
Molecular Self-Assembly: Models and Algorithms
 Ashish Goel

Stanford University

MS&E 319/CS 369X; Research topics in optimization; Stanford University, Spring 2003-04

http://www.stanford.edu/~ashishg

•  Self-Assembly is the process by which simple
objects autonomously assemble into complexes.
–  Geometry, dynamics, combinatorics are all

important
–  Inorganic: Crystals, supramolecules
–  Organic: Proteins, DNA, cells, organisms

•  Goals: Understand self-assembly, design self-
assembling systems
–  A key problem in nano-technology, molecular

robotics, molecular computation

• Self-Assembly

• (Chen, Goel, Cheng)

MS&E 319, Molecular self-assembly: models and algorithms. Stanford University, Spring 2003-04 3

What is Molecular Self-assembly?

•  Self-assembly is the spontaneous formation of a
complex by small (molecular) components under
simple combination rules
–  Geometry, dynamics, combinatorics are all important
–  Inorganic: Crystals, supramolecules
–  Organic: Proteins, DNA

•  Goals: Understand self-assembly, design self-
assembling systems
–  A key problem in nano-technology, molecular robotics,

molecular computation

MS&E 319, Molecular self-assembly: models and algorithms. Stanford University, Spring 2003-04 4

A Matter of Scale

•  Question: Why a mathematical study of “molecular” self-
assembly specifically?

•  Answer: The scale changes everything
–  Consider assembling micro-level (or larger) structures such as robotic

swarms. We can attach rudimentary computers, motors, and radios to
these structures.

•  Can now implement an intelligent distributed algorithm.
–  In molecular self-assembly, we have nano-scale components. No

computers. No radios. No antennas. We need self-assembly to make
computers, radios, antennas, motors.

•  Local rules such as “attach to another component if it has a complementary
DNA strand”

–  Self-assembly at larger scales is interesting, but is more a sub-
discipline of distributed algorithms, artificial intelligence etc.

MS&E 319, Molecular self-assembly: models and algorithms. Stanford University, Spring 2003-04 5

The Tile Model of Self-Assembly

Oriented Tiles with a glue on each side
– Each glue is labeled by a strength

– Tiles floating on an infinite grid; Temperature τ
– A tile can add to an existing assembly if
 total strength of matching glues ≥ τ

d

a b

c b

b

a

c
f

d

a
b b

d

Single bar: strength 1 glue
Double bar: strength 2 glue

τ = 2

[Wang ’61]

Tiling Self-Assembly of Counter

• Counter made by self-assembly
• [Adleman, Cheng, Goel, Huang ’01] • (Chen, Goel, Cheng)

Figure 16: Programmable assembly of Sierpinski triangle by use of computational assembly Scale bar = 100nm

Figure 17: Rothemund’s and Winfree’s design for a self-assembled binary counter using tilings.

6.2.3 Programmable assembly of patterned 2D DNA lattices by hierarchical assembly

A further approach, known as hierarchical assembly, is to assemble DNA lattices in multiple stages (Park

MS&E 319, Molecular self-assembly: models and algorithms. Stanford University, Spring 2003-04 7

Synthesized Tile Systems – I

•  Styrene molecules attaching to a Silicon substrate
–  Coat Silicon substrate with Hydrogen
–  Remove one Hydrogen atom and bombard with Styrene

molecules
–  One Styrene molecule attaches, removes another Hydrogen

atom, resulting in a chain
–  Suggested use: Self-assembled molecular wiring on

electronic circuits
 [Wolkow et al. ’00]

DNA Tiles

Glues = sticky ends
Tiles = molecules

[Winfree]

• (Chen, Goel, Cheng)

Tile System:

Temperature: A positive integer.

A set of tile types: Each tile is an oriented square with glues on its
edges. Each glue has a non-negative strength.

An initial assembly (seed).

A tile can attach to an assembly
iff the combined strength of the
“matchings glues” is greater or
equal than the temperature.

• [Rothemund, Winfree, ’2000]

• (Chen, Goel, Cheng)

Example of a tile system

Temperature: 2

Set of tile types:

Seed:

• (Cheng, Goel, Cheng)

Example of a SA process

Temperature: 2

Set of tile types:

Seed:

• (Cheng, Goel, Cheng)

Example of a SA process

Temperature: 2

Set of tile types:

Seed:

• (Cheng, Goel, Cheng)

Example of a SA process

Temperature: 2

Set of tile types:

Seed:

• (Cheng, Goel, Cheng)

MS&E 319, Molecular self-assembly: models and algorithms. Stanford University, Spring 2003-04 14

Synthesized Tile Systems - II

A DNA “rug” assembled using DNA “tiles”
The rug is roughly 500 nm wide, and is assembled using

DNA tiles roughly 12nm by 4nm (false colored)
(Due to Erik Winfree, Caltech)

Applications of Self-Assembly

•  Self-assembly can be used to create small
electrical devices such as FLASH memory.
[Black et. Al. ’03]

•  Self-assembly can create nanostructures which
“steer” light in the same way computer chips
steer electrons. [Percec et. Al. ’03]

n  DNA strands can self-assemble
into tiles and those tiles can further
self-assemble into larger
structures. This has many potential
applications. [Winfree ’96]

DNA “rug” by Winfree

• (Chen, Goel, Cheng)

MS&E 319, Molecular self-assembly: models and algorithms. Stanford University, Spring 2003-04 16

Toy Tile Systems in the Lab

Performing XOR using self-assembling tiles
(Square tiles floating on oil with “glues” on each side)

(Due to Paul Rothemund, USC)

MS&E 319, Molecular self-assembly: models and algorithms. Stanford University, Spring 2003-04 17

Abstract Tile Systems

•  Tile: the four glues and their strengths
•  Tile System Г:

–  K tiles
–  Infinitely many copies available of each tile
–  Temperature τ
–  A seed tile s

•  Accretion Model:
–  Assembly starts with a single seed tile, and proceeds by repeated

addition of single tiles e.g. Crystal growth
–  Are interested primarily in tile systems that assemble into a unique

terminal structure

[Rothemund and Winfree ‘00] [Wang ‘61]

MS&E 319, Molecular self-assembly: models and algorithms. Stanford University, Spring 2003-04 18

Is Self-Assembly Just Crystallization?

•  No. Crystals do not grow into unique terminal structures!
–  A sugar crystal does not grow to precisely 20nm

•  Crystals are typically made up of a small number of different
types of components
–  Two types of proteins; a single Carbon molecule

•  Crystals have regular patterns
–  Computer circuits, which we would like to self-assemble, don’t

•  Self-assembly = combinatorics + crystallization
–  Can count, make interesting patterns
–  Nature doesn’t count too well, so molecular self-assembly is a

genuinely new engineering paradigm. Think engines. Think
semiconductors.

MS&E 319, Molecular self-assembly: models and algorithms. Stanford University, Spring 2003-04 19

A Roadmap for This Course

•  Self-assembly as a combinatorial process
–  The computational power of self-assembly
–  Self-assembling interesting shapes and patterns, efficiently

•  Automating the design process?

–  Analysis of design complexity, experiment complexity, and assembly
time

•  Self-assembly as a chemical reaction
–  Entropy, Equilibria, and Error Rates
–  Reversibility

•  Review of experimental progress, interesting applications
•  Self-assembly at larger scales

–  Ant colony optimization; assembling autonomous robots

MS&E 319, Molecular self-assembly: models and algorithms. Stanford University, Spring 2003-04 20

DNA Self-Assembly

•  We will tacitly assume that the tiles are made of DNA strands
woven together, and that the glues are really free DNA strands
–  DNA is combinatorial, i.e., the functionality of DNA is determined

largely by the sequence of ACTG bases. Can ignore geometry to a first
order.

•  Trying to “count” using proteins would be hell – proteins have a
complicated geometry and it is hard to predict what shape a single protein
will take, let alone an entire assembly

–  Proof-of-concept from nature: DNA strands can attach to
combinatorially matching sequences

–  DNA tiles have been constructed in the lab, and DNA computation has
been demonstrated

–  Can simulate arbitrary tile systems, so we do not lose any theoretical
generality, but we get a concrete grounding in the real world

–  The correct size (in the nano range)

MS&E 319, Molecular self-assembly: models and algorithms. Stanford University, Spring 2003-04 21

1-D, 2-D, and 3-D

•  Linear self-assemblies are very different from 2-D
self-assemblies

•  2-D and 3-D are essentially identical in terms of the
theory

•  Will focus on 2-D in this course, and will passingly
refer to 1-D

MS&E 319, Molecular self-assembly: models and algorithms. Stanford University, Spring 2003-04 22

Design Complexity of a Tile System

•  Suppose the tile system has k different tiles
–  Assume that we have θ(k) different glues
–  Assume for simplicity that all glues are represented by DNA strands of

the same length, L
–  How many different glues can we have?

•  Each position can be one of the bases A, C, T, or G. An A pairs with T on
the complementary strand, and a C pairs with G. So we can think of each
position as corresponding to an AC base pair or a CG base pair.

•  Two choices) Binary encoding
•  Number of glues · 2L

–  Total length of all the DNA strands in all the distinct tiles = θ(k log k).
We will refer to k log k as the design complexity

•  Does not depend on the size of the final structure. This is how much time
and expertise and resources you would have to invest into designing the
components (like program complexity)

MS&E 319, Molecular self-assembly: models and algorithms. Stanford University, Spring 2003-04 23

Notes

1.  We will sometimes informally use the quantity k to
refer to the design complexity.

2.  The rules of assembly are easy to code up in a
simulator. Thus if a tile system of k tiles can
assemble into a certain shape, then there is a
computer program of size θ(k log k) which
generates that shape.

3.  Design complexity is only interesting for
assembling larger and larger shapes of a particular
type, eg. squares, lines, spirals. Design complexity
of an infinite line, infinite square etc. is just 1.

MS&E 319, Molecular self-assembly: models and algorithms. Stanford University, Spring 2003-04 24

Three Exercises

1.  Suppose we did not assume that the number of glues is θ(k).
Can you still prove that the total length of all the strands in
all the tiles is θ(k log k)?

2.  We assumed that our tiles are oriented, i.e., east is always
east and north is always north, and the tiles are not allowed
to rotate. Show how an oriented tile system can be simulated
using a system where tiles can rotate by +/- 90 degrees.

3.  Now use the fact that the glues are really DNA strands to
show how an oriented tile system can be simulated using a
system where tiles can rotate by +/- 90 as well as 180
degrees.

MS&E 319, Molecular self-assembly: models and algorithms. Stanford University, Spring 2003-04 25

Some Lower Bounds on Design Complexity

•  Consider assembling a line of length n
–  Need at least n different tiles (high design complexity)

•  Suppose tiles B and F are the same.Then we can “pump” the line

segment BCDE into an infinite line
•  Are we doomed? No. Can assemble thicker rectangles more

efficiently

•  Consider assembling an n x n square
–  The average Kolmogorov complexity (the smallest

program size to produce a desired output) is log n bits
•  Thus, k log k = Ω(log n), or k = Ω(log n/log log n)

B C D E F G H I A B C D E B C D E B C D E

MS&E 319, Molecular self-assembly: models and algorithms. Stanford University, Spring 2003-04 26

Tile Systems and Running Time

• d • 

Seed A

B C

τ = 2

MS&E 319, Molecular self-assembly: models and algorithms. Stanford University, Spring 2003-04 27

Tile Systems and Running Time

• d • 

Seed
Seed A

B C

Seed A

Seed

B

Seed A

B

A: 50%, B:30%, C: 20%

0.5 0.3

0.2

0.3
0.5

MS&E 319, Molecular self-assembly: models and algorithms. Stanford University, Spring 2003-04 28

Tile Systems and Running Time

•  Define a continuous time Markov chain M
–  State space S: set of all structures that a tile system can

assemble into
–  Tiles of type Ti have concentration ci

• Σi ci = 1

–  Unique terminal structure => unique sink in M
–  Seed tile is the unique source state

•  Assembly time: the hitting time for the sink state
from the source state in the Markov Chain

MS&E 319, Molecular self-assembly: models and algorithms. Stanford University, Spring 2003-04 29

Old Example: Assembling Lines

•  Very simple Markov Chain. Average time for the ith
tile to attach is 1/ci

–  Assembly time = ∑i 1/ci

•  For fastest assembly, all tiles must have the same
concentration of 1/(n-1)
–  Expected assembly time is ¼ n2

–  Can assemble thicker rectangles much faster and with
much fewer different tiles

MS&E 319, Molecular self-assembly: models and algorithms. Stanford University, Spring 2003-04 30

A Pretty Picture: Sierpinski Triangles

•  Consider the four “XOR” tiles, where the south side
is labeled either 0 or 1, and the east side is labeled
either 0 or 1, and the west and north sides are labeled
e XOR s where e and s are the bits on the east and
south sides
–  Assume τ = 2, and all glue strengths are 1

•  Given the appropriate inputs (i.e. seeds), these tiles
can do some very interesting things like
–  Computing the parity
–  Assembling into a very pretty fractal
–  They have already been designed in a lab setting

Theoretical and Algorithmic Issues
•  Efficiently assembling basic shapes with precisely

controlled size and pattern
–  Constructing N X N squares with Ω(log n/log log n) tiles

[Adleman, Cheng, Goel, Huang, ’01]
–  Perform universal computation by simulating BCA

[Winfree ’99]

•  Library of primitives to use in designing nano-
scale structures [Adleman, Cheng, Goel, Huang, ’01]

•  Automate the design process [Adleman, Cheng, Goel, Huang,
Kempe, Moisset de espanes, Rothemund ’01]

•  Robustness

• (Cheng, Goel, Cheng)

