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•  Self-Assembly is the  process by which simple 
objects autonomously assemble into complexes. 
–  Geometry, dynamics, combinatorics are all 

important 
–  Inorganic: Crystals, supramolecules  
–  Organic: Proteins, DNA, cells, organisms 

•  Goals: Understand self-assembly, design self-
assembling systems 
–  A key problem in nano-technology, molecular 

robotics, molecular computation 

• Self-Assembly  

• (Chen, Goel, Cheng) 
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What is Molecular Self-assembly? 

•  Self-assembly is the spontaneous formation of a 
complex by small (molecular) components under 
simple combination rules 
–  Geometry, dynamics, combinatorics are all important 
–  Inorganic: Crystals, supramolecules  
–  Organic: Proteins, DNA 

•  Goals: Understand self-assembly, design self-
assembling systems 
–  A key problem in nano-technology, molecular robotics, 

molecular computation 
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A Matter of Scale 

•  Question: Why a mathematical study of “molecular” self-
assembly specifically? 

•  Answer: The scale changes everything 
–  Consider assembling micro-level (or larger) structures such as robotic 

swarms. We can attach rudimentary computers, motors, and radios to 
these structures. 

•  Can now implement an intelligent distributed algorithm. 
–  In molecular self-assembly, we have nano-scale components. No 

computers. No radios. No antennas. We need self-assembly to make 
computers, radios, antennas, motors. 

•  Local rules such as “attach to another component if it has a complementary 
DNA strand” 

–  Self-assembly at larger scales is interesting, but is more a sub-
discipline of distributed algorithms, artificial intelligence etc. 
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The Tile Model of Self-Assembly 

Oriented Tiles with a glue on each side 
– Each glue is labeled by a strength 

 
 
 

 
– Tiles floating on an infinite grid; Temperature τ 
– A tile can add to an existing assembly if 
 total strength of matching glues ≥ τ 
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Single bar: strength 1 glue 
Double bar: strength 2 glue 

τ = 2  

[Wang ’61] 



Tiling Self-Assembly of Counter 

• Counter made by self-assembly  
• [Adleman, Cheng, Goel, Huang ’01] • (Chen, Goel, Cheng) 

 

Figure 16: Programmable assembly of Sierpinski triangle by use of computational assembly Scale bar = 100nm 

 

Figure 17: Rothemund’s and Winfree’s design for a self-assembled binary counter using tilings. 

6.2.3 Programmable assembly of patterned 2D DNA lattices by hierarchical assembly 

A further approach, known as hierarchical assembly, is to assemble DNA lattices in multiple stages (Park 



MS&E 319, Molecular self-assembly: models and algorithms. Stanford University, Spring 2003-04 7 

Synthesized Tile Systems – I 

•  Styrene molecules attaching to a Silicon substrate 
–  Coat Silicon substrate with Hydrogen 
–  Remove one Hydrogen atom and bombard with Styrene 

molecules 
–  One Styrene molecule attaches, removes another Hydrogen 

atom, resulting in a chain 
–   Suggested use: Self-assembled molecular wiring on 

electronic circuits 
 [Wolkow et al. ’00] 

 



DNA Tiles 

Glues = sticky ends 
Tiles = molecules 
 

[Winfree] 

• (Chen, Goel, Cheng) 



Tile System: 

Temperature: A positive integer. 
 

A set of tile types: Each tile is an oriented square with glues on its 
edges. Each glue has a non-negative strength. 
 

An initial assembly (seed). 

A tile can attach to an assembly 
iff the combined strength of the 
“matchings glues” is greater or 
equal than the temperature. 

• [Rothemund, Winfree, ’2000] 

• (Chen, Goel, Cheng) 



Example of a tile system 

Temperature: 2 
 

Set of tile types:  
 

Seed: 

• (Cheng, Goel, Cheng) 



Example of a SA process 

Temperature: 2 
 

Set of tile types:  
 

Seed: 

• (Cheng, Goel, Cheng) 



Example of a SA process 

Temperature: 2 
 

Set of tile types:  
 

Seed: 

• (Cheng, Goel, Cheng) 



Example of a SA process 

Temperature: 2 
 

Set of tile types:  
 

Seed: 

• (Cheng, Goel, Cheng) 
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Synthesized Tile Systems - II 

A DNA “rug” assembled using DNA “tiles”  
The rug is roughly 500 nm wide, and is assembled using 

DNA tiles roughly 12nm by 4nm (false colored) 
(Due to Erik Winfree, Caltech) 



Applications of Self-Assembly 

•  Self-assembly can be used to create small 
electrical devices such as FLASH memory. 
[Black et. Al. ’03] 

•  Self-assembly can create nanostructures which 
“steer” light in the same way computer chips 
steer electrons. [Percec et. Al. ’03] 

n  DNA strands can self-assemble 
into tiles and those tiles can further 
self-assemble into larger 
structures. This has many potential 
applications. [Winfree ’96] 

DNA “rug” by Winfree 

• (Chen, Goel, Cheng) 
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Toy Tile Systems in the Lab 

Performing XOR using self-assembling tiles 
(Square tiles floating on oil with “glues” on each side) 

(Due to Paul Rothemund, USC) 
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Abstract Tile Systems 

•  Tile: the four glues and their strengths 
•  Tile System Г: 

–  K tiles 
–  Infinitely many copies available of each tile 
–  Temperature τ  
–  A seed tile s 

•  Accretion Model: 
–  Assembly starts with a single seed tile, and proceeds by repeated 

addition of single tiles e.g. Crystal growth 
–  Are interested primarily in tile systems that assemble into a unique 

terminal structure 

[Rothemund and Winfree ‘00] [Wang ‘61] 
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Is Self-Assembly Just Crystallization? 

•  No. Crystals do not grow into unique terminal structures! 
–  A sugar crystal does not grow to precisely 20nm 

•  Crystals are typically made up of a small number of different 
types of components 
–  Two types of proteins; a single Carbon molecule 

•  Crystals have regular patterns 
–  Computer circuits, which we would like to self-assemble,  don’t 

•  Self-assembly = combinatorics + crystallization 
–  Can count, make interesting patterns 
–  Nature doesn’t count too well, so molecular self-assembly is a 

genuinely new engineering paradigm. Think engines. Think 
semiconductors. 
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A Roadmap for This Course 

•  Self-assembly as a combinatorial process 
–  The computational power of self-assembly 
–  Self-assembling interesting shapes and patterns, efficiently 

•  Automating the design process? 

–  Analysis of design complexity, experiment complexity, and assembly 
time 

•  Self-assembly as a chemical reaction 
–  Entropy, Equilibria, and Error Rates 
–  Reversibility 

•  Review of experimental progress, interesting applications 
•  Self-assembly at larger scales 

–  Ant colony optimization; assembling autonomous robots 
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DNA Self-Assembly 

•  We will tacitly assume that the tiles are made of DNA strands 
woven together, and that the glues are really free DNA strands 
–  DNA is combinatorial, i.e., the functionality of DNA is determined 

largely by the sequence of ACTG bases. Can ignore geometry to a first 
order. 

•  Trying to “count” using proteins would be hell – proteins have a 
complicated geometry and it is hard to predict what shape a single protein 
will take, let alone an entire assembly 

–  Proof-of-concept from nature: DNA strands can attach to 
combinatorially matching sequences 

–  DNA tiles have been constructed in the lab, and DNA computation has 
been demonstrated 

–  Can simulate arbitrary tile systems, so we do not lose any theoretical 
generality, but we get a concrete grounding in the real world 

–  The correct size (in the nano range) 
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1-D, 2-D, and 3-D 

•  Linear self-assemblies are very different from 2-D 
self-assemblies 

•  2-D and 3-D are essentially identical in terms of the 
theory 

•  Will focus on 2-D in this course, and will passingly 
refer to 1-D 
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Design Complexity of a Tile System 

•  Suppose the tile system has k different tiles 
–  Assume that we have θ(k) different glues 
–  Assume for simplicity that all glues are represented by DNA strands of 

the same length, L 
–  How many different glues can we have? 

•  Each position can be one of the bases A, C, T, or G. An A pairs with T on 
the complementary strand, and a C pairs with G. So we can think of each 
position as corresponding to an AC base pair or a CG base pair. 

•  Two choices ) Binary encoding 
•  Number of glues · 2L 

–  Total length of all the DNA strands in all the distinct tiles = θ(k log k). 
We will refer to k log k  as the design complexity 

•  Does not depend on the size of the final structure. This is how much time 
and expertise and resources you would have to invest into designing the 
components (like program complexity) 
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Notes 

1.  We will sometimes informally use the quantity k to 
refer to the design complexity. 

2.  The rules of assembly are easy to code up in a 
simulator. Thus if a tile system of k tiles can 
assemble into a certain shape, then there is a 
computer program of size θ(k log k) which 
generates that shape. 

3.  Design complexity is only interesting for 
assembling larger and larger shapes of a particular 
type, eg. squares, lines, spirals. Design complexity 
of an infinite line, infinite square etc. is just 1. 
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Three Exercises 

1.  Suppose we did not assume that the number of glues is θ(k). 
Can you still prove that the total length of all the strands in 
all the tiles is θ(k log k)? 

2.  We assumed that our tiles are oriented, i.e., east is always 
east and north is always north, and the tiles are not allowed 
to rotate. Show how an oriented tile system can be simulated 
using a system where tiles can rotate by +/- 90 degrees. 

3.  Now use the fact that the  glues are really DNA strands to 
show how an oriented tile system can be simulated using a 
system where tiles can rotate by +/- 90 as well as 180 
degrees. 
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Some Lower Bounds on Design Complexity 

•  Consider assembling a line of length n 
–  Need at least n different tiles (high design complexity) 

 
•  Suppose tiles B and F are the same.Then we can “pump” the line 

segment BCDE into an infinite line 
•  Are we doomed? No. Can assemble thicker rectangles more 

efficiently 

•  Consider assembling an n x n square 
–  The average Kolmogorov complexity (the smallest 

program size to produce a desired output) is log n bits 
•  Thus, k log k = Ω(log n), or k = Ω(log n/log log n) 

 

B C D E F G H I A B C D E B C D E B C D E 
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Tile Systems and Running Time 

• d •   

Seed A 

B C 

τ = 2 
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Tile Systems and Running Time 

• d •   

Seed 
Seed A 

B C 

Seed A 

Seed 

B 

Seed A 

B 

A: 50%, B:30%, C: 20% 

0.5 0.3 

0.2 

0.3 
0.5 
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Tile Systems and Running Time 

•  Define a continuous time Markov chain M 
–  State space S: set of all structures that a tile system can 

assemble into  
–  Tiles of type Ti have concentration ci 

• Σi ci = 1 

–  Unique terminal structure => unique sink in M 
–  Seed tile is the unique source state 

•  Assembly time: the hitting time for the sink state 
from the source state in the Markov Chain 
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Old Example: Assembling Lines 

•  Very simple Markov Chain. Average time for the ith  
tile to attach is 1/ci 

–  Assembly time = ∑i 1/ci 

•  For fastest assembly, all tiles must have the same 
concentration of 1/(n-1) 
–  Expected assembly time is ¼ n2 

–  Can assemble thicker rectangles much faster and with 
much fewer different tiles 
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A Pretty Picture: Sierpinski Triangles 

•  Consider the four “XOR” tiles, where the south side 
is labeled either 0 or 1, and the east side is labeled 
either 0 or 1, and the west and north sides are labeled 
e XOR s where e and s are the bits on the east and 
south sides 
–  Assume τ = 2, and all glue strengths are 1 

•  Given the appropriate inputs (i.e. seeds), these tiles 
can do some very interesting things like 
–  Computing the parity 
–  Assembling into a very pretty fractal 
–  They have already been designed in a lab setting 



Theoretical and Algorithmic Issues 
•  Efficiently assembling basic shapes with precisely 

controlled size and pattern 
–  Constructing N X N squares with Ω(log n/log log n) tiles 

[Adleman, Cheng, Goel, Huang, ’01] 
–  Perform universal computation by simulating BCA 

[Winfree ’99] 

•  Library of primitives to use in designing nano-
scale structures [Adleman, Cheng, Goel, Huang, ’01] 

•  Automate the design process [Adleman, Cheng, Goel, Huang, 
Kempe, Moisset de espanes, Rothemund ’01] 

•  Robustness 

• (Cheng, Goel, Cheng) 


