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' ' | 0. Summary

This paper concerns the problem of moving a
polyhedron through Euclidean space while avoiding
polyhedral obstacles.

1. Introductioﬁ

The classical mover's problem in d-space is:

- Input: (R,S,pI,pF) where R is‘a set of poly-

hedral obstacles fixed in Euclidean
d-space, and S (say, a sofa) is a rigid
polyhedron with distinguished- pssitions
Py and Pg-

Property: Can S be moved (by a sequence of
translations and rotations in d-space)
from positionpI to Pe without con-

tacting any element of R?

We consider the discretized version of this
problem; the input R and S are given as systems
of linear 1nequa11t1es within a f1xed accuracy
T, O0<t<1.

Flgure 1: A 2-D Mover's Problem: Can rectang]e S
be moved from Pq to Pe without contacting any -
obstacles in R?

Figure 2: A Solution to the 2-D Mover's Problem
of Figure 1. S may be moved through positions

P1=Pg-Py»----Pg= P

- *The author has recent]y moved to Aiken Computa-
tion Laboratory, Harvard University, Cambridge,
Massachusetts.



A corrett algorithm for the discretized

- mover's problem is allowed to yield an inconclu-
sive answer (i.e., "maybe") only in the case

that: -

1) S, contracted by a factor of {1-1),
can be moved from pp to P> but

2) the move is impossible if S is
expanded by a factor of {(1+z).

We present (Section 4) a 94]3n0m1a] ~time
algorithm for the classical mover's problem in
2 and 3 dimensions. In spite of considerable
previous work on this problem!»2s3:% by workers
in the robotics field, no algorithm guaranteed
to run in polynomial time and w1th fixed accuracy
has prev1ous]y appeared.

The mover's problem may be generalized to
allow S (the object to be moved) to consist of
multiple polyhedra freely linked together at
various distinguished vertices. (A typical
example is a robot arm with multiple joints.)
Again, the input is -specified by systems of
linear inequalities with accuracy .

Generalized mover's problems have been
considered>s® in addition to the previously
sited references.

We present (Section 3) a polynomial-space
algorithm for the generalized mover's problem.
Furthermore, we show (Section 2) the generalized
mover's problem in 3-space is. P-space hard, by
a direct log-space reduction from the acceptance
problem for polynomial space bounded Turing
machines. :

The generalized mover's problem is thus the
first known p-space complete computational
geometry problem (and is one of very few known
p-space complete combinatorial problems which is
not a game with a polynomial time limit.) -

‘2. The Generalized Mover's Problem
is P-Space Hard

Let M be a deterministic Turing Machine
with polynomial space bound s(n)>n. We assume
. without Toss of generality, M has

1) one tape with tape a]phabet
{0,1}, and

2) a E]anar‘finite state diagram.



~Let Q be the set of states of M, with n
distinguished injtial state qu:Q. Let we {0,1}

be an input string. We construct a generalized
mover's problem (R,S,pI,pF) in 3-space which has

a solution if and only if M accepts w. Assuming
a fixed binary encoding of the generalized
mover's probiem into {0,1}*, our construction
requires 0(logn) work space on a deterministic
Turing machine. :

. In our constructed generalized mover's
problem, the obstacles R define a flat slab (of
thickness 2s{n)+1). Within the slab is a net-
work of open channels. . These channels are
connected as in the finite-state control of M:

1) there are |Q] juncticns between the
channels and each junction is named
for. a distinct state qeQ, and

2) the channels are in one-to-one
correspondence with the state transi-
tions of M.

Figure 3 illustrates the object S to be
moved; it consists of a vertical bar -of length
s(n) units, with s{n) "arms" freely linked to
the bar at unit intervals. The cross-section of
a typical channel is illustrated in Figure 4,
and consists of 2s(n)-1 "arm slots" at levels
{1,2,...,2s(n)-1}. S is positioned within a
channel as in Figure 5, with each arm in either
the left or right portion of an arm slot. (The
"elbow" at the end of each arm constrains the
arm to remain either to the left or to the
right.) The key idea is that the position of S
encodes the tape contents of M:

1) the position (left,right) of the ith
arm describes the symbol (0 or 1,
respectively) on the ith tape cell,
and ,

2) the vertical position of S describes
the position of the read/write head of
M (in particular, the arm of S
currently in the arm slot of level s(n)
corresponds to the currently scanned
tape cell).



Figure 3: The object S to be moved, encoding
tape contents 0,0,1,...,1,1,0.

" Figure 4: A typical cross-section of a channel.

Figure 5: A position of S within a cross-section of
a channel, with s(n)=5. S encodes tape contents
0,0,1,0,1 and tape cell 4 is currently under the

tape head.

~ We now provide the further details of the
construction of the channels which simulate the
state transitions of M.

If the tape is moved to tiie right in a
state transition, then in the corresponding
channel the arm s]ots slant upward one unit so
as to force S to be moved vertically up one
unit. A symmetric construction is used in the
case a tape is moved to the left (see Figure 6).

Figure 6: A lengthwise cross-section of a channel
which forces S up one unit in a state iransition
. from q to q':

To test if the currently scanned tape cell
is 0 or 1, we construct a junction which forces
S to branch to left or right channels, depending
on the position of the arm within the arm slot
of level s(n). (If this arm is originally posi-
tioned to the left, then § branches left, and
vice versa.) See Figure 7.

Figure 7: Cross-section at level s(n) of a
Jjunction which forces S to branch left or right
d?pgnd1ng on the posxt10n of that arm at level
s(n



We assume that the read/write head of M is
not moved on any transition during which a tape
cell is written.

In a state transition in which the current-
ly scanned tape cell is set to 1, we have a
corresponding channel with a special cross-
section described in Figure 8, which forces the
arm at level s(n) to move from the left to the
right. (Note: the arms of S are so configured
that it is not possible for an arm to be
positioned in the center of a channel cross-
section.) The case in which a tape cell origi-
nally 1 is set to 0 is symmetric.

Figure 8: A channel cross-section at level s(n)
which forces the arm of S at dcpth s(n) from the
left to the right position of the arm slot.

In the initial position Pr> let S be within

the junction corresponding to the initial state
9 and with the arms. of S encoding the input

string w. Let the final position pe have S

within the junction corresponding to the final
state Qe and with the arms of S in some arbitrary

position. (We assume.that this final junction
does not constrain the arms of S.)

In the resulting generalized mover's
problem, S can be moved from position P to posi-
tion Pg if and only if M accepts input string w.

3. A Polynomial-Space Algorithm
for the Generalized Mover's Problem

We now sketch a simple polynomial-space
algorithm for the generalized mover's problem in
d-space, with a set of polyhedral obstacles R
fixed in d-space and a connected set S of poly-
hedra freely linked at various distinguished
vertices, and distinguished positions P and Pe

of S. The input.is assumed to be specified
within accuracy z, 0<t<1.



, A position p of Swill be specified by a
sequence p = (x »+--»Xgqs) of Tength d'=d+(d-1)h+

with each element of xi‘given within accuracy .

" We wish to determine if S can be moved from posi-
tion P to position Pg without contacting any

of the obstacles of R.

Let % S(p) be the predicate which is true

iff position p is both a feasible position of S
and S contacts no element of R. 0 g can be
S

specified by a 'system of multinomial inequalities
(of size polynomial in the input) over given
values of the variables X oXoseee X i Thus

- S(p) can be computed, within accuracy t, in
- polynomial time for any given position p.

The following algorithm runs in nondetermi-
nistic polynomial space (and can be implemented
in deterministic_po]ynomia] space’).

Aigorithm A

Input (RsSaP'I,PF) J

[lj p< pI
[2] if oy ((p)#true then fail.
[3] if p=pp then accept

[4] ndndeterministically choose a position p'
of S so that no vertex of S is moved more
than 1

-[5] p+p'_
[6]1 goto [2].

To solve a generalized mover's problem
(R,S,p;>p;) within accuracy , we let S, and

S_T be derived from S by expanding by a factor
- (14t) and contracting by (1-t), respectively.

First apb]y algorithm A to (R,S+T,DI,PF);

if the algorithm accepts then output "yes" and
halt. Else apply algorithm A to (R’S-f’pl’pF);

~if the algorithm does not accept then output
“no." Otherwise, output "maybe." (Recall that
a correct algorithm for the mover's problem is
allowed to output an inconclusive answer if the
problem is not determinable within accuracy t.)



4. A Polynomial-Time Algorithm
for the Classical Mover's Problem in 2 and 3-D

We consider here the classical mover's
problem (R,S,pI,pF) for dimensions d=2 and 3.

Recall from Section 1 that this problem is
restricted to moving a single polyhedron S {with
no freely connected links) through d-space avoid-
ing polyhedral obstacles R. Our basic approach
is to transform the classical mover's problem to
the problem of moving a singie point in d'-space
(where d'=3 if d=2 and d" =6 if d=3), avoid- -
ing certain obstacles (forbidden subspaces).

Each position of S corresponds to a point in
d'-space, and each of the obstacles in the
transformed mover's problem corresponds to posi-
tions in which S contacts an obstacle of R (see
Figure 9).

Figure 9: Transformed mover's problem from
Figure 1. The 1-contact sets (the obstacles of
the transformed problem) define a torus with
cross-sections CSé illustrated for

8=0, v/4, n/2, 3u/4, n. S may be moved through
positions Py=PgsPys---sPg=Pf aS in Figure 2.

Certain previous research has also taken
this approach3-*. The fundamental difficulty is
that the obstacles in the transformed problem
are nonlinear. Lozano-Perez and Wesley“ approxi-
mate the obstacles in the transformed problem by
linear constraints; however, to solve the mover's
problem within the accuracy t of the input, in
the worst case an exponeritial number (in the
input size) of linear constraints are required to
approximate the obstacles in the transformed
problem. To solve the 2 and 3 dimensional mover's
problems within both polynomial time and accuracy
1, we describe the obstacles in the transformed
problem by systems of multinomials of low degree
with coefficients specified within accuracy .




Some definitions are now required. For
-each position p of S, let the contact vertices
of p be those vertices of R contacting S, and
those vertices of S contacting R. For u>0, let
a p-contact set be a maximal connected set of
positions with at least u common contact
vertices. If {R|,|S| are the number of inequali-
ties defining R,S, then there are G(|R|"|S|*)
p-contact sets. .

We can show that for u>d', any u-contact
set is also a d'-contact set. For p=2,3,....,d
the u-contact sets will be constructed by inter-
secting all (u-1)-contact sets with l-contact
sets.

Consider, for example, a classical mover's
problem (R,S,pI,pF) restricted to 2-space, with

the obstacles R consisting of a set of line seg-
ments and S a single polygon. A position of S
can be specified by a triple (x,y,6) where (x,y)
are the cartesian coordinates of some fixed
vertex of S and & is the angle of rotation around
this vertex. We define a mapping t from the
position of S to 3-space. Let.t(x,y,6) =
(x',y'sz') where y=2z', tan(s)= x'/y', and

ox= (x")2+(y')2-5, for some sufficiently
large constant 6>0. (6§ may be taken as the
diameter -of ‘a circle enclosing S.) See Figure 10.

Figure 10: The mapping t(x,y.s8) = (x',y',z").

In this case with d=2, the l-contact sets
(the obstacles in this transformed problem in
3-space) are quadratic surface patches of the
form: {r(x,y,8)|egx+8gy =cos(6-8;) and
aix+siy3;licos(e—ei) for 1=1,2} where the
@5 Bi» Ai’ 6; are constants given within the
accuracy t of the input.

. The quadratic inequalities describing each
of these O(|R|[S|) l-contact sets can be deter-
mined in constant time from pairs of line seg-

ments and vertices taken from R and S.

The 0(|R]2|S]2) 2-contact sets are formed
from intersections of all pairs of l-contact
sets. Comba® presents an efficient procedure
for determining the intersection of general »
quadratic surface patches. Since the l-contact
sets are linear x and y -in the case of d=2,
each of the 2-contact sets are guadratic and can
be simply determined without the "application of
Comba's procedure. The 3-contact sets may be
computed by Comba's procedure from intersections
of 1 and 2-contact sets, both of which are quad-
"~ ratic. : g



In'the 3-dimensional version of the classi-
caT mover's problem (R, S’pI’pF)’ a position of S

can be specified by a tuple (X,y,z,97,62,83)
where (x,y,z) are the cartesian coordinates of a
distinguished vertex of S and 81485583 specify

the angular displacement of S. An appropriate
mapping t can be definad from positions of S to
6-space. In this case l-contact sets (the
obstacles in this transformed problem) can be
defined by constraints of the form:

{t(x,y,2,8,9) |agx+Boy+yoz =
cos(el-wOI)-cos(ez-woz)-cos(e3—w03)
and
aX¥BLYFY;Z > A_i.cos.(el-rpi1)cos(62-'4:12)cos(e3—¢1.3)
for i=1,2,...,k} where the ais Bis Yis Ays s

i ij
are constants.

Again, each of these systems of inequalities
describing a 1-contact set can be easily
constructed by considering pa1rs of faces and

vertices of R and S.

For u==2,3,...,6==d' the u-contact sets are
constructed by intersecting all 1l-contact and
(u-1)-contact sets. (These intersections require
~ the repeated solution with accuracy t of multi-
nomials of low degree with many subcases; the
details will be presented in a later vers1on of
this paper.).

Now we sketch the further computations
required to solve the mover's problem in 2 and 3
dimensions, assuming the u-contact sets have
been determ1ned

Let a p-unique-contact set be a maximal
connected set of positions, each with precisely
the same set of contact vertices of size u.

Qur goal is to determine all QO-unique contact
sets; these are the maximal connected sets of

positions between which S may be moved without
contacting an obstacle in R.
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For each 6=0,1,...,d', let C be the class

of p-contact sets of d1mens1on s, wwth u>1.
Also, let Cs be the class of all p-unique
contact sets of dimension 5§, with u:>0 Observe

 that Cd is the set of all o-unique contact sets,
as required.

We can easily show that Cy=Cy. For
§=1,...,d" we have an efficient algorithm for
constructing C from the previously constructed

C and Cosenns 05 -1- (In the case that §=1, the

C; are "l-dimensional curves" and the C,
correspond to the “"curve segments” partitioned
by the "points" of Cy=Cp. In the case that
§=2, the C, are "surface patches" partitioned .
into planar maps by Cy (the "vertices") and C;
(the "edges"). The T, are the faces of these

- maps. The cases 8§>2 are similar, with C parti-

tioned by Cg,...,Cs-1 into a s-cell comp1ex.)
Finally, to determine if S may be moved

from position P to PE without contacting an

obstacle of R, we test if: -

1)’@R,S(pl)==@R’s(pF)='true (where 2.5

is the polynomial-time predicate of
Section 3 which holds for all posi-
tions for which there is no contact
between S and R) and

2) bI,pF,are in the same o-unique contact
.set PeC
If this test is successful, we construct a
move for S from P to P> as follows. Let pI'
(pF') be any position of S on the boundary of

the o-unique contact set P, reached by a linear
translation of S from P (pF). Then simply move

S on the boundary of P from pI' to pF’.

The worst case time cost of our a1gor1thm
for the mover's problem is 0(|R|9 |s|d
(where |R| and |S]| are the number of 1nequa11-
- ties defining R and S)
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" The time complexity of this algorithm can
be significantly improved in certain special
cases by applying the divide and conguer tech-
niques of Preparata and Muller® and Zolnowskyl®
For example, the 2-dimensional mover's problem
requires O(k*|R| |S|) time if S is convex and R
consists of k convex obstacles. Also, in the
case where the mover's problem contains numerous
obstacles with very fine detail (i.e., many
vertices) we have developed efficient approximate
techniques which enclose nonconvex sets of
obstacles with convex polyhedra, using again the
convex hull algorithms of Preparata and Muller
and of Zolnowsky.

5. Conclusion: Applications -
Theoretical & Applied

- This work was originally motivated by
applications to robotics: the author felt it was
important to examine computational complexity
-issues in robots given the recent development of
mechanical devices autonomously controlled by
-micro and minicomputers, and the swiftly
increasing computational power of these.
controllers (see Paulll), .=

However, our computational complexity
results have more general applications, both
theoretical and applied (those detailed below
are discussed more thoroughly in the full

paper).

The technique (used in our polynomial time
algorithm for the mover's problem) of mapping an
optimization problem in low dimension to a o
simpler problem in higher dimensions can also be
applied to a variety of other optimization
problems in computational geometry. For example,
we present a polynomial time algorithm for a
packing problem discussed by Shamos!2 involving
the optimal orientation of identically shaped
polygons so as to minimally pack the polygons
within a thin rectangular strip (each polygon
must have the same orientation). The trans-
formed problem in this case is to find the mini-
mal width cross-section (corresponding to an
optimal orientation) of a torus defined by quad-
. ratic surface patches.
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, . The reduction technique used in Section 2

to show that the generalized mover's problem is

- P-space complete can also be used to show a
variety of other combinatorial problems P-space

complete. (This is significant, since almost

all known P-space complete combinatorial problems

are games.) For example, we show the following
coloring problem to be P-space complete:

Input Graph G=(V,E) with initial and final
k-colorings CI,CF respectively, and

integer m> 0.

~ Problem Is there a sequence of k-colorings
OF B, Cp=CgaCysnennCy 50y =C
such that Ci differs from Ci-l

on at most m vertices?

(Similar P-space complete problems can be
derived from othér known NP-complete problems
such as 3-SAT, KNAPSACK, and HAMILTONIAN-
CIRCUIT.)
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Figure 1: A 2-D Mover's Problem: Can rectangle S be moved
from P to PE without contacting an obstacle in R?
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Figure 3: The object S to be moved, encoding tape
contents 0,0,1,...,1,1,0.
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currently under the tape head.
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Figure 6: A lengthwise cross-section of a channel which forces S up
one unit in a state transition from q to q'.



branch left ' _ branch right

N\ A= — /—7/
T\ ;'\ L

left arm slot
center of channel
right arm slot

Figure 7: Cross-section at level s(n) of a junction which forces S to branch
left or right depending on the position of that arm at level s(n).
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P1=PgsPys---sPg =P as in Figure 2. ' :
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Figure 10: The mapping t(x,y.8)=(x',y',z").



