SignalB
- SignalC
- SignalD
- Right neighbor ON
- Left neighbor ON
- Both neighbors ON
Rule Set Program for Computing with Reaction Diffusion (RD) System
Designing modular reaction-diffusion programs for complex pattern formation

Dominic Scalise and Rebecca Schulman, Designing modular reaction-diffusion programs for complex pattern formation, Technology, V. 2, Num 1, (2014)
Complex patterns in Agarose Gel
2D Optical Modules

a. SHARPEN

Converts I into a discrete output of high/low states. High regions are produced where I is greater than threshold T, and low regions are produced elsewhere. First, a rapid thresholding reaction depletes I by T, so $I(T)=0$ except where $I(T)>T$ initially. Any remaining I slowly catalyzes the conversion of start amplifier A into output O, at $[O]=0$. At steady state, O is high only where $I(T)$ initially.

b. COPY

Takes input pattern I and produces a copy of this pattern in O. Diffusion is much slower than the chemical reactions thus $O_{N+1} = \frac{O_N}{\tau}$, where τ is the equation for a proportional controller. Thus a COPY module continuously restores $O(T)$ to the set point $[O]_s$ everywhere. Because I is a catalyst, it is not consumed regardless of what happens to O. The COPY module buffers I from downstream loading, allowing modules to deplete $I(T)$ without affecting O. This buffer is a crucial tool for adding and rearranging modules without affecting the upstream circuit.

c. AND

Takes Boolean input patterns I_1 and I_2, and produces output pattern O that is high only where both inputs are high. First, I_1 and I_2 are converted into an intermediate pattern N, where both inputs are high. At steady state both input is high, and $[N]=0$ elsewhere. A SHARPEN module with $T=1.5\beta$ takes N as input, producing the desired output pattern O.

d. NOT

Takes a Boolean input pattern I, and produces an inverted Boolean output O. $[O]$ is high where $[I]$ is low, and low where $[I]$ is high. Slow cycling reactions continuously push $[O]$ high, so in the absence of I. $[O]$ is high. I and O rapidly annihilate each other, so $[I]$ is switched to low in the presence of O.

e. BLUR

Assembles a smooth gradient O centered around a fixed reference point I. This module uses the same reactions as the COPY module, but places different constants on the reactions. The distance from the reference to any point p can be calculated as a function of $[O]$ at p, provided the reaction rate constants and diffusion coefficients are known. f catalyzes the local production of O at the reference. O diffuses away from this point and also degrades slowly. At steady state, $[O]$ at a distance r from the reference is $[O]_r = [O]_0 e^{-2\pi r / \beta}$.

Dominic Scalise & Rebecca Schulman, 2014
DNA reaction networks at 2D Sites

(Dominic Scalise & Rebecca Schulman, 2014)
DNA reaction networks for 2D optical Modules

Dominic Scalise & Rebecca Schulman, 2014
2D Patterns Modification on Agarose Gel using DNA strand-displacement Circuits
Pattern transformation with DNA circuits

Steven Chirieleison, Peter Allen, Zack Simpson, Andrew Ellington and Xi Chen, Pattern transformation with DNA circuits, Nature Chemistry, 2013, DOI: 10.1038/NCHEM.1764
Edge detection

Negative edge

Positive edge

Steven M. Chirieleison, Peter B. Allen, Zack B. Simpson, Andrew D. Ellington and Xi Chen, 2013
Pattern transformation with DNA circuits

Negative edge case:

High-level description and molecular detail of an incoherent feed-forward loop that performs edge detection.

a. Definition of edge detection with a binary input.

b. High-level description of the incoherent feed-forward loop. The input signal is denoted as I. The only fast-diffusing species (A) is denoted with a dashed circle.

c. Detailed mechanism of the incoherent feed-forward loop. The input signal can turn cage A (yellow) into active A (white) and simultaneously turn inactive B (grey) into ablated B (purple), unable to be activated by A. Activated A can then diffuse (blue squiggle) to the area where the input signal is absent (O) and turn inactive B (grey) into active B (white). Active B can then combine with inactive C (grey) to form active C (white) near the I/O boundary.

d, e. Implementation of the circuit shown in c using a CHA circuit. Active A, inactive B and active B are represented by A, B, and B₂, respectively. For simplicity, B₂ is not shown in c. A can catalyse the formation of the B₁:B₂ duplex through the depicted pathway (d). Inactive C is represented by the Cₚ:Cₜ duplexer, where Cₚ and Cₜ are labeled with a fluorophore and a quencher, respectively; thus in Cₚ:Cₜ the fluorescence is quenched.

Active C is represented by the B₁:B₂:Cₜ complex, in which the fluorescence is unquenched (e). Domains 1, 2, 3, 5 and 6 are eight nucleotides long; domain 4 is 11 nucleotides long (see Supplementary Table S1 and Fig. S8a for sequences).

g. Mechanisms of the photoablation of B₂vable (see Supplementary Fig. S1a for chemical structure of the photocleavable linker). UV, ultraviolet radiation.
Pattern transformation with DNA circuits

Positive edge Case

High-level description and molecular detail of the ‘positive edge’ circuit. a, An incoherent feed-forward loop with inversed logic. b, Detailed mechanism of the incoherent feed-forward loop. Here D is ablated and E is uncaged by the input signal. Active, inactive, caged and ablated molecules are shown in white, grey, yellow and purple, respectively. c, Mechanisms of the photoablation of D_{labile}. d, Mechanisms of the photoactivation of E_{caged}. Domains 11, 13, 15 and 16 are eight nucleotides long; domain 12 is 11 nucleotides long; domain 14 is 15 nucleotides long; domains 21 and 22 are 20 nucleotides long.
Pattern transformation with DNA circuits

Combinatorial multiplexing of two-channel pattern-transformation programs. a, Scheme of the pattern-transformation programs. P, positive image; N, negative image; Pe, positive edge; Ne, negative edge. b, A total of 16 different two-channel output patterns generated from the same input pattern through 16 different pattern-transformation programs.
Pattern transformation with DNA circuits