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Intro to Tiling Assembly
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What is Molecular Self-
assembly?
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Self-Assembly is the process by which simple objects

autonomously assemble into complexes.
* In Nanoscience, Self-assembly is the spontaneous formation of a
complex by small (molecular) components under simple

combination rules
 Geometry, dynamics, combinatorics are all important

* Inorganic: Crystals, supramolecules
* Organic: Proteins, DNA

Goals:
* Understand self-assembly,
* Design self-assembling systems
« Applications to nano-technology, molecular robotics,
molecular computation



A Matter of Scale
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Question: Why a mathematical study of

“molecular’ self-assembly specifically?

Answer: The scale changes everything

 Consider assembling micro-level (or larger) structures
such as robotic swarms. We can attach rudimentary
computers, motors, and radios to these structures.
« Can now implement an intelligent distributed algorithm.

* In molecular self-assembly, we have nano-scale
components. No computers. No radios. No antennas.
We need self-assembly to make computers, radios,

antennas, motors.
 Local rules such as “attach to another component if it

has a complementary DNA strand”
« Self-assembly at larger scales is interesting, but is more
a sub-discipline of distributed algorithms, artificial
intelligence etc.



Appllcatlons of Self-Assemny
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= Building blocks of nano-machines.
= DNA computing.

= Small electrical devices such as FLASH memory.
[Black et. al. 2003]

= Nanostructures which “steer” light in the same
way computer chips steer electrons. |[Percec et. al.
2003]



Wang Tlllng
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Proposed in [Hao Wang, Proving theorems by Pattern Recognition II, 1961].
Class of formal tiling systems
Tiles:

* Given a finite set of square tiles with a glue on each side.

* Tiles are modeled visually by squares with a color (glue
type) on each side

* The tiles cannot be rotated or reflected and
* You can use infinite number of copies of each tile.

Tiling Question: whether they can tile the plane with same
abutting glue.



Wang Tiling Problem:
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Given a set of tiles, can copies of the tiles be arranged one
by one to fill an infinite plane such that adjacent edges of abutting

tiles share the same color ?

3 tile example:

- X

Source: Savi Maharaj




Example of Wang Tiling
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Designed by [Karel Culik, 1996].
[Wikipedia]

« This tile set contain 13 tiles.
* They can tile the plane aperiodically as shown in
next page.



Example of Wang T|I|ng
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Wang Tiling Construction with “Smart Bricks”

A tiling assembly using “Smart Bricks' with
affinity between colored pads.



Is Self-Assembly Just
Crystallization?

.
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No. Crystals do not grow into unique terminal
structures!
= A sugar crystal does not grow to precisely 20nm

Crystals are typically made up of a small number of

different types of components
= Two types of proteins; a single Carbon molecule

Crystals have regular patterns
=« Computer circuits, which we would like to self-assemble, don’t

Self-assembly = combinatorics + crystallization

=« Can count, make interesting patterns

= Nature doesn’t count too well, so molecular self-assembly is a
genuinely new engineering paradigm.

=« Think engines.
= Think cemicondiictors.



Undecidability of tiling problem
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Proof of Undec1dab111ty and Nonperiodicity for Tlllngs of the

Plane: [Robinson, Undecidability and Nonperiodicity for Tilings of
the Plane, 1971]:

 Encoded the moves of a Turing machine into a set of Wang
tiles, such that:

* The Wang tiles can tile the plane if and only if the Turing
machine will never halt.

=> a tiling system can compute any computable
function!



DNA Tiles

[Fu and Seeman, 93]
[Winfree and Seeman]

Glues = sticky ends
Tiles = molecules



Self-assembly of DNA tiles into Lattices
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Self-Assembly of DNA into

tiles and lattices [Winfree]




DNA Self-Assembly
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Trying to “compute” using protein tiles would be challenging:
= Proteins have a complicated geometry and
= it is hard to predict what shape a single protein will take.

Instead, we assume that tiles are made of DNA strands
hybridized together, and that the glues are really single-
stranded DNA strands

= DNA is combinatorial: the functionality of DNA is determined
largely by the sequence of ACTG bases.

= Proof-of-concept from nature: A DNA strands can hybridize to
another complementary DNA sequences

= DNA tiles have been constructed in the lab, and DNA
computation has been demonstrated
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Tile assembly model (TAM)

* Proposed by Erik Winfree developing on Wang tilings
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* [Winfree: Simulations of Computing by Self-Assembly, 1998]
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* Can be implemented using DNA molecules



The Tile Assembly Model
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Oriented Tiles with a glue on each side
— Each glue is labeled by a strength

a

d

Single bar: strength 1 glue
Double bar: strength 2 glue

— Tiles floating on an infinite grid; Temperature t
— A tile can add to an existing assembly 1f

total strength of matching glues >t
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Abstract Tile Assembly
Model ATAM
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s Proposed by [Erik Winfree and Paul
W.K. Rothemund, 2000].

= An ATAM tiling system is a quadruple
<T,s, T, g>.

= T is a set of tiles.

= A tile is a square with a glue on each
side: N

W E

S




Abstract Tile Assembly Model
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= Sis seed tlle The initial conﬁguratlon has only
seed tile.

= T Is temperature: the minimum accumulative
strength that can fix a tile in a configuration.

= g Is glue strength function: GxG->N* where
G is glue set.
For any X, y in G, g(X, y)=g(y, X).
= A configuration is a function:
ZxZ->T u{empty}, where Z is the integers.



Abstract Tile Assembly Model(ATAM):

[Rothemund, Winfree, = 2000]
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Temperature T: A positive integer. (Usually 1 or 2)

A set of tile types: Each tile 1s an oriented rectangle with glues
on 1its corners. Each glue has a non-negative strength (0, 1 or 2).

The initial assembly (seed).

A tile can attach to an assembly iff the combined strength of the
“matched glues” is greater or equal than the temperature.



Abstract Tile Systems
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= Tile: the four glues and their strengths

= Tile System:
= Ktiles
= Infinitely many copies available of each tile
= [emperature t
= Aseedtiles

s Accretion Model:

= Assembly starts with a single seed tile, and proceeds by
repeated addition of single tiles e.g. Crystal growth

= Are interested primarily in tile systems that assemble into a
unique terminal structure

[Rothemund and Winfree 00] [Wang 61]



Example of a Tiling Self
Assembly Process
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Temperature: 2
~Set of tile types:
Seed:

[Cheng, Goel, Cheng]



Example of a Tiling Self
Assembly Process, cont

=
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T ture: 2
emperature:

~Set of tile types:
Seed:

[Cheng, Goel, Cheng]



Example of a Tiling Self
Assembly Process, cont

ST g RN e S R e e A NN M S S B S Y = S
T ture: 2
emperature:

~Set of tile types:
Seed:

[Cheng, Goel, Cheng]



Example:
Tiling Assembly of Sierpinski System

[Winfree, 2096]
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0 0 1 0 0 1 1 1
0 0 O 0 1 0 0 0 0 0

Seed Tiles forming Base Assembly

[Cheng, Goel, Cheng]



Example:
Tiling Assembly of Sierpinski System, cont
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Tiles to be used Iin assembly:

Ommr -

0 0 1 0 O 1 1 1

Seed Tiles forming Base Assembly

[Cheng, Goel, Cheng]



Example:
Tiling Assembly of Sierpinski System, cont
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0 0 1 0 O 1 1 1

0 0 1

1

Seed Tiles forming Base Assembly

[Cheng, Goel, Cheng]



Example:
Tiling Assembly of Sierpinski System, cont
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0 0 1 0 O 1 1 1

0 0 1

Seed Tiles forming Base Assembly

[Cheng, Goel, Cheng]



Example:
Tiling Assembly of Sierpinski System, cont
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0 0 1 0 O 1 1 1

Seed Tiles forming Base Assembly

[Cheng, Goel, Cheng]



Example:
Tiling Assembly of Sierpinski System, cont
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0 0 1 0 O 1 1 1

Seed Tiles forming Base Assembly

[Cheng, Goel, Cheng]
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Self-Assembled Circuit
Patter_ns
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[Cook, Rothmund, Winfree, DNA9]
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Tiling Self-Assembly of Counter |

ey

Counter made by
self-assembly
[AdIEman’ ChEng,

Goel, Huang 2001]
Execute Counting
Row by Row:

* cis the carry bit
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(b)

") !
i Assembly of a Counter via Tiling .

. 0 IR
1 (c) \
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Assembly Model program for counting in binary. The tiles labeled “1” are colored
gray to make it easier to see the resulting pattern, visible in (c). The self-assembly
progresses by individual tiles accreting to the assembly as shown in (b). Edges marked
with a small letter or number have bond strengths of 1, while edges with a double line
have bond strengths of 2 (and do not require a further label here, since there is only
one vertical and one horizontal kind). A later stage of self-assembly is shown in (c),
with arrows indicating all the places that a new tile could accrete.
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—D-'_:D-'_:DJ_:D-'_O
Assembly of a Demultiplexer via Tiling —ptotoo—
seed tile ] T
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input tiles n n n b T 0
AND-NOT Ho oL p % B ( 2 p —D—"EC)—":D—"EC)—'_O
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) -dD-'_IC)-'_:D‘_zC)-'—O
Demultiplexer: transforms
. DD

a binary number to a unary 0
number position o I e e e

0 111 ‘0

Using a binary counter to self-assemble a demultiplexer. Logic levels for an
example input-output pair are shown: only the row that exactly matches the input
pattern is set to “1”. To make a pattern with NV rows, 10 + log IV tiles are used.

v
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Assembly of two Demultiplexers v
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Fig. 3. Two self-assembled demultiplexers at right angles can address a memory. The

gray memory cell is being addressed in this figure.



Assembly of Sierpinski Triangle (mod 2 Pascal
Triangle) via Tiling Self Assembly
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= Assumert = 2 and all glue
strengths are 1 0

= Uses four “XOR” tiles, where: 0 0‘

= the bottom side is labeled either O or
1, and

=« the right side is labeled either O or 1,
and

« the left and upper sides are labeled e

XOR s where e and s are the bits on
the east and south sides

= Given the appropriate inputs (i.e. seeds), these tiles
can do some very interesting things like

= Computing the parity
= Assembling into a fractal pattern



Assembly of Sierpinski Triangle (mod 2 Pascal

Triangle) via Tiling Self Assembly
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The Sierpinski triangle and a set of tiles that construct it in the limit.



Sierpinski triangle experiments using DAO-E Tiles
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ATCTC TAGAG TCACT AGTGA CATAC GTATG CAAGA GTTCT
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Applications of Tiling Self-
Assembly
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= Self-assembly can be used to create small electrical
devices such as FLASH memory. [Black et. Al. " 03]

= Self-assembly can create nanostructures which “steer”
light in the same way computer chips steer electrons.
[Percec et. Al." 03]

DNA strands can self-assemble into tiles
and those tiles can further self-assemble
into larger structures. This has many

potential applications. [Winfree 96]

DNA “rug” by Winfree
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A DNA “rug” assembled using DNA tiles
« The rug is roughly 500 nm wide, and

* is assembled using DNA tiles 12nm by 4nm (false colored)
[Erik Winfree, Caltech]



Mesoscale Tile Systems
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Performing XOR using self-assembling mesoscale

(1 cm) tiles

| with “glues” on each side)

ing on oi
[Paul Rothemund, USC]

(Square tiles float



Theory of 1-D, 2-D, and 3-D
T|I|ng Self-assemblles
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= The theory of Linear 1-D tiling self-

assemblies are very different from 2-D tiling
self-assemblies

= 2-D and 3-D tiling self-assemblies are very
similar in terms of the theory



2D Tiling Simulation of Block
Cellular Automata (BCA)
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= Giving a BCA, Wlnfree showed that a 2D T|I|ng éystem
can be designed to simulate the BCA's computation.

= Each row of tiles given the BCA configuration at a
given time.

= BCAs can simulate Turing Machines, so this implies
that

» Tiling assemblies can execute any
computation.

= various properties of Tiling assemblies are
undecidable.



2D Tiling Simulation of Block
Cellular Automata (BCA)
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2D Tiling Simulation of Block
Cellular Automata (BCA)
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) gx,Y) T=2

A series of tiles with format:

X Y

Growth direction

Seed tiles



Tile CompIeX|ty
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= Tile complexity or program-size
complexity: the minimum number of tile
types required to assemble a
shape. [Erik Winfree and Paul W.K.
Rothemund STOC 2000]

= A special case: in the linear version
proposed by [Chandran et al]the tile
set is MULTISET.




Assemble Arbitrary Shapes
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- Replace each tile by a block.
\4 Size of block = O(computation time)




Theoretical and Algorithmic Results
for Tiling Assemblies
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Efficiently assembllng basic shapes W|th preasely
controlled size and pattern

= Constructing N X N squares with Q(log n/log log n) tiles
[Adleman, Cheng, Goel, Huang,’ 01]

= Perform universal computation by simulating BCA
[Winfree’ 99]

Library of primitives to use in designing nano-scale
structures [Adleman, Cheng, Goel, Huang,” 01]

Automate the design process |dicman, cheng, Goel, Huang, kempe,

Moisset de espanes, Rothemund ’ 01]

Robustness



Design CompIeX|ty of a Tile System
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= Suppose the tile system has k different tlles
= Assume that we have 0(k) different glues

= Assume for simplicity that all glues are represented by DNA strands
of the same length, L
« How many different glues can we have?

= Each position can be one of the bases A, C, T, or G. An A pairs with T on
the complementary strand, and a C pairs with G. So we can think of
each position as corresponding to an AC base pair or a CG base pair.

= Two choices ) Binary encoding

= Number of glues - 2t

= Total length of all the DNA strands in all the distinct tiles =
0(k log k). We will refer to k log k as the design complexity
= Does not depend on the size of the final structure. This is how much

time and expertise and resources you would have to invest into
designing the components (like program complexity)



: We WI|| sometlmes use the quantlty k to
refer to the design complexity.

. The rules of assembly are easy to code
up in a simulator:

. If a tile system of k tiles can assemble
into a certain shape, then

. There is a computer program of size
0(k log k) which generates that shape.



Three Exercises in Tile
Assembly

vy, 4T IPRL Pat T e L] Phet ] Pt ok AT e fr TN $$T pE '?) et Hf e

Suppose we did not assume that the number of glues is 0(k).
Can you still prove that the total length of all the strands in
all the tiles is 6(k log k)?

We assumed that our tiles are oriented, i.e., east is always
east and north is always north, and the tiles are not allowed
to rotate. Show how an oriented tile system can be simulated
using a system where tiles can rotate by +/- 90 degrees.

Now use the fact that the glues are really DNA strands to
show how an oriented tile system can be simulated using a

system where tiles can rotate by +/- 90 as well as 180
degrees.



T|Ie System DeS|gn
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= Library of primitives to use in

designing nano-scale structures
[Adleman, Cheng, Goel, Huang, 2001]

= Automate the design process

[Adleman, Cheng, Goel, Huang, Kempe, Moisset
de espanes, Rothemund 2001]
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K netic Tiling System
Model (KTAM)

S ey pniee

N T i LbMIWI e L@t@’%u;

'\.,_.4_
by
N



Kinetic Tile Assembly
(KTAM) Model

=N ;%Tr]c;g“rl }TQJJL ge T ill%f; #]}E?f '—f’:‘f*r T-hirgx P ‘*‘TCL lfﬁjg’r] _l‘?

[Erik Winfree, 1988] Assumptions:
All monomers hold the same constant concentration.
There are not interactions among aggregates.

All monomers have the same forward assembly rate
constant.

The reverse tile assembly rate depends exponentially
on the number of pairs need to be broken.




Kinetic Tile Assembly Model
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[Erik Winfree, 1998]



Kinetic Tile Assembly Model
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- [monomer] is the concentration of of a
monomer (single isolated tile).

m Kk is the forward tile assembly rate constant.
s I.=K: [ monomer]=kqgGme

= I p=K p=Kee PO

= Gmc is @ measure of entropic cost of fixing a

monomer at a particular position. Itis
determined by the concentration of monomer.




Kinetic Tile Assembly Model
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s G is a measure of free energy cost to
break a double helix of length s, where

G..= (4000K/T-11)s.

= b is the number of s-length double helix
that need to be broken.



Kinetic Tile Assembly Model:

[Winfree, 1998]
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A tile can attach

at any location.

The rate of attachment

r; = constant.

The rate of detachment

r., =cebC

9




Kinetic Tile Assembly Model =>
Abstract Tile Assembly Model
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m Set the temperature and concentration to

rr,T+1 << rr,T < s << rr,T1

= [f a tile attaches with strength < T-1, it is
ikely to fall off very fast.

= |f atileis held by strength at least T+1, it is
unlikely to fall off



Time Complexity of Kinetic
Tile Assembly
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= States: possible assembly configurations.

= Rate between state S1 and S2: if S2 is got
by attaching a tile x to S1. The rate is the
concentration of tile x. Otherwise, no edge

between S1 and S2.

= The time from initial configuration to the
terminal configuration
= Is a random variable.

=« Assembly Time complexity is the expected
value of the random variable



Example: A Tile System and its
Running Time
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Example: A Tile System and its Running Time
A: 50%, B: 300/0 C: 20%
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Reversible Tile Assembly Model

RS e 5 S O R G s AN T SN N TR S AN S e S R ST i< SN

: Proposed by Leonard M. Adleman in 1999
to study linear assembly.

= Define two functions:
= (1) 0: GxG->[0,1]
= (2) vi GxG->[0,1] where G is the glue set.

= 0(gl,g2) is the probability of a tile
sticking between glue g1 and g2.

= V(g1,92) is the probability of a tile
unsticking between glue g1 and g2.



Tile Systems and Running Time
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Define a continuous time Markov chain M:

=« State space S: set of all structures that a tile system can
assemble into

= Tiles of type T. have concentration c

2, =1
= Unique terminal structure => unique sink in M
= Seed tile is the unique source state

= Tiling Assembly time:

= the hitting time to reach the sink state from
the source state in the Markov Chain



Simple Example:
1-D T|Ie Assemblles
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. Resulting Markov Chain:
= Average time for the it tile to attach is 1/c.
= Assembly time = 2 1/c.

= For fastest assembly, all tiles must have
the same concentration of 1/(n-1)
« Expected assembly time is % n2

=« Can assemble thicker rectangles much faster
and with much fewer different tiles



Multiple Temperature Tiling
Assembly Mode
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= Proposed by [Aggarwal et al. 2004].

= Replace temperature t in tiling mddel by
sequence of temperatures {T.}._;.

= A system that has k temperatures is a k-
temperature system.

= Assembly mechanism: the assembly
process of a k-temperature system has k
phases.



Multiple Temperature Tiling
Assembly Model

r, LT PR et L G RN N NN TS e T S G E SRR R WL e S

4,1 L=

Assemble and disassemble
under temperature T, for long Phase 1
enough time.

Assemble and disassemble
under temperature T, for long Phase k
enough time.

The terminal product of phase k is the terminal
product of this k-temperature system.



Flexible Glue Tiling
Assembly Model

T
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= Proposed by fAggarwal et al. 2004].

= In standard model: g(x, y)= 0 if x#y.

= In flexible glue model: g(Xx, y) may
not be 0 when x=#y.



g-Tile Tiling Assembly Model

];C"’T”” - f:r( T

- PropoSed by [AZgarwaI et al. 2004 4]

= In standard model: only single tile can
attach to the growing supertile containing
seed.

= In g-tile model: supertiles of size not
larger than g can form and attach to the
seed supertile if the accumulative glue
strength between two supertiles is not less
than temperature.

= Standard model is exactly 1-tile model.



Time-dependent Glue Tile
Assembly Model

A= ;&I r] l I‘ Jkt sl ;%;; -;'E«ﬁf% ?:T* T-k' I == “":'i; T o -‘\Lriv;‘gii:riiir%\}~171;‘,11‘L

= Proposed by /Sahu et al. 2005].

= The glue strength function g is defined
a a function of time t:

g: GxGxR -> R. g(X, y, t) is the glue
strength between glue x and glue y
when they have been juxtaposed for t
time.



Time-dependent Glue Tiling
Assembly Model
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Maximum Strength

Glue Strength

mit tms t
Time
[Sahu et al. 2005]



Time-dependent Glue Tiling
Assembly Model
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= Define r: GxG-> R as time for maximum glue
strength.

= g(X, vy, t) is growing when t< r(X, y).
= When t= r(X, y),
- g(XI Y, t)= g(Xl Y, r(XI Y))

s Define u: GxG-> R as minimum interaction
time between two glues.



Time-dependent Glue Tiling
Assembly Model
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Next, we illustrate the time-dependent model with an example of the addition of
a single tile to an aggregate. In a configuration C, when a position (i, j) becomes
available for the addition of a tile A, 1t will stay at (i, j) for a time interval £,
where fy = max{u(e(A), w(C(, j +1))), n(n(4),s(CG+1, 1)), p(w(A), e(CG,
j—1))), u(s(A),n(C@i —1,)))}. Recall that our model requires that if two tiles
ever come in contact, they will stay together till the minimum interaction time of
the corresponding glues.

After this time interval #y, if g(e(A), w(C(i,j + 1)),t) + g(n(4), s(C(i +
L)), t0) + g(w(A), e(C, j - 1)), 10) + 8(s(A),n(C - 1, j)),10) < 7, tile A
will detach; otherwise, A will continue to stay at position (i, j).



Step-wise Tiling Assembly Model
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= Proposed by Reif in 1999,

= A tiling system under step-wisé assembly
model is a quadruple
Sstep=<{Ti}i=1l S, 9, {Ti}i=1 >I where
k is the number of steps,

. T; is the tile set at step 1, and
. T;is the temperature at step i.



Step-wise Tiling Assembly Model
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Put in T, including s. Assemble
under temperature T, for long
enough time.

step 1 (in tube 1)

terminal product of step 1

terminal product of step k-1

Put in T, in. Assemble
under temperature T, for step k (in tube k)
long enough time.

The terminal product of step k is the
terminal product of this k-step system.



Staged Tile Assembly Model
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= Proposed by /Demaine et al. 2007].

= [t is a generalized version of step-wise
assembly model first proposed by Reif.

= The assembly process under staged
assembly model is shown in the Figure
(next page).



Staged Tiling Assembly Model

Tile types: Tile Sets: Mix Graph:
, my 4O My 2
Xea: |c 2 T14= {Xab, o)
T1,2= {Xap, Xc.a}
T) .= m3.1 O my,
Xab: |a b 21={)
T22={}
T3.1= {Xo,c} m3,1 m3
Xbec: |[b ¢ T32= {Xc,a}
mc
Uniquely produced supertile:

a blb clc ala bb clc ala blb clc ala b

A sample staged assembly system that uniquely assembles a 1 x 10 line. The temperature is T = 1,
and each glue a, b, ¢ has strength 1. The tile, stage, and bin complexities are 3, 3, and 2, respectively
- Vertices of mix graph represent bins for separated assembly

reactions.
« Each bin has its only tile set and temperature.
« Only terminal product of one bin is delivered to bins in next stage.



