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What is Molecular Self-
assembly?

Self-Assembly is the process by which simple objects
autonomously assemble into complexes.

• In Nanoscience, Self-assembly is the spontaneous formation of a
complex by small (molecular) components under simple
combination rules

• Geometry, dynamics, combinatorics are all important
• Inorganic: Crystals, supramolecules
• Organic: Proteins, DNA

Goals:
• Understand self-assembly,
• Design self-assembling systems
• Applications to nano-technology, molecular robotics,

molecular computation



A Matter of Scale

• Question: Why a mathematical study of
“molecular” self-assembly specifically?

• Answer: The scale changes everything
• Consider assembling micro-level (or larger) structures

such as robotic swarms. We can attach rudimentary
computers, motors, and radios to these structures.
• Can now implement an intelligent distributed algorithm.

• In molecular self-assembly, we have nano-scale
components. No computers. No radios. No antennas.
We need self-assembly to make computers, radios,
antennas, motors.
• Local rules such as “attach to another component if it

has a complementary DNA strand”
• Self-assembly at larger scales is interesting, but is more

a sub-discipline of distributed algorithms, artificial
intelligence etc.



Applications of Self-Assembly

n Building blocks of nano-machines.

n DNA computing.

n Small electrical devices such as FLASH memory. 
[Black et. al. 2003]

n Nanostructures which “steer” light in the same 
way computer chips steer electrons. [Percec et. al. 
2003]



Wang Tiling
n Proposed in [Hao Wang, Proving theorems by Pattern Recognition II, 1961].

• Class of formal tiling systems  
• Tiles:
• Given a finite set of square tiles with a glue on each side. 
• Tiles are modeled visually by squares with a color (glue 

type) on each side  
• The tiles cannot be rotated or reflected and 
• You can use infinite number of copies of each tile. 

• Tiling Question: whether they can tile the plane with same 
abutting glue. 



Given a set of tiles, can copies of the tiles be arranged one 
by one to fill an infinite plane such that adjacent edges of abutting 
tiles share the same color ?

3 tile example:

Wang Tiling Problem:

Source: Savi Maharaj



Example of Wang Tiling

• This tile set contain 13 tiles. 
• They can tile the plane aperiodically as shown in 

next page.

Designed by [Karel Culik, 1996]. 
[Wikipedia]



Example of Wang Tiling

[Wikipedia]



A tiling assembly using `Smart Bricks' with 
affinity between colored pads.

Wang Tiling Construction with “Smart Bricks”



Is Self-Assembly Just 
Crystallization?

n No. Crystals do not grow into unique terminal 
structures!
n A sugar crystal does not grow to precisely 20nm

n Crystals are typically made up of a small number of 
different types of components
n Two types of proteins; a single Carbon molecule

n Crystals have regular patterns
n Computer circuits, which we would like to self-assemble,  don’t

n Self-assembly = combinatorics + crystallization
n Can count, make interesting patterns
n Nature doesn’t count too well, so molecular self-assembly is a 

genuinely new engineering paradigm. 
n Think engines. 
n Think semiconductors.



Proof of Undecidability and Nonperiodicity for Tilings of the
Plane: [Robinson, Undecidability and Nonperiodicity for Tilings of
the Plane, 1971]:
• Encoded the moves of a Turing machine into a set of Wang

tiles, such that:
• The Wang tiles can tile the plane if and only if the Turing

machine will never halt.

=> a tiling system can compute any computable 
function!

Undecidability of tiling problem



DNA Tiles

Glues = sticky ends
Tiles = molecules

[Fu and Seeman, 93] 
[Winfree and Seeman]

G1 G2

G3G4

=



Self-assembly of DNA tiles into Lattices



14

Self-Assembly of DNA into 
tiles and lattices [Winfree]



DNA Self-Assembly
Trying to “compute” using protein tiles would be challenging:

n Proteins have a complicated geometry and 
n it is hard to predict what shape a single protein will take.

Instead, we assume that tiles are made of DNA strands 
hybridized together, and that the glues are really single-
stranded DNA strands

n DNA is combinatorial: the functionality of DNA is determined 
largely by the sequence of ACTG bases. 

n Proof-of-concept from nature: A DNA strands can hybridize to 
another complementary DNA sequences

n DNA tiles have been constructed in the lab, and DNA 
computation has been demonstrated



Abstract Tiling Model (ATAM)



Tile assembly model (TAM)

• Proposed by Erik Winfree developing on Wang tilings

• [Winfree: Simulations of Computing by Self-Assembly, 1998]

• Simple, yet powerful model

• Refines Wang tiling

•Models crystal growth

•Also, Turing-complete

• Can be implemented using DNA molecules



The Tile Assembly Model 
(ATAM)

Oriented Tiles with a glue on each side 
– Each glue is labeled by a strength 

 
 
 

 
– Tiles floating on an infinite grid; Temperature t 
– A tile can add to an existing assembly if 
 total strength of matching glues ³ t 
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Single bar: strength 1 glue 
Double bar: strength 2 glue 

τ = 2 



Abstract Tile Assembly 
Model ATAM

n Proposed by [Erik Winfree and Paul 
W.K. Rothemund, 2000].

n An ATAM tiling system is a quadruple   
<T, s, τ, g>.

n T is a set of tiles. 
n A tile is a square with a glue on each 

side:
EW

S

N



Abstract Tile Assembly Model
n s is seed tile: The initial configuration has only 

seed tile.
n τ is temperature: the minimum accumulative 

strength that can fix a tile in a configuration.
n g is glue strength function: G×G->N+ where 

G is glue set.
For any x, y in G, g(x, y)=g(y, x). 

n A configuration  is a function: 
Z × Z ->T U {empty}, where Z is the integers.



Abstract Tile Assembly Model(ATAM):

• Temperature T: A positive integer. (Usually 1 or 2)
• A set of tile types: Each tile is an oriented rectangle with glues 

on its corners. Each glue has a non-negative strength (0, 1 or 2).
• The initial assembly (seed).

A tile can attach to an assembly iff the combined strength of the 
“matched glues” is greater or equal than the temperature.

[Rothemund, Winfree, ’2000]

x y

x z



Abstract Tile Systems

n Tile: the four glues and their strengths
n Tile System:

n K tiles
n Infinitely many copies available of each tile
n Temperature t
n A seed tile s

n Accretion Model:
n Assembly starts with a single seed tile, and proceeds by 

repeated addition of single tiles e.g. Crystal growth
n Are interested primarily in tile systems that assemble into a 

unique terminal structure
[Rothemund and Winfree ‘00] [Wang ‘61]



Temperature: 2
Set of tile types: 
Seed:

[Cheng, Goel, Cheng]

Example of a Tiling Self 
Assembly Process



Temperature: 2
Set of tile types: 
Seed:

[Cheng, Goel, Cheng]

Example of a Tiling Self 
Assembly Process, cont



Temperature: 2
Set of tile types: 
Seed:

[Cheng, Goel, Cheng]

Example of a Tiling Self 
Assembly Process, cont



Example: 
Tiling Assembly of Sierpinski System

0 0

0

1 0

1

0 1

1

1 1

0

0 0 0 0

T=20 1 1 0

1 0 000 0

[Winfree, 2096]

Seed Tiles forming Base Assembly
[Cheng, Goel, Cheng]



0 0
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1

0 1

1

1 1
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T=20 1 1 0

1 0 000 0

00

Example: 
Tiling Assembly of Sierpinski System, cont

Seed Tiles forming Base Assembly

Tiles to be used in assembly:

[Cheng, Goel, Cheng]



0 0

0

1 0

1

0 1

1

1 1

0

0 0

T=20 1 1 0

0 00 0

00 11

Example: 
Tiling Assembly of Sierpinski System, cont

Seed Tiles forming Base Assembly
[Cheng, Goel, Cheng]



0 0
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1 0

1

0 1

1

1 1

0 T=20 1 1 0

0 0

00 11 00 00

Example: 
Tiling Assembly of Sierpinski System, cont

Seed Tiles forming Base Assembly
[Cheng, Goel, Cheng]



0 0

0

1 0

1

0 1

1
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0 T=20 1 1 0

11 1100 00 00

Example: 
Tiling Assembly of Sierpinski System, cont

Seed Tiles forming Base Assembly
[Cheng, Goel, Cheng]



0 0

0

1 0

1

0 1

1

1 1

0 T=20 1 1 0

Example: 
Tiling Assembly of Sierpinski System, cont

Seed Tiles forming Base Assembly
[Cheng, Goel, Cheng]



Self-Assembled Circuit 
Patterns

[Cook, Rothmund, Winfree, DNA9]



Tiling Self-Assembly of Counter

Counter made by 
self-assembly 
[Adleman, Cheng, 
Goel, Huang 2001]
Execute Counting 
Row by Row:
• c is the carry bit
• n is the no-carry 

bit
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Fig. 1. The counter tiles (from [29]). The set of seven tiles shown in (a) are a Tile
Assembly Model program for counting in binary. The tiles labeled “1” are colored
gray to make it easier to see the resulting pattern, visible in (c). The self-assembly
progresses by individual tiles accreting to the assembly as shown in (b). Edges marked
with a small letter or number have bond strengths of 1, while edges with a double line
have bond strengths of 2 (and do not require a further label here, since there is only
one vertical and one horizontal kind). A later stage of self-assembly is shown in (c),
with arrows indicating all the places that a new tile could accrete.

To understand how the program works, we can conceptually categorize the
seven tiles used in this example into two groups: The three tiles bearing large
letters, called boundary tiles, are used to set up the initial conditions on the
boundary of the computation. The four tiles bearing large numbers, called rule
tiles, perform the computation and their numbers are to be interpreted as the
binary digits of the output pattern.

The pattern in Figure 1(c) shows a stage of self-assembly with τ = 2, so
tiles can only bind to one another when the total binding strength is ≥ 2. For
example, an “L” tile may bond on either side to another “L” tile or on its right
side to an “S” tile, using a single strength-2 bond. The rule tiles, which can
form only strength-1 bonds, can only bind to an assembly if two or more bonds
cooperate to hold the tile in place, since τ = 2. Thus, at first, the only counter
tiles which can assemble are boundary tiles, via strength-2 bonds. Only after
the boundary tiles have begun to assemble into a V-shape, can rule tiles begin
binding at corner sites as shown in Figure 1(b). The rule tile shown there can
form two strength-1 bonds, and it is the only tile that can stick there.

Successive additions of rule tiles and boundary tiles would result in a struc-
ture like that in Figure 1(c) whose rows may be read, from bottom to top, as
an enumeration of binary numbers. To understand how this works, inspect the
rule tiles. Consider the bottom and right sides of each rule tile as inputs, and
the left and top sides as outputs. A rule tile fitting into a corner “reads” two
input bits by matching bonds; one bit it reads is the identity of the digit below
it and the other is the carry bit from the tile to its right (if “c”, carry= 1; if “n”,

Assembly of a Counter via Tiling

Proof (completed) 

Q. How many ha ’s cause x and y to collide? 
A. There are m choices for each of a1 , a2 , …, ar  , 
but once these are chosen, exactly one choice 
for a0  causes x and y to collide, namely 
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Fig. 1. The counter tiles (from [29]). The set of seven tiles shown in (a) are a Tile
Assembly Model program for counting in binary. The tiles labeled “1” are colored
gray to make it easier to see the resulting pattern, visible in (c). The self-assembly
progresses by individual tiles accreting to the assembly as shown in (b). Edges marked
with a small letter or number have bond strengths of 1, while edges with a double line
have bond strengths of 2 (and do not require a further label here, since there is only
one vertical and one horizontal kind). A later stage of self-assembly is shown in (c),
with arrows indicating all the places that a new tile could accrete.

To understand how the program works, we can conceptually categorize the
seven tiles used in this example into two groups: The three tiles bearing large
letters, called boundary tiles, are used to set up the initial conditions on the
boundary of the computation. The four tiles bearing large numbers, called rule
tiles, perform the computation and their numbers are to be interpreted as the
binary digits of the output pattern.

The pattern in Figure 1(c) shows a stage of self-assembly with τ = 2, so
tiles can only bind to one another when the total binding strength is ≥ 2. For
example, an “L” tile may bond on either side to another “L” tile or on its right
side to an “S” tile, using a single strength-2 bond. The rule tiles, which can
form only strength-1 bonds, can only bind to an assembly if two or more bonds
cooperate to hold the tile in place, since τ = 2. Thus, at first, the only counter
tiles which can assemble are boundary tiles, via strength-2 bonds. Only after
the boundary tiles have begun to assemble into a V-shape, can rule tiles begin
binding at corner sites as shown in Figure 1(b). The rule tile shown there can
form two strength-1 bonds, and it is the only tile that can stick there.

Successive additions of rule tiles and boundary tiles would result in a struc-
ture like that in Figure 1(c) whose rows may be read, from bottom to top, as
an enumeration of binary numbers. To understand how this works, inspect the
rule tiles. Consider the bottom and right sides of each rule tile as inputs, and
the left and top sides as outputs. A rule tile fitting into a corner “reads” two
input bits by matching bonds; one bit it reads is the identity of the digit below
it and the other is the carry bit from the tile to its right (if “c”, carry= 1; if “n”,
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Fig. 1. The counter tiles (from [29]). The set of seven tiles shown in (a) are a Tile
Assembly Model program for counting in binary. The tiles labeled “1” are colored
gray to make it easier to see the resulting pattern, visible in (c). The self-assembly
progresses by individual tiles accreting to the assembly as shown in (b). Edges marked
with a small letter or number have bond strengths of 1, while edges with a double line
have bond strengths of 2 (and do not require a further label here, since there is only
one vertical and one horizontal kind). A later stage of self-assembly is shown in (c),
with arrows indicating all the places that a new tile could accrete.

To understand how the program works, we can conceptually categorize the
seven tiles used in this example into two groups: The three tiles bearing large
letters, called boundary tiles, are used to set up the initial conditions on the
boundary of the computation. The four tiles bearing large numbers, called rule
tiles, perform the computation and their numbers are to be interpreted as the
binary digits of the output pattern.

The pattern in Figure 1(c) shows a stage of self-assembly with τ = 2, so
tiles can only bind to one another when the total binding strength is ≥ 2. For
example, an “L” tile may bond on either side to another “L” tile or on its right
side to an “S” tile, using a single strength-2 bond. The rule tiles, which can
form only strength-1 bonds, can only bind to an assembly if two or more bonds
cooperate to hold the tile in place, since τ = 2. Thus, at first, the only counter
tiles which can assemble are boundary tiles, via strength-2 bonds. Only after
the boundary tiles have begun to assemble into a V-shape, can rule tiles begin
binding at corner sites as shown in Figure 1(b). The rule tile shown there can
form two strength-1 bonds, and it is the only tile that can stick there.

Successive additions of rule tiles and boundary tiles would result in a struc-
ture like that in Figure 1(c) whose rows may be read, from bottom to top, as
an enumeration of binary numbers. To understand how this works, inspect the
rule tiles. Consider the bottom and right sides of each rule tile as inputs, and
the left and top sides as outputs. A rule tile fitting into a corner “reads” two
input bits by matching bonds; one bit it reads is the identity of the digit below
it and the other is the carry bit from the tile to its right (if “c”, carry= 1; if “n”,



Assembly of a Demultiplexer via Tiling

Proof (completed) 

Q. How many ha ’s cause x and y to collide? 
A. There are m choices for each of a1 , a2 , …, ar  , 
but once these are chosen, exactly one choice 
for a0  causes x and y to collide, namely 
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Fig. 2. Using a binary counter to self-assemble a demultiplexer. Logic levels for an
example input-output pair are shown: only the row that exactly matches the input
pattern is set to “1”. To make a pattern with N rows, 10 + log N tiles are used.

us to look for fabrication problems: particular patterns or sets of patterns that
have potentially useful properties (e.g. as templates for electronic circuits), and
which are amenable to self-assembly.

Naively we might wonder, “Can we self-assemble the circuit for a contempo-
rary CPU?” Assuming that we can create tiles that act as circuit elements1 what
we are really asking is “Can we self-assemble the layout pattern for a CPU?”
The answer, in theory, is yes, and we may do so without using any complex
computation.

Any particular pattern, no matter how complex, can be self-assembled by
assigning a unique tile type, with a unique set of binding interactions with its
neighbors, to each position in the pattern. The resulting program is as big as the
pattern itself, with every tile in the program being used just once in the pattern.
This type of self-assembly program (called unique addressing) is undesirable be-
cause it is not efficient — an efficient program would use a small number of tile

1 Periodic electrical networks of functional LEDs have already been self-assembled on
the millimeter scale [7].

Demultiplexer: transforms 
a binary number to a unary 

number position



Proof (completed) 

Q. How many ha ’s cause x and y to collide? 
A. There are m choices for each of a1 , a2 , …, ar  , 
but once these are chosen, exactly one choice 
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Fig. 3. Two self-assembled demultiplexers at right angles can address a memory. The
gray memory cell is being addressed in this figure.

types compared to the size of the pattern. Instead, unique addressing uses the
greatest number of tile types possible to create a pattern. In physical implemen-
tations [30] it appears that creating unique tile types and unique specific binding
interactions is expensive and difficult, so with currently-envisioned techniques it
seems that unique addressing is impractical except for very small patterns.

For a circuit to be well-suited to self-assembly, its structure should have a
highly methodical pattern to it. The simplest such pattern would be a periodic
arrangement of units, such as occurs in a random-access memory circuit, shown
in the upper right region of Figure 3. Indeed, using DNA self-assembly to cre-
ate a molecular-scale memory was suggested in [18]. The pattern generated by
the counter tiles of Section 1 is a somewhat more interesting pattern, yet still
methodical, which we can see is why it was easy to implement via self-assembly.
Later in this paper we will encounter more circuits with methodical structure.

Assembly of two Demultiplexers via Tiling

The Two 
Demultiplexers 

allow addressing 
in 2D memory:



n Assume t = 2, and all glue 
strengths are 1

n Uses four “XOR” tiles, where:
n the bottom side is labeled either 0 or 

1, and 
n the right side is labeled either 0 or 1, 

and 
n the left and upper sides are labeled e 

XOR s where e and s are the bits on 
the east and south sides

n Given the appropriate inputs (i.e. seeds), these tiles 
can do some very interesting things like
n Computing the parity
n Assembling into a fractal pattern

Assembly of Sierpinski Triangle (mod 2 Pascal 
Triangle) via Tiling Self Assembly



Assembly of Sierpinski Triangle (mod 2 Pascal 
Triangle) via Tiling Self Assembly
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Fig. 4. The Sierpiński triangle and a set of tiles that construct it in the limit.

in [7, 11, 3]. Algorithmic self-assembly has been demonstrated at this scale as
well [19].

A demultiplexer could be used as a building block for a larger self-assembled
circuit: a pair of demultiplexers oriented at right angles along the borders of
an N ×N memory allow a memory element to be accessed using only 2 log N
lines. Thus a memory circuit may be self-assembled (see Figure 3). What other
circuits might be possible? Our next constructions derive from the observation
that the demultiplexer circuit implements a generalized inner product of a binary
vector by a binary matrix, with the binary function EQUALS substituting for
multiplication and AND substituting for addition in the definition of matrix
multiplication. That is, the circuit takes an n-bit binary vector, “multiplies” it
by a n×2n size binary “counting” matrix, and outputs a 2n long vector. Similarly,
a circuit for an arbitrary binary matrix multiplication could be created by self-
assembling a circuit decorated with logic gates as appropriate for the matrix of
choice.

3 Self-similar Transforms

Another complex pattern that may be created by a simple self-assembling com-
putation is the Sierpiński triangle, pictured in Figure 4(a). Only seven tiles,
shown in Figure 4(b) (from [27]), are required to create a pattern (shown in Fig-
ure 4(c)) whose limit is this triangular fractal pattern. As with the counter tiles,
its construction depends on τ = 2 assembly. By labeling the sides of the tiles as
“input” and “output”, individual tiles can be seen to encode the binary function
XOR. Diagonals of the assembly, interpreted as zeros and ones, form rows of
Pascal’s triangle modulo 2. It can also be seen that diagonals of the assembly
are instantaneous descriptions of a one-dimensional cellular automaton. Aside
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Sierpinski triangle experiments using DAO-E Tiles 



Applications of Tiling Self-
Assembly

n Self-assembly can be used to create small electrical 
devices such as FLASH memory. [Black et. Al. ’03]

n Self-assembly can create nanostructures which “steer”
light in the same way computer chips steer electrons. 
[Percec et. Al. ’03]

n DNA strands can self-assemble into tiles 
and those tiles can further self-assemble 
into larger structures. This has many 
potential applications. [Winfree 96]

DNA “rug” by Winfree



A DNA “rug” assembled using DNA tiles
• The rug is roughly 500 nm wide, and 
• is assembled using DNA tiles 12nm by 4nm (false colored)
[Erik Winfree, Caltech]



Mesoscale Tile Systems

Performing XOR using self-assembling mesoscale 
(1 cm) tiles
(Square tiles floating on oil with “glues” on each side)
[Paul Rothemund, USC]



Theory of 1-D, 2-D, and 3-D 
Tiling Self-assemblies

n The theory of Linear 1-D tiling self-
assemblies are very different from 2-D tiling 
self-assemblies

n 2-D and 3-D tiling self-assemblies are very 
similar in terms of the theory



2D Tiling Simulation of Block 
Cellular Automata (BCA)

n Giving a BCA, Winfree showed that a 2D Tiling system
can be designed to simulate the BCA’s computation.

n Each row of tiles given the BCA configuration at a 
given time.

n BCAs can simulate Turing Machines, so this implies
that
n Tiling assemblies can execute any 

computation.
n various properties of Tiling assemblies are

undecidable.



2D Tiling Simulation of Block 
Cellular Automata (BCA)

X           Y

f(X, Y)    g(X, Y)



X Y

g(X,Y) T=2f(X,Y)
A series of tiles with format:

Growth direction

Seed tiles

2D Tiling Simulation of Block 
Cellular Automata (BCA)



Tile Complexity

n Tile complexity or program-size 
complexity: the minimum number of tile 
types required to assemble a 
shape.[Erik Winfree and Paul W.K. 
Rothemund STOC 2000]

n A special case: in the linear version 
proposed by [Chandran et al] the tile 
set is MULTISET.



Assemble Arbitrary Shapes

computation

Replace each tile by a block.
Size of block = O(computation time)



Theoretical and Algorithmic Results 
for Tiling Assemblies

n Efficiently assembling basic shapes with precisely 
controlled size and pattern
n Constructing N X N squares with Ω(log n/log log n) tiles

[Adleman, Cheng, Goel, Huang, ’01]

n Perform universal computation by simulating BCA
[Winfree ’99]

n Library of primitives to use in designing nano-scale 
structures [Adleman, Cheng, Goel, Huang, ’01]

n Automate the design process [Adleman, Cheng, Goel, Huang, Kempe, 
Moisset de espanes, Rothemund ’01]

n Robustness



Design Complexity of a Tile System

n Suppose the tile system has k different tiles
n Assume that we have q(k) different glues
n Assume for simplicity that all glues are represented by DNA strands 

of the same length, L
n How many different glues can we have?

n Each position can be one of the bases A, C, T, or G. An A pairs with T on 
the complementary strand, and a C pairs with G. So we can think of 
each position as corresponding to an AC base pair or a CG base pair.

n Two choices ) Binary encoding
n Number of glues · 2L

n Total length of all the DNA strands in all the distinct tiles = 
q(k log k). We will refer to k log k as the design complexity

n Does not depend on the size of the final structure. This is how much 
time and expertise and resources you would have to invest into 
designing the components (like program complexity)



Notes

• We will sometimes use the quantity k to 
refer to the design complexity.

• The rules of assembly are easy to code 
up in a simulator:
• If a tile system of k tiles can assemble 

into a certain shape, then 
• There is a computer program of size
q(k log k) which generates that shape.

• Design complexity is only interesting for 



Three Exercises in Tile 
Assembly

1. Suppose we did not assume that the number of glues is q(k). 
Can you still prove that the total length of all the strands in 
all the tiles is q(k log k)?

2. We assumed that our tiles are oriented, i.e., east is always 
east and north is always north, and the tiles are not allowed 
to rotate. Show how an oriented tile system can be simulated 
using a system where tiles can rotate by +/- 90 degrees.

3. Now use the fact that the  glues are really DNA strands to 
show how an oriented tile system can be simulated using a 
system where tiles can rotate by +/- 90 as well as 180 
degrees.



Tile System Design

n Library of primitives to use in 
designing nano-scale structures
[Adleman, Cheng, Goel, Huang, 2001]

n Automate the design process
[Adleman, Cheng, Goel, Huang, Kempe, Moisset 

de espanes, Rothemund 2001]



Kinetic Tiling System 
Model (KTAM)



Kinetic Tile Assembly 
(KTAM) Model

[Erik Winfree,1988] Assumptions:
• All monomers hold the same constant concentration.
• There are not interactions among aggregates.
• All monomers have the same forward assembly rate 

constant.
• The reverse tile assembly rate depends exponentially 

on the number of pairs need to be broken.  



Kinetic Tile Assembly Model

[Erik Winfree, 1998]



Kinetic Tile Assembly Model

n [monomer] is the concentration of of a 
monomer (single isolated tile). 

n kf is the forward tile assembly rate constant. 
n rf=kf [monomer]=kfe-Gmc

n rr,b=kr,b=kfe-bGse

n Gmc is a measure of entropic cost of fixing a 
monomer at a particular position.  It is 
determined by the concentration of monomer.



Kinetic Tile Assembly Model

n Gse is a measure of free energy cost to 
break a double helix of length s, where 

Gse= (4000K/T-11)s.
n b is the number of s-length double helix 

that need to be broken.



Kinetic Tile Assembly Model:

A tile can attach 
at any location.

The rate of attachment
rf = constant.

The rate of detachment     
rr,b = c e-bG

[Winfree, 1998]



n Set the temperature and concentration to

rr,T+1 <<  rr,T <  rf <<  rr,T-1

n If a tile attaches with strength < T-1, it is 
likely to fall off very fast.

n If a tile is held by strength at least T+1, it is 
unlikely to fall off

Kinetic Tile Assembly Model => 
Abstract Tile Assembly Model  



Time Complexity of Kinetic 
Tile Assembly

n States: possible assembly configurations.
n Rate between state S1 and S2: if S2 is got 

by attaching a tile x to S1. The rate is the 
concentration of tile x. Otherwise, no edge 
between S1 and S2.

n The time from initial configuration to the 
terminal configuration 
n Is a random variable. 
n Assembly Time complexity is the expected 

value of the random variable



Example: A Tile System and its 
Running Time

Seed A

B C
t = 2



Seed
Seed A

B C

Seed A

Seed

B

Seed A

B

A: 50%, B:30%, C: 20%

0.50.3
0.2

0.3
0.5

Example: A Tile System and its Running Time



Reversible Tile Assembly Model

n Proposed by Leonard M. Adleman in 1999 
to study linear assembly.

n Define two functions: 
n (1) σ: G×G->[0,1] 
n (2) v:  G×G->[0,1] where G is the glue set.

n σ(g1,g2) is the probability of a tile 
sticking between glue g1 and g2.

n v(g1,g2) is the probability of a tile 
unsticking between glue g1 and g2.



Tile Systems and Running Time

Define a continuous time Markov chain M:
n State space S: set of all structures that a tile system can 

assemble into 
n Tiles of type Ti have concentration ci

n Σi ci = 1
n Unique terminal structure => unique sink in M
n Seed tile is the unique source state

n Tiling Assembly time: 
n the hitting time to reach the sink state from 

the source state in the Markov Chain



Simple Example: 
1-D Tile Assemblies

n Resulting Markov Chain: 
n Average time for the ith tile to attach is 1/ci

n Assembly time = åi 1/ci

n For fastest assembly, all tiles must have 
the same concentration of 1/(n-1)
n Expected assembly time is ¼ n2

n Can assemble thicker rectangles much faster 
and with much fewer different tiles



Multiple Temperature Tiling 
Assembly Model

n Proposed by [Aggarwal et al. 2004].
n Replace temperature t in tiling model by 

sequence of temperatures {τi}i=1.
n A system that has k temperatures is a k-

temperature system.
n Assembly mechanism: the assembly 

process of a k-temperature system has k 
phases.

k



Multiple Temperature Tiling 
Assembly Model

Assemble and disassemble 
under temperature τ1 for long 

enough time.

Assemble and disassemble 
under temperature τk for long 

enough time.

Phase 1

Phase k

The terminal product of phase k is the terminal 
product of this k-temperature system.



Flexible Glue Tiling 
Assembly Model

n Proposed by [Aggarwal et al. 2004].

n In standard model: g(x, y)= 0 if x≠y.

n In flexible glue model: g(x, y) may 
not be 0 when x≠y.



q-Tile Tiling Assembly Model
n Proposed by [Aggarwal et al. 2004].
n In standard model: only single tile can 

attach to the growing supertile containing 
seed.

n In q-tile model: supertiles of size not 
larger than q can form and attach to the 
seed supertile if the accumulative glue 
strength between two supertiles is not less 
than temperature.
n Standard model is exactly 1-tile model.



Time-dependent Glue Tile 
Assembly Model

n Proposed by [Sahu et al. 2005].
n The glue strength function g is defined 

a a function of time t:
g: G×G×R -> R. g(x, y, t) is the glue 

strength  between glue x and glue y 
when they have been juxtaposed for t 
time.



Time-dependent Glue Tiling 
Assembly Model

[Sahu et al. 2005]



Time-dependent Glue Tiling 
Assembly Model

n Define r: G×G-> R as time for maximum glue 
strength.

n g(x, y, t) is growing when t< r(x, y). 
n When t≥ r(x, y), 

n g(x, y, t)= g(x, y, r(x, y)).

n Define u: G×G-> R as minimum interaction 
time between two glues.



Time-dependent Glue Tiling 
Assembly Model

n An example from Sahu’s paper:



Step-wise Tiling Assembly Model

n Proposed by Reif in 1999.
n A tiling system under step-wise assembly 

model is a quadruple 
Sstep=<{Ti}i=1, s, g, {τi}i=1 >, where 

• k is the number of steps, 
• Ti is the tile set at step i,  and 
• τi is the temperature at step i.

k k



Put in T1 including s. Assemble 
under temperature τ1 for long 

enough time.

Put in Tk in. Assemble 
under temperature τk for 

long enough time.

step 1 (in tube 1)

step k (in tube k)

terminal product of step 1  

terminal product of step k-1 

The terminal product of step k is the 
terminal product of this k-step system.

Step-wise Tiling Assembly Model



Staged Tile Assembly Model

n Proposed by [Demaine et al. 2007].
n It is a generalized version of step-wise 

assembly model first proposed by Reif.
n The assembly process under staged 

assembly model is shown in the Figure 
(next page).



Staged Tiling Assembly Model

• Vertices of mix graph represent bins for separated assembly 
reactions. 

• Each bin has its only tile set and temperature. 
• Only  terminal product of one bin is delivered to bins in next stage.


