Lecture on Fluorescence and Plasmonics
Supplementary Study Guide

Introduction to Fluorescence (8:11): https://www.youtube.com/watch?v=SGFlr1jFNBg
- Fluorophores
- Energy states
- Wavelengths and frequencies
- Excitation and emission
- Quenching and photobleaching

Fluorescence Spectra (3:11): https://www.youtube.com/watch?v=oVxpaUfTuXI
- Excitation/emission maximum
- Stokes shift and energy levels

Jablonski Diagram:
- Molecular absorbance/emission of light
- Electronic energy state transitions
- Radiative and non-radiative processes
- Transition timescales

Förster Resonance Energy Transfer (FRET):
- Donor/acceptor chromophore pair
- Nonradiative dipole-dipole coupling
- Distance dependence (< 10 nm)
- Spectral overlap
- Energy transfer efficiency

Fluorescence Microscopy (33:34):

FRET Microscopy (36:10):
 - Fluorophore structures
 - Quantum dots
 - Probe attachment chemistry

Introduction to Plasmonics (11:45): https://www.youtube.com/watch?v=8iyShOidtYg
 - Light-matter interactions
 - Metallic nanoparticles
 - Electromagnetic enhancement

Plasmonics Applications (11:05): https://www.youtube.com/watch?v=iUyPssG9f_M
 - Raman spectroscopy
 - Biochemical sensing
 - Solar cells and dynamic display