Part 1: DNA-Based Data Storage and Computing

Olgica Milenkovic
University of Illinois, Urbana-Champaign

North American School of Information Theory, Texas, 2018

May 2018
The Era of Massive Data

- Large Hadron Collider: 600 million collisions/s, 0.5 PB per week.
- DNA sequencing data: 30 – 50 TB per week.
- Sloan Digital Sky Survey: 1 – 2 TB per week.
- Social networks (Twitter, Facebook, LinkedIn), NASA weather surveys, consumer and stock market data, Internet sources...

Credit: In search of the God particle, Wikipedia.
How to Cope?

- **Pushing the limits of existing storage media:** Magnetic tapes, disks, flash, 3D flash, ...
- **Data compression:** New initiatives by NIH (BD2K Targeted Software Development for Genomic Data Compression) and other efforts.
How to Cope?

- **New storage media**: quantum memories, nanofilm storage, polymer-based storage?
- **Data compression**: What densities are possible?
DNA-Based Data Storage
Looking for Alternative Storage Media: DNA

- **DNA is extremely durable:** Can still “read” mammoth, Neanderthal, and 700,000 old horse bone DNA!
- **DNA information content of Human cell:** 6.4 GB. **Mass of a cell:** ~3 picograms. **No. of cells:** 15 – 40 × 10^{12}.
- **Can one store information in DNA?**
- **This question has been raised before:** “There is plenty of room at the bottom,” R. Feynman.
We can write…

We can “write” in DNA using what is called the process of DNA Synthesis.

Biochemistry of synthesis: Stitching together bases from the set \(\{A, T, G, C\} \) through deprotection & coupling cycles.
Commercial synthesis: Agilent, Gen9, IDT, Twist Bioscience (recent feature on “Rewriting DNA Synthesis on Silicon”).

- **DNA microarray-based short string (oligo) pool synthesis (left):** Cost effective, large scale. Moderate error rates.
- **Long strand (gBlocks) synthesis (right):** Assembles short blocks. Chemical error-correction.
- **Types of synthesis errors:** Deletions, insertions, substitutions.
We Can Read...

Illumina (MiSeq): Best overall performance of modern sequencing technologies in terms of yield and accuracy. Relatively small error rates (substitutions and rare deletions). Short read length.

Steps: Cloning /// Shearing /// Reading of unordered pool /// Computer aided alignment of overlapping fragments /// Consensus
We Can Read...

Oxford Nanopore - MinIon: Longer read lengths, portable architecture. Context-dependent deletion, insertion and substitution errors.

Key properties: Biological pore(s) and motor, base calling using deep learning techniques.
We Can Amplify and Enable Random Access...

Polymerase Chain Reaction (PCR): Cheap, fast, “exponential” information replication.

Primers - Key enablers of PCR: Short DNA strands that initiate replication at “strand-matching” locations (red blocks).
We Can Amplify and Enable Random Access...

Polymerase Chain Reaction (PCR): Cheap, fast, “exponential” information replication.

Primers - Key enablers of PCR: Short DNA strands that initiate replication at “strand-matching” locations (red blocks).
DNA Data Storage Platforms
Church *et al.* (Science, 2012) and later Goldman *et al.* (Nature, 2013) stored 739 KB of data in synthetic DNA, mailed it and recreated the original digital files using Illumina readers.

Digital archival storage systems that will safely store the equivalent of one million CDs in a gram of DNA for 10,000 years.
Can one Randomly Access and Rewrite the Data?

- **Problem 1:** Random access was impossible in first implementation - need to “read” whole book to find one sentence.
- **Problem 2:** To perform editing, need to change large number of reads (fragments).
- **Problem 3:** The first schemes were sensitive to contextual errors.

Storage format of Goldman et al.: overlapping reads akin to sequencer output.

AAATTTTGCGCTATTGCCCAATTGCCGGTTAAAAATATATGAGACTCTAAAA...
A fully operational random access and rewritable DNA-based memory with *Sanger sequencing*.

- Yazdi et.al., 2015 - First random access, rewritable DNA-based storage system. Encoded Wikipedia entries for six US universities.

Random Access via Addressing and PCR

- The addressing system: Primers = Addresses, used in PCR reaction. Random access equals exponential amplification.

- How to avoid addressing errors?
Address Properties

- **Addresses need to be sufficiently different** (Hamming, Levenshtein distance) and avoided elsewhere in the blocks.
- **Addresses should not fold**: Needed for accurate amplification.
- **Addresses should have balanced GC content**: Needed for stable melting temperature.
GC Imbalance Hurts!

- Synthesis constraints identification with IDT.
- **Balancing constraints**: GC-content has to be balanced in small block-lengths at the 3' and 5' ends of the strings, longer blocks allowed within the sequence (blocklength=8).
The Constrained Coding Components

Definition. A sequence $a = (a_1, \ldots, a_n) \in \mathbb{F}_q^n$ is self uncorrelated if no proper prefix of a matches its suffix, i.e., $(a_1, \ldots, a_i) \neq (a_{n-i+1}, \ldots, a_n)$, for all $1 \leq i < n$.

Extension: A mutually uncorrelated (cross-bifix-free) code is a set of sequences such that for any two sequences $a, b \in \mathbb{F}_q^n$ in the code no proper prefix of a appears as a suffix of b and vice versa [L70, G60, B12].
Address Sequence Construction

Enumeration and construction of strings of a given length that contain no elements of some fixed set of strings as subwords [GO80’s]:

Take addresses as “forbidden words” to ensure specific random access. Relax constraints.

MU vs. Weakly MU: A \(k \)-weakly mutually uncorrelated (WMU) code is a set of sequences such that for any two sequences \(a, b \in \mathbb{F}_q^n \) in the code no proper prefix of \(a \) of length \(\geq k \) appears as a suffix of \(b \) and vice versa [TKM16].

Construction of balanced WMU codes Hamming distance constraints?

For \(a = (a_1, \ldots, a_s), b = (b_1, \ldots, b_s) \in \{0, 1\}^s \), define

\[
\Psi(a, b) : \{0, 1\}^s \times \{0, 1\}^s \to \{A, T, C, G\}^s
\]

according to:

\[
\text{for } 1 \leq i \leq s, \; c_i = \begin{cases}
A & \text{if } (a_i, b_i) = (0, 0) \\
C & \text{if } (a_i, b_i) = (0, 1) \\
T & \text{if } (a_i, b_i) = (1, 0) \\
G & \text{if } (a_i, b_i) = (1, 1)
\end{cases}
\]
Decoupling the construction: Let $C_1, C_2 \subseteq \{0, 1\}^s$ be two binary block code of length s. Encode all pairs $(a, b) \in C_1 \times C_2$ using $C_3 = \{ \Psi(a, b) \mid a \in C_1, b \in C_2 \}$. Then:

1. C_3 is balanced if C_2 is balanced.
2. C_3 is a k-WMU code if either C_1 or C_2 is a k-WMU code.
3. If d_1 and d_2 are the minimum Hamming distances of C_1 and C_2, respectively, then the minimum Hamming distance of C_3 is at least $\min(d_1, d_2)$.

See also [LY17] for MU codes.

Information sequence encoding?
Information Sequence Encoding for Texts

Modification based on [WI90’s], and new approach in [TGM17].
Random Access and Rewriting Experiments

- Random access achieved via PCR, addresses used as primers.
- Context identification and rewriting performed via gBlock or OE-PCR methods.

![PCR of five primers and PCR of selected string from pool (A) and in individual well (B) with gBlock process diagram.](image-url)
Random Access and Rewriting Experiments

- Random access achieved via PCR, **addresses used as primers**.
- Context identification and rewriting performed via gBlock or OE-PCR methods.

Cheap 80-primer sequential rewriting

A) Two PCR products of rewrite. B) The generated PCR rewrite with correct size of 1kb.

Sequencing results of 10 plasmids (5 from original, 5 from rewrite) with primer in forward direction of the insert. The rewritten region is covered in the red square.
MinION Oxford Nanopore (R7): Sequence traces (reads).
Major Problem: Very large number of sequence-dependent indel and substitution errors (R.7 flowcell, ~ 10%, R 9.4 flowcell ~ 4%)!

Example Statistics:

<table>
<thead>
<tr>
<th>Block (length)</th>
<th>Number of reads</th>
<th>Sequencing Coverage depth</th>
<th>Number of errors: (substitution, insertion, deletion)</th>
<th>Consensus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Per read (average)</td>
<td>Nanopolish</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 (1,000)</td>
<td>201</td>
<td>176.145</td>
<td>(107, 14, 63)</td>
<td>(14,32,5)</td>
</tr>
<tr>
<td>2 (1,000)</td>
<td>407</td>
<td>315.521</td>
<td>(123, 12, 70)</td>
<td>(75,99,40)</td>
</tr>
<tr>
<td>3 (1,000)</td>
<td>490</td>
<td>460.375</td>
<td>(80, 23, 42)</td>
<td>(10,45,0)</td>
</tr>
<tr>
<td>4 (1,000)</td>
<td>100</td>
<td>81.763</td>
<td>(69, 18, 37)</td>
<td>(1,54,1)</td>
</tr>
<tr>
<td>5 (1,000)</td>
<td>728</td>
<td>688.663</td>
<td>(88, 20, 48)</td>
<td>(4,45,3)</td>
</tr>
<tr>
<td>6 (1,000)</td>
<td>136</td>
<td>120.907</td>
<td>(79, 21, 42)</td>
<td>(390,102,61)</td>
</tr>
<tr>
<td>7 (1,000)</td>
<td>577</td>
<td>542.78</td>
<td>(83, 26, 41)</td>
<td>(3,31,3)</td>
</tr>
<tr>
<td>8 (1,000)</td>
<td>217</td>
<td>199.018</td>
<td>(83, 20, 46)</td>
<td>(18,51,1)</td>
</tr>
<tr>
<td>9 (1,000)</td>
<td>86</td>
<td>56.828</td>
<td>(60, 16, 30)</td>
<td>(404,92,54)</td>
</tr>
<tr>
<td>10 (1,000)</td>
<td>442</td>
<td>396.742</td>
<td>(91, 18, 52)</td>
<td>(388,100,59)</td>
</tr>
<tr>
<td>11 (1,000)</td>
<td>114</td>
<td>101.826</td>
<td>(79, 23, 42)</td>
<td>(16,23,18)</td>
</tr>
<tr>
<td>12 (1,000)</td>
<td>174</td>
<td>162.559</td>
<td>(94, 23, 50)</td>
<td>(14,59,1)</td>
</tr>
<tr>
<td>13 (1,060)</td>
<td>378</td>
<td>352.35</td>
<td>(88, 26, 44)</td>
<td>(7,55,4)</td>
</tr>
<tr>
<td>14 (1,000)</td>
<td>222</td>
<td>189.918</td>
<td>(69, 22, 34)</td>
<td>(15,34,3)</td>
</tr>
<tr>
<td>15 (1,000)</td>
<td>236</td>
<td>222.967</td>
<td>(92, 24, 45)</td>
<td>(15,46,2)</td>
</tr>
<tr>
<td>16 (1,000)</td>
<td>198</td>
<td>182.99</td>
<td>(103, 16, 61)</td>
<td>(15,62,4)</td>
</tr>
<tr>
<td>17 (880)</td>
<td>254</td>
<td>240.273</td>
<td>(77, 19, 42)</td>
<td>(359,95,44)</td>
</tr>
</tbody>
</table>
Sequence Alignment

- **First Step:** “Merge traces” into one consensus sequence.
Sequence Alignment

- **First Step:** “Merge traces” into one consensus sequence.

- **Bioinformatics:** Sequence alignment [NW, SW].
 Computer Science: Reconstructing sequences from traces [Batu et al. 2004].
Sequence Alignment

- **DP:** Optimal, but of very high complexity.
 Works poorly on real data!

- **Reference-free sequence alignment:** CLUSTAL, KALIGN, MUSCLE, TCOFFEE, etc.

- **“Simple” trace reconstruction:** [Batu et.al. 2004], [Holenstein et.al. 2016]
How Do We Handle Deletions?

- **Key idea**: Use addresses (tags) as pilot sequences to identify good quality reads.
- Align good reads. Use balancing property to correct errors, repeat. Use homopolymer coding.
Encoded images in compressed format into DNA.

- Compression, Base64 conversion, error-correcting and constrained coding (balancing GC content and forbidden address sequences).
- Careful address design.

JPEG and Base64 Encoded Image

100010111001010...

Conversion into a sequence over the alphabet \{A,T,G,C\}

AATGCAGCGTTTAGAGAT...

Parsing into blocks of length 896

AATGCAGC|GTTTAGAG|AT...

Block GC-Content Balancing and ECC

AATG|CCCAGCATAG| GTTCGAGAGCTCT

Addressing

CGAA|AATG|CCCAGCATAG| GCTAGTTTCGAGAGCTCT

Data Encoding

Native DNA-Based Data Storage

DNA Data Storage Platforms

Native DNA-Based Computing
Our Readout Solution Summary

- **Select best reads for first alignment:** Best reads = highest quality addresses!
- **Perform alignment:** Roughly 30 traces (reads) involved.
- **Adjust sequence balance.** Balancing also limits runlengths!
- **Repeat while recruiting new traces.**
Deletion Correction Through Balancing

\[C_{\text{est}} = \text{Current estimate of the consensus sequence} \]

- **Initial alignment:**
 - \(C_{\text{est}} \):
 \[
 \text{TTCACCCAAAAAACCAGAAACCAGCTTCAGCGA} \]
 - Trace1:
 \[
 \text{TTCACCCCAAACCGGAAACCCTTCAGCGA} \]
 - Trace2:
 \[
 \text{TTCACCCAAAAACCAGAAACCAGCTTCAGCGA} \]
 - Trace3:
 \[
 \text{TTCACCCAAAAACCAGAAACCAGCTTCAGCGA} \]

- **After MSA**
 - \(C'_{\text{est}} \):
 \[
 \text{T}^2\text{C}^1\text{A}^1\text{C}^4\text{A}^4 \ldots \]
 - Trace1:
 \[
 \text{T}^2\text{C}^1\text{A}^1\text{C}^3\text{A}^4 \ldots \]
 - Trace2:
 \[
 \text{T}^2\text{C}^1\text{A}^1\text{C}^4\text{A}^4 \ldots \]
 - Trace3:
 \[
 \text{T}^2\text{C}^1\text{A}^1\text{C}^3\text{A}^5 \ldots \]

- **After Balancing**
 - \(C'_{\text{est}} \):
 \[
 \text{T}^2\text{C}^1\text{A}^1\text{C}^3\text{A}^4 \ldots \]
 - Trace1:
 \[
 \text{T}^2\text{C}^1\text{A}^1\text{C}^3\text{A}^4 \ldots \]
 - Trace2:
 \[
 \text{T}^2\text{C}^1\text{A}^1\text{C}^3\text{A}^4 \ldots \]
 - Trace3:
 \[
 \text{T}^2\text{C}^1\text{A}^1\text{C}^3\text{A}^5 \ldots \]
Reading with Nanopores

Consensus may still have errors: Runlengths of As increase or decrease (protein-A interaction). Runlengths of Gs may form G quadruplexes.

Example Statistics:

<table>
<thead>
<tr>
<th>Block (length)</th>
<th>Number of reads</th>
<th>Sequencing Coverage depth</th>
<th>Number of errors: (substitution, insertion, deletion)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Per read (average)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Average</td>
<td>Maximum</td>
</tr>
<tr>
<td>1 (1,000)</td>
<td>201</td>
<td>176.145</td>
<td>192</td>
</tr>
<tr>
<td>2 (1,000)</td>
<td>407</td>
<td>315.521</td>
<td>349</td>
</tr>
<tr>
<td>3 (1,000)</td>
<td>490</td>
<td>460.375</td>
<td>482</td>
</tr>
<tr>
<td>4 (1,000)</td>
<td>100</td>
<td>81.763</td>
<td>87</td>
</tr>
<tr>
<td>5 (1,000)</td>
<td>728</td>
<td>688.663</td>
<td>716</td>
</tr>
<tr>
<td>6 (1,000)</td>
<td>136</td>
<td>120.907</td>
<td>129</td>
</tr>
<tr>
<td>7 (1,000)</td>
<td>577</td>
<td>542.78</td>
<td>566</td>
</tr>
<tr>
<td>8 (1,000)</td>
<td>217</td>
<td>199.018</td>
<td>207</td>
</tr>
<tr>
<td>9 (1,000)</td>
<td>86</td>
<td>56.828</td>
<td>75</td>
</tr>
<tr>
<td>10 (1,000)</td>
<td>442</td>
<td>396.742</td>
<td>427</td>
</tr>
<tr>
<td>11 (1,000)</td>
<td>114</td>
<td>101.826</td>
<td>110</td>
</tr>
<tr>
<td>12 (1,000)</td>
<td>174</td>
<td>162.559</td>
<td>169</td>
</tr>
<tr>
<td>13 (1,060)</td>
<td>378</td>
<td>352.35</td>
<td>366</td>
</tr>
<tr>
<td>14 (1,000)</td>
<td>222</td>
<td>189.918</td>
<td>203</td>
</tr>
<tr>
<td>15 (1,000)</td>
<td>236</td>
<td>222.967</td>
<td>232</td>
</tr>
<tr>
<td>16 (1,000)</td>
<td>198</td>
<td>182.99</td>
<td>195</td>
</tr>
<tr>
<td>17 (880)</td>
<td>254</td>
<td>240.273</td>
<td>250</td>
</tr>
</tbody>
</table>
Homopolymer Codes

> **Definition.** The integer sequence of a vector $x \in \mathbb{F}_4^n$ is the sequence of the length of the runs in x.

Example: $x = (0, 0, 1, 3, 3, 2, 1, 1) \rightarrow I(x) = (2, 1, 2, 1, 2)$.

The alternating sequence is the sequence of symbols in x, with all runs set to one. For above x, we have $S(x) = (0, 1, 3, 2, 1)$.
Homopolymer Codes

- **Definition.** The integer sequence of a vector $x \in \mathbb{F}_4^n$ is the sequence of the length of the runs in x.

Example: $x = (0, 0, 1, 3, 3, 2, 1, 1) \rightarrow I(x) = (2, 1, 2, 1, 2)$.

The alternating sequence is the sequence of symbols in x, with all runs set to one. For above x, we have $S(x) = (0, 1, 3, 2, 1)$.

- Suppose that $C_H(n, t)$ is a code that can correct up to t substitution errors. Let

$$C(n, t) = \{x \in \mathbb{F}_4^n : I(x) \mod 2 \in C_H(n, t)\}.$$

The code $C(n, t)$ can correct up to t asymmetric (decreasing) run-preserving deletions.

- Related to sticky deletions [B90’s], [DA05].
Readout Time

- The sequencing time was ~ 10 hours, but only “junk” reads generated after ~ 6 hours.

- **How long shall we sequence for?**

- **Definition.** The k-deck of a sequence x is the multiset of all subsequences of length k of x.

- **Hybrid reconstruction:** One is given a small number M of “long” asymmetric traces ($o(n)$ deletions). What is the smallest value of k for a k-deck that along with the M long traces ensures unique reconstruction?
Example images of Citizen Kane poster (1946) and Smiley. Only three deletions left after iterative alignment. Error-free decoding is possible with coding efficiency 88%
Native DNA-Based Data Storage
Resolving the Synthesis Problem?

- **Our system**: Store information in native DNA (e.g., *E. coli*). How?
- **Content cannot be changed easily**: –ATGCC– has to remain –ATGCC–.
Resolving the Synthesis Problem?

- **Our system**: Store information in native DNA (e.g., *E. coli*). How?
- **Content cannot be changed easily**: –ATGCC– has to remain –ATGCC–.
- **Structure? Symbol alphabet?**

![Cytosine and methylated Cytosine](image)

Figure 1: Animation of nicked plasmid DNA. A nick can be enzymatically inserted or caused by shearing during plasmid preparation.
Resolving the Synthesis Problem?

- **Our system:** Store information in native DNA (e.g., *E. coli*). How?
- **Content cannot be changed easily:** –ATGCC– has to remain –ATGCC–.
- **Structure? Symbol alphabet?**
- **Nicking using programmable DNA-guided artificial restriction enzymes** (in collaboration with Zhao lab).

![Diagram of Cytosine and methylated Cytosine](image)
Think of Punch Cards...

- **Our approach**: Do not nick or nick sense or antisense strand (ternary alphabet).
- **Reuse nicking enzyme on a large number of DNA “registers”**: PfAgo DNA-guided enzyme.
- **How do we know** that we have the “right nicks”?
How do we Read the Nicks?

- **Detect Nicks via Illumina Sequencers:** Denature nicked DNA, Sanger sequence (expensive).
How do we Read the Nicks?

- **Detect Nicks via Illumina Sequencers:** Denature nicked DNA, Sanger sequence (expensive).
- **Detect Nicks with Nanopores?** Collaboration with Radenovic lab, EPFL.
How do we Read the Nicks?

- **Detect Nicks via Illumina Sequencers:** Denature nicked DNA, Sanger sequence (expensive).
- **Simulate Nicks with Nanopores?** Collaboration with Leburton lab, EPFL.

Site of the Damage: T-T

- Molecule: 20 base-pair dsDNA (A-T)
- Concentration: 1 M KCl
- Ionic Voltage Bias: 1V
- Sheet Voltage Bias: 5mV
Sources of Errors

- **Erroneous Nicking**: Shifts in the positions of the nick (nicking window), missing nicks (deletions).
Sources of Errors

- **Erroneous Nicking:** Shifts in the positions of the nick (nicking window), missing nicks (deletions).
- **Erroneous Readout:** Shifts in the positions of the nick (nicking window), missing and inserted nicks (deletions and insertions).
Sources of Errors

- **Erroneous Nicking:** Shifts in the positions of the nick (nicking window), missing nicks (deletions).

- **Erroneous Readout:** Shifts in the positions of the nick (nicking window), missing and inserted nicks (deletions and insertions).

- **Instability Errors:** Do not want to nick one strand exclusively, as it may cause the backbone to break down.
New Coding Solutions I

- **Ternary Codes for Swap and Deletion correction**: Related to codes in the Damerau distance [GYM18].
- **Hard to Accommodate Instability Issues**: Revert to codewords described in terms of sets.
- **Formal Definition**: The *nicking codebook* is a set of subsets $S_i \subset [n]$, $i = 1, \ldots, M$, of fixed size k such that for any $i \neq j$, one has $|S_i \cap S_j| \leq s$, where M and s are code design parameters.
New Coding Solutions I

- **Ternary Codes for Swap and Deletion correction**: Related to codes in the Damerau distance [GYM18].

- **Hard to Accommodate Instability Issues**: Revert to codewords described in terms of sets.

- **Formal Definition**: The *nicking codebook* is a set of subsets $S_i \subset [n]$, $i = 1, \ldots, M$, of fixed size k such that for any $i \neq j$, one has $|S_i \cap S_j| \leq s$, where M and s are code design parameters.

- **Introduced by Babai and Frankl**: Let q be a prime power and $1 \leq s \leq k \leq q$. Set $n = kq$. Let ξ be a primitive element of \mathbb{F}_q and $\mathcal{A} = \{0, 1, \xi, \ldots, \xi^{k-2}\}$. Then $|\mathcal{A}| = k$. For each polynomial $f \in \mathbb{F}_q[x]$, define

$$A_f := \{(a, f(a)) : a \in \mathcal{A}\}.$$

We also have $|A_f| = k$. Let

$$C(k, q, s) := \{A_f : f \in \mathbb{F}_q[x], \deg(f) \leq s - 1\}.$$

Then $C(k, q, s)$ is a collection of q^s k-subsets of the set $X := \mathcal{A} \times \mathbb{F}_q$ and satisfies the property that every two sets intersect at at most $s - 1$ elements.
Set Discrepancy Theory

- Set discrepancy problem [Spencer’85, Lovasz’86]: Given a set of m subsets \{A_1, \ldots, A_m\} of fixed size k over a ground set $[n-1]$, find a labeling $\ell : [n-1] \rightarrow \{-1, +1\}$ which minimizes

\[
\max_{1 \leq i \leq m} \left| \sum_{x \in A_i} \ell(x) \right|, \ \text{i.e.}
\]

\[
\min_{\ell : [n-1] \rightarrow \{-1, +1\}} \max_{1 \leq i \leq m} \left| \sum_{x \in A_i} \ell(x) \right|.
\]

- In our case, the optimal mapping $\ell : [n-1] \rightarrow \{-1, +1\}$ ensures balance of nicks.
- Babai-Frankl sets can be shown to have zero discrepancy!
- Can extend the results further using Steiner systems.
Other Directions: Concentration Based Coding

- **Concentration based encoding**: Image processing in DNA.

![Diagram](image-url)
Other Directions: Concentration Based Coding

- **Concentration based encoding:** Image processing in DNA.
Other Directions: Concentration Based Coding

- **Concentration based encoding:** Image processing in DNA.
Other Directions: Enlarging the Code Alphabet

- **Enlarging the code alphabet**: Nonstructural, chemical modifications (with Schroeder lab).

- **Integration with nanoelectronics**: Changing random access approaches (with Li lab).
DNA Storage in Living Cells, Nature, 2017

- **Low-density storage using CRISPR-Cas, *E. coli***: Church et al., 2017.

 ![encoded GIF](image1)

 ![recalled GIF](image2)

- **Fountain DNA Storage**: Erlich et al., 2017 (Reed-Solomon in Grass et.al.: oligos treated as symbols over a large alphabet, redundancy at the oligo level).