CHAPTER 3

SYMBOLIC ANALYSIS OF PROGRAMS WITH STRUCTURED DATA

3.0 Summary

We discuss the symbolic analysis of a class of programs such as those of LISP 1.0, which have a fixed interpretation for various operations on structured data including: operations for construction of structured objects (such as cons in LISP) and the selection of subcomponents (such as car and cdr in LISP), but no "destructive" operations (such as replacea or replaced in LISP 1.5). We continue to use the global flow model of Chapter 1, in which assignment statements are the only variety of statements and the program flow graph represents the flow of control.

A central problem here is the propagation of selections: the determination of the set SP of ordered pairs of selection operations and the objects which they may reference. The elements of SP are called selection pairs. We show that this propagation problem is at least as hard as transitive closure of a binary relation and we give an efficient algorithm, using bit vector operations, for computing SP. Schwartz[Sc2] requires the set SP for his method for the automatic construction of recursive type declarations, though he gave no explicit algorithm for propagating selections.
We consider further applications of propagation of selections including: the determination of selection operations that, when executed, always result in an error (i.e., they attempt to access non-existent subcomponents), the propagation of constants, and more generally the determination of covers (symbolic representations of values of text holding for all executions of the program). The methods of Chapter 2 for the determination of covers are improved so as to take into account reductions due to the selection of subcomponents of structured objects.

We apply these improved methods also to the construction of type covers which are representations of types (rather than values) of text expressions and hold for all executions of the program. Type covers are useful for the discovery of construction operations which are redundant in the sense that they have values of the same type as values previously computed but are now dead (no longer referenced).

Finally, we discuss Schwartz's method of recursive type determination.
3.1 Introduction

This Chapter is concerned with the analysis of programs which manipulate structured data; for example:

- the lists of LISP
- the strings of SNOWBALL
- and the arrays in FORTRAN, ALGOL, and PL/1.

Though we allow general operations for construction of structured objects and selection of subcomponents, our analysis is restricted to programs with no destructive operations: they must not modify subcomponents (i.e., install new sublists, insert or delete new characters of strings, or modify elements of arrays). Hence our methods are only applicable to a restricted subclass of the above programming languages with list, string, and array data structures. We believe our methods can be extended (with a certain increase in time and space cost) to programs which allow modification of subcomponents. (At any rate, there exist certain simple programming languages, such as LISP 1.0, which do not allow modification of subcomponents.)

As in the preceding Chapter, we discuss the analysis of a program P relative to a global flow model in which the flow of control is represented by the control flow graph $F = (N, A, s)$ where the nodes of N correspond to contiguous sequences of assignment statements called blocks, the edges in A specify possible flow of control between blocks in N.
and all control flow begins at the start block $s \in N$.

Let $I = \{X, Y, Z, \ldots\}$ be the non-local program variables of P. For each $X \in I$ and block $n \in N-\{s\}$, we introduce the input variable X^{+n} denoting the value of X on input to block n. Also, for each $X \in I$, X^s is a distinct constant sign denoting the value of X on input to the program P at the start block s. As in Chapter 1, we require a first order language without predicates to represent computations of P and their covers. Let EXP be the set of expressions built from input variables, and fixed sets of constant signs C and k-adic function signs Θ; here Θ is partitioned into the sets:

(1) OP, a set of operator signs used for elementary operations on atomic values,
(2) CONS, a set of constructor signs used to build up structured values,
(3) SEL, a set of 1-adic selector signs used to select subcomponents of structured values.

A function application is an expression of the form

$$\alpha = (\Theta \alpha_1, \ldots, \alpha_k),$$

where Θ is a k-adic function sign in Θ and $\alpha_1, \ldots, \alpha_k \in \text{EXP}$. α is an elementary operation if Θ is an operator sign OP, α is a construction operation if Θ is a constructor sign CONS, and α is a selection operation if $k = 1$ and Θ is a selector sign SEL. For each k-adic constructor
sign cons ∈ CONS and 1, 1 ≤ i ≤ k, there exists an unique selector sign sel ∈ SEL called the \textit{i}th \textbf{selector of cons}.

As described in the examples below, in LISP there is a simple constructor (\texttt{cons}), two selectors (\texttt{car} and \texttt{cdr}), and elementary operations depending on the particular version of the language \textit{(none in LISP 1.0, arithmetic and logical operations in LISP 1.5)}.

\texttt{SELECT}(sel, \alpha) \text{ gives the result of selection by a selector sign sel ∈ SEL on expression } \alpha ∈ \texttt{EXP}:

1. if \alpha is a construction operation

\[\texttt{(cons } \alpha_1 \ldots \alpha_k) \]

where sel is the \textit{i}th selector of constructor sign cons, then

\[\texttt{SELECT}(sel, \alpha) = \alpha_i. \]

2. If \alpha is a construction operation for which sel is \textbf{not} a selector, or \alpha is a constant sign, or \alpha is an elementary operation then \texttt{SELECT}(sel, \alpha) = \texttt{error}, where \texttt{error} is a distinguished constant sign in \texttt{C} denoting an error condition.

3. In all other cases (e.g., where \alpha is itself a selection or an input variable) \texttt{SELECT}(sel, \alpha) is left undefined.

For example, in LISP,

\[\texttt{SELECT(cdr, (cons } \alpha_1 \alpha_2)) = \alpha_2. \]

We assume an \textbf{interpretation} \textit{(U, I)} such that

1. \textit{U} is an \textbf{universe} of values consisting of
(a) ATOM, a set of atomic values (\textit{atoms}), and
(b) \textit{structured values} constructed by prefixing k-adic constructor signs in CONS to k-tuples in the universe U.

(2) I is a homomorphic mapping from EXP to U such that
(a) For each constant sign \(c \in C \), \(I(c) \in ATOM \). We assume the constant signs in C are in one-to-one correspondence to atoms in ATOM. The distinguished constant sign \textit{error} is also an atom and is freely interpreted: \(I(\text{error}) = \text{error} \).
(b) For each k-adic function sign \(\theta \in \Theta \), \(I(\theta) \) is a partial mapping from \(U_k \) to U.
(i) Each k-adic operator sign \(op \in OP \) is interpreted as a mapping \(I(op) \) from k-tuples of atoms into individual atoms (note that such mappings may \textit{not} take structured objects as arguments).
(ii) k-adic constructor signs \(\text{cons} \in CONS \) are freely interpreted:
\[
I(\text{cons})(z_1, \ldots, z_k) = (\text{cons } z_1, \ldots, z_k)
\]
for all \(z_1, \ldots, z_k \in U \).
(iii) Each selector sign \(\text{sel} \in SEL \) is interpreted to map from expressions in the universe U to their corresponding subexpressions, or where this is not possible, to \textit{error}. More formally, for each \(\alpha \in \text{EXP} \) such that \(\text{SELECT}(\text{sel}, \alpha) \) is defined:
\[
I(\text{sel})(I(\alpha)) = I(\text{SELECT}(\text{sel}, \alpha)).
\]
Example 3A (LISP 1.0)
ATOM = \{the empty list nil\}
OP = the empty set \{
CONS = \{the list constructor cons\}
SEL = \{car, the first selector of cons\}
\quad \cup \{cdr, the second selector of cons\}

Example 3B
(similar to LISP 1.5 but without replace and replacd)
ATOM = \{the empty list nil\}
\quad \cup \{the integers\}
\quad \cup \{the boolean truth values truth and false\}
OP = \{and, or, plus, minus, mult, and div\}
and and or are interpreted as logical conjuction and
disjunction; the other operator signs in OP are interpreted
as the usual arithmetic operations. CONS, SEL are as in
Example 3A.

Example 3C (Vectors of fixed length)
ATOM = \{a_1, a_2, \ldots\}
SEL = \{the positive integers\}
CONS = \{vector^1, vector^2, \ldots\}
where vector^k is a k-adic constructor sign and the integer i
is the i^{th} selector of vector^k for each 1 \leq i \leq k. Note
that the number of function places of each vector^k is fixed;
so it is not possible to construct variable length
sequences. However we can easily extend the model to allow
function signs with a variable number of arguments.
In Chapter 1 we defined a **constant reduction** on an expression in \(\text{EXP} \) to be the repeated substitution of constant signs for constant subexpressions (relative to a fixed interpretation); that is if \(a \in \text{EXP} \) contains a elementary operation

\[
a' = (\text{op} \ c_1 \ldots \ c_k)
\]

where \(\text{op} \in \text{OP} \) and \(c_1, \ldots, c_k \in \text{C} \) and there exists a constant sign \(c \in \text{C} \) such that

\[
I(c) = I(\text{op})(I(c_1), \ldots, I(c_k)),
\]

then we substitute \(c \) in the place of \(a' \).

In addition, we define **selection reductions** to be the result of substituting \(\text{SELECT}(\text{sel}, a') \), where it is defined, for each selection operation \((\text{sel} \ a') \).

An expression is **reduced** by repeated constant and selection reductions.

For each program variable \(X \in \mathcal{X} \) defined (i.e., assigned to) at block \(n \in \mathcal{N} \), the **output variable** \(X^n+ \) is a reduced expression in \(\text{EXP} \) for the value of \(X \) on **exit** from block \(n \) in terms of the constants and input variables at \(n \). For example, \(Y^n+ = (\text{cons} \ (\text{car} \ X^n) \ Y^n) \) in the program of Figure 3.1.

The **text expressions** of \(P \) are the output variables and their subexpressions. We assume the text expressions are reduced expressions. For each reduced expression \(a \in \text{EXP} \)
and control path \(p \), \(\text{EXEC}(a,p) \) is intuitively a reduced expression in \(\text{EXP} \) for the value of \(a \) relative to \(p \). For a more precise definition, see Section 1.3.
Figure 3.1. Reversal of a list in LISP.
3.2 Propagation of Selections

Our immediate goal is to determine all "selection pairs". Loosely speaking, these are pairs \((w,u)\) where \(w\) is a selection operation \((\text{sel } t)\) and \(u\) is a text expression whose value, relative to some execution of the program, may be obtained from the value of \(t\) by the use of the selector sign \(\text{sel}\). More precisely, for text expressions \(t\) and \(t'\), let \(t'\) be accessible from \(t\) if \(\text{EXEC}(t,p) = t'\) for some control path \(p\) from \(\text{loc}(t')\) to \(\text{loc}(t)\). Note that selection sequences are generalizations of the value paths of Chapter 2. A selection pair is an ordered pair of text expressions \((w,u)\) consisting of a selection \(w = (\text{sel } t)\) and \(u = \text{SELECT}((\text{sel }, t'))\), where \(\text{SELECT}((\text{sel }, t'))\) is defined for some text expression \(t'\) accessible from \(t\). We assume that the constant sign \text{error} is a text expression located at the start block, so \(t\) has a departing selection pair \((t, \text{error})\) if \(\text{EXEC}(t,p) = \text{error}\) for some control path \(p\) from \(s\) to \(\text{loc}(t)\). We also assume there are no selections at the start block \(s\), so each selection in the text has at least one departing selection pair.
Figure 3.2. \((y^n+, 1)\) and \((y^n+, 2)\) are selection pairs.
Selection propagation is the task of discovering all selection pairs.

Theorem 3.2.1 Selection propagation in the interpretation of Example 3A (LISP 1.0) is at least as hard as computing the transitive closure of a binary relation.

Proof Let R be a binary relation on $\{n_1, \ldots, n_r\}$ and let $R^* = \{(n_{i_1}, n_{i_k}) \mid (n_{i_1}, n_{i_2}), \ldots, (n_{i_{k-1}}, n_{i_k}) \in R, \ k \geq 1\}$ be the reflexive transitive closure of R. Consider the control flow graph $F_R = (N, A, s)$ of Figure 3.2 where

$N = \{s = n_0, n_1, \ldots, n_{3r}\}$

and the edge set A consists of

(1) R and

(2) for $i=1, \ldots, r$ edges (n_0, n_{r+i}), (n_{r+i}, n_i), and (n_i, n_{2r+i}).

Let the text of n_0 be empty.

For $i = 1, \ldots, r$

(1) the text of n_i is empty

(2) the text of n_{r+i} is $X := \text{cons nil } X$.

(3) the text of n_{2r+i} is the selection $X := \text{cdr } X$.

It follows that $(n_i, n_j) \in R^*$

iff there is a value path from X^n_{2r+j} to X^n_{r+i}

iff (X^n_{2r+j}, X^n_{r+i}) is a selection pair. □
Figure 3.3. The control flow graph FR.
As in Chapter 2, we use a **dag** \(D(n) \) (an acyclic, oriented digraph) to represent computations local to a linear block of code \(n \in N \). Each node of \(D(n) \) represents an unique text expression located at block \(n \). A **global value graph** \(GVG = (V, E, L) \) is a possibly cyclic, oriented digraph consisting of

1. the dags of all the blocks in \(N \), and
2. a set of edges, called **value edges** of \(GVG \), departing from nodes labeled with input variables. For each node \(v \in V \) labeled with an input variable and control path \(p \) from the start block \(s \) to \(\text{loc}(v) \), there is a value edge \((v,u)\) such that \(\text{loc}(u) \) is distinct from \(\text{loc}(v) \) and is contained in \(p \). (the labeling \(L \) is consistent with that of the dags.)

A **value path** of \(GVG \) is a path transversing only nodes linked by value edges.

In Section 2.1 we defined a special global value graph \(GVG^* = (V, E, L) \) with value edges defined so as to properly represent the flow of values of program variables between blocks of code; that is (1) the nodes in \(GVG^* \) are identified with the text expressions which they represent and (2) \((t,t')\) is a value edge of \(GVG^* \) iff \(t \) is an input variable \(X^+n \) and \(t' \) is the output variable \(X^m+ \) for some \((m,n) \in A \). This definition requires that the text expressions include all the input variables; for each input variable \(X^n+ \) not originally a text expression at block \(n \in N-\{s\} \), add a "dummy" assignment of the form
Let \mathcal{V} be the set of the resulting new text expressions corresponding to these dummy assignments.

An access sequence is a sequence of text expressions (t_1, \ldots, t_k) such that for $1 \leq i < k$, each (t_i, t_{i+1}) is either a value edge of GVG^* or a selection pair.

Theorem 3.2.2 For all $t, t' \in \mathcal{V}$, there is an access sequence from t to t' iff t' is accessible from t.

Proof Suppose there exists an access sequence $(t=t_1, \ldots, t_k=t')$. Then for $i = 1, \ldots , k-1$ whether (t_i, t_{i+1}) is a value edge or a selection pair, there is always a control path p_i from loc(t_{i+1}) to loc(t_i) such that

$$t_{i+1} = \text{EXEC}(t_i, p_i).$$

Hence $t' = \text{EXEC}(t, p_{k-1}p_{k-2} \cdots p_1)$ so t' is accessible from t.

On the other hand, suppose there is a control path p of minimal length such that there exists text expressions t, t' such that p begins at loc(t') and ends at loc(t) and

$$t' = \text{EXEC}(t, p)$$

but there is no access sequence from t to t'. If t is an input variable, t has a departing value edge (t, τ) such that loc(τ) is distinct from loc(t) and loc(τ) is contained in p. If t is a selection, then there is a departing selection pair (t, τ) where loc(τ) is contained in p. In either case if $p = p_1^*p_2$ where p_2 is a subsequence of p from loc(τ) to
loc(t), then by the induction hypothesis
\[t' = \text{EXEC}(\tau, p_1) \]
so \(t' \) is accessible from \(\tau \) and by the induction hypothesis there is an access sequence \(q \) from \(\tau \) to \(t' \). Hence, \((t, \tau) \cdot q \) is an access sequence from \(t \) to \(t' \), a contradiction. \(\Box \)
We now present an efficient algorithm for the discovery of all selection pairs.

Algorithm 3A

INPUT $\text{GVP}^* = (V, E, L)$ and V, the set of added text expressions corresponding to dummy assignments.

OUTPUT SP, the set of selection pairs of P.

begin
declare for each $t \in V$
$V_{Pt}, A_{St}, A_{St} :=$ sets of maximum size $|V|$ each represented as bit vectors of length $|V|$
$(3|V|)$ sets, initially all empty);
procedure PROPAGATE(t, t'):
begin
add t' to A_{St};
add t to A_{St}';
add (t, t') to Q;
end;
$Q :=$ the empty set $\{\}$;
Let VE be the edges in E departing from nodes labeled with input variables;
Compute the transitive closure VE^* of VE;
VE^* is represented by a family of sets $\{V_{Pt}|t \in V\}$ where for $t, t' \in V$, $t' \in V_{Pt}$ iff there exists a value path in GVP^* from t to t';
for all $t \in V$
do
for all $t' \in V_{Pt}$ do
if $t, t' \in V-\text{V}$ then $L0$: PROPAGATE(t, t');
until $Q =$ the empty set $\{\}$ do
begin
$L1$: Choose some $(t, t') \in Q$ and delete it from Q;
for every selection $w \in V$ where $w = \text{sel}(t)$ do
if $u = \text{SELECT}(\text{sel}, t')$ is defined do
begin
add (w, u) to SP;
$L2$: PROPAGATE(t, u);
end;
for all $u \in A_{St}-A_{St}'$ do $L3$: PROPAGATE(t, u);
for all $w \in A_{St}-A_{St}'$ do $L4$: PROPAGATE(w, t');
end;
return SP;
end;
We require two Lemmas to demonstrate the correctness of Algorithm 3A.

Lemma 3.2.1 On every execution of Algorithm 3A we have for all \(t, t' \in V-V \) at label L0:

(i) \(t \in A_{St} \) iff \(t' \in A_{St} \)

(ii) if \((t, t') \in Q \) then \(t \in A_{St} \)

(iii) if \(t \in A_{St} \) then there exists an access sequence from \(t \) to \(t' \).

Proof by induction on the number of executions of the main loop of Algorithm 3A.

Basis step Initially, \(Q \) is the set of all pairs \((t, t') \) such that \(t, t' \in V-V \) and there exists a value path from \(t \) to \(t' \), (i),(ii) hold by the calls to \(\text{PROPAGATE}(t, t') \) at L0, and since any value path is also an access sequence, (iii) also initially holds.

Inductive step Suppose (i),(ii), and (iii) have held over previous executions of the main loop of Algorithm 3A, and consider some \((t, t') \) deleted from \(Q \) at L1. By (ii) and (iii), there is an access sequence from \(t \) to \(t' \). Observe that if there is an access sequence from text expression \(y \) to some text expression \(z \), then after any call to \(\text{PROPAGATE}(y, z) \), (i),(ii), and (iii) still hold, and for our purposes that call is considered correct.

Case 1 If \(w \) is the selection \((\text{sel} \ t) \) and \(u = \text{SELECT}(\text{sel}, t') \) is defined, then \((w, u) \) is a selection pair, which is also an access sequence. Thus, the call to \(\text{PROPAGATE}(w, u) \) at L2 is correct.
Case 2 If $u \in \text{AS}_{t'} - \text{AS}_t$, then (ii) implies that there is an access sequence from t' to u, and hence there is an access sequence from t to u. Thus, the call to PROPAGATE(t,u) at L3 is correct.

Case 3 If $w \in \text{AS}_t - \text{AS}_{t'}$, then (iii) implies that $t \in \text{AS}_w$ and (iii) implies that there is an access sequence from t to w. Hence, there is an access sequence from w to t' and the call to PROPAGATE(w,t') at L4 is correct. □

Lemma 3.2.2 For all $t,t' \in V$, if there is an access sequence p from t to t' then (t,t') is eventually added to Q.

Proof by contradiction. Suppose (t,t') is not eventually added to Q, and let p be of minimal length. Note that if we have a call to PROPAGATE(t,t') then (t,t') is added to Q.

Case 1 If p is a value path from t to t' then there must be a call to PROPAGATE(t,t') at L0.

Case 2 If p is a selection pair then there exist text expressions y,z such that t is of the form $t (\text{sel } y)$, $t' = \text{SELECT}(\text{sel}, z)$, and furthermore there is an access sequence p' from y to z. Since p' is of length less than p, p' does not violate Lemma 3.2.2, so (y,z) is eventually added to Q, and hence there is a call to PROPAGATE(t,t') at L2.

Case 3 Otherwise $p = p_1 p_2$ where p_1 is an access sequence from t to y and p_2 is an access sequence from y to t'. Since p_1 and p_2 are of length less than p, Lemma 3.2.2 holds over p_1 and p_2, so both (t,y) and (y,t') are eventually added to (and later deleted from) Q.
Case 3a If \((t, y)\) is deleted from \(Q\) after \((y, t')\) then
\[t' \in AS_y - AS_t\]
and so there is a call to PROPAGATE\((t, t')\) at L3.

Case 3b If \((y, t')\) is deleted from \(Q\) after \((t, y)\) then
\[t \in AS_y - AS_t'\]
and thus there is a call to PROPAGATE\((t, t')\) at L4. □

Theorem 3.2.3 Algorithm 3A correctly computes \(SP\) in
\(O(\varepsilon^2 + |I||A|)\) bit vector operations, where \(\varepsilon = |V-V|\) is the
the number of original text expressions before the "dummy"
assignments are added.

Proof Suppose \((t, t')\) is a selection pair. By Lemma 3.2.2,
\((t, t')\) is added to \(Q\) at the call to PROPAGATE\((t, t')\) at L2,
and hence \((t, t')\) is also added to \(SP\) at L2.

Now suppose that \((t, t')\) is added to \(SP\) at L2. Then
\((t, t')\) is added to \(Q\) in the call to PROPAGATE\((t, t')\) at L2,
and by the proof of Lemma 3.2.1, \((t, t')\) is a selection pair.

New we consider the lower time bounds of Algorithm 3A.
The computation of VP by [T1] costs \(O(|V| + |E|) = O(\varepsilon + |I||A|)\)
bit vector steps. Also, the processing associated with each
\((t, t')\) added and then deleted from \(Q\) is a constant number of
bit vector operations. There may be \(O(\varepsilon^2)\) such pairs and no
such pair is added to \(Q\) more than once. Hence, the total
cost of Algorithm 3A is \(O(\varepsilon^2 + |I||A|)\) bit vector operations.
□
3.3 Constant Propagation and Covers of Programs with Structured Data.

Let P be a program with a fixed interpretation for the constructor and selector signs as in the Introduction of this Chapter. Here we wish to determine text expressions which are constant over all executions of P, and more generally we wish to determine covers: symbolic expressions in EXP for the value of text expressions which hold over all executions of the program. The main difference between the covers of this section and those of Chapter 2 is that here we define a reduced expression to be derived from repeated selection reductions of the sort described in Section 3.1, as well as the usual constant reductions. A reduced expression $\alpha \in \text{EXP}$ covers text expression t if

$$\text{EXEC}(\alpha, p) = \text{EXEC}(t, p)$$

for all control paths p from the start block s to $\text{loc}(t)$, the block in N where t is located. A cover of P is a mapping ψ from the text expressions to EXP such that for each text expression t, $\psi(t)$ covers t.
Figure 3.4. $y^{n+} = (\text{cdr } x^{n})$ is covered by x^{+m}.
Recall that the origin of an expression $a \in \text{EXP}$ is intuitively the earliest point at which a is defined; formally $\text{origin}(a) = s$ if a contains no input variables and otherwise $\text{origin}(a)$ is the earliest block $n \in N$ (relative to the dominator ordering of the control flow graph F with the start block s first) such that an input variable x^+n appears in a (provided that this block is uniquely determined). Also, recall that \prec is the partial ordering of nodes in N by dominator relative of the control flow graph $F = (N, A, s)$. We extend \prec to a partial ordering of covers. For covers ψ, ψ', $\psi \prec \psi'$ iff $\text{origin}(\psi(t)) \prec \text{origin}(\psi'(t))$ for each text expression t. It follows from the results of Section 1.3 that if the program P is interpreted in the integer domain (i.e., ATOM is the set of natural numbers and the elementary operator signs in OP are interpreted as the usual arithmetic operations: addition, subtraction, multiplication, and division) then constant propagation is recursively unsolvable, and hence the determination of the covers minimal with respect to \prec is also impossible within the arithmetic domain.

Good, but not minimal, covers may be computed by an algorithm due to Kildall[Ki] (his algorithm is actually much more general; here we consider a specific application). After computing an approximate cover ψ_0, Kildall's algorithm iteratively compares the approximate covers of input variables to the approximate covers of the output
expressions of the corresponding variables at preceding blocks, and propagates the changes to succeeding blocks. In Chapter 2, we define the covers computed by his algorithm as fixed points of a functional \(\psi \). Here we define a similar functional \(\psi' \). For any mapping \(\psi \) from text expression to \(\text{EXP} \), let \(\psi'(\psi) \) be the mapping from text expressions to \(\text{EXP} \) such that for each text expression \(t \), \(\psi'(\psi) \) is derived from \(t \) by repeatedly

1) substituting expression \(\alpha \) for every input variable \(X \mapsto n \)
 such that \(\alpha = \psi(X \mapsto n) \) for all \((m, n) \in A \).

2) substituting the expression \(\alpha \) for any selection \(u \) in \(t \)
 such that \(\alpha = \psi(u') \) for all selection pairs \((u, u') \).

3) reducing (by both selection and constant reductions) the resulting expression.

We shall show, as we did for a similar functional \(\psi \) in Chapter 2, that the fixed points of \(\psi' \) are covers and that there exists a unique, minimal fixed point of \(\psi' \).

Theorem 3.3.1 Each fixed point of \(\psi' \) is a cover.

Proof by contradiction. Suppose \(\psi \) is a fixed point of \(\psi' \)
and \(\psi \) is not a cover. Let \(p \) be the shortest control path
from the start block \(s \) to a block \(n \in N \) containing a text
expression \(t \) such that

\[
\text{EXEC}(\psi(t), p) \neq \text{EXEC}(t, p).
\]

Furthermore assume for each proper subexpression \(t' \) of \(t \),

\[
\text{EXEC}(\psi(t'), p) = \text{EXEC}(t', p).
\]

The case where \(t \) is an input variable was shown (in the
proof of Theorem 2.1) to be an impossible case. Otherwise, \(\psi(t) = \psi(t') \) for all selection pairs \((t, t')\). But there is a selection pair \((t, t')\) such that
\[
\text{EXEC}(t, p_2) = t'
\]
for \(p = p_1 \cdot p_2 \) where \(p_1 \) ends and \(p_2 \) begins at \(\text{loc}(t') \).

Hence, \(\text{EXEC}(t, p) = \text{EXEC}(t', p_1) \)
\[
= \text{EXEC}(\psi(t'), p_1) \text{ by the induction hypothesis}
\]
\[
= \text{EXEC}(\psi(t), p_1) \text{ since } \psi(t) = \psi(t')
\]
\[
= \text{EXEC}(\psi(t), p). \Box
\]

Let \(GVG = (V, E, L) \) be an arbitrary global value graph as defined in Section 3.2. In Section 2.2 we also defined the set \(\Gamma_{GVG} \) of mappings from the nodes of GVG to EXP such that for each \(\psi \in \Gamma_{GVG} \) and node \(v \in V \) in GVG,

1. If \(v \) is labeled with a constant \(c \) then \(\psi(v) = c \).
2. If \(L(v) \) is a \(k \)-adic function sign \(\ast \) and \(u_1, \ldots, u_k \) are the immediate successors of \(v \) in GVG then \(\psi(v) \) is the expression derived by constant reductions from \(\psi(u_1) \ldots \psi(u_k) \).
3. If \(v \) is labeled with an input variable, then either \(\psi(v) = X^n \) or \(\psi(v) = \alpha \) where \(\alpha = \psi(u) \) for all value edges \((v, u) \in E\) departing from \(v \).

Let \(\Gamma'_{GVG} \) be a set of mappings \(\psi \) from \(V \) to EXP such that for all \(v \in V \), \(\psi(v) \) satisfies cases (1), (2), (3), or the additional case

(3') \(L(v) \) is a selector sign and \(\psi(v) = \alpha \) where \(\alpha = \psi(u) \) for
all selection pairs \((v, u)\) departing from \(v\).

Note that the set of nodes satisfying cases (3) and (3') are sufficient to characterize an element of \(\Gamma'_{GVG}\); and hence \(\Gamma'_{GVG}\) is finite.

Let \(GVG^* = (V, E, L)\) be the special global value graph defined in Section 2.2 where each node \(v \in V\) is identified with the text expression which it represents (hence, the node set \(V\) is considered to be the set of text expressions) and the value edges of \(GVG^*\) represent the flow of values through the program. Recall that \((t, t')\) is a value edge of \(GVG^*\) iff \(t\) is an input variable \(X^m\) and \(t'\) is the output expression \(X^n\) for some \((m, n) \in A\). For any text expression \(t \in V\) that is a selection, and \(\psi \in \Gamma'_{GVG^*}\), if (3') holds for \(t\) then \(t\) is simplified by \(\psi\). If in addition, \(\psi(t) \neq \text{error}\), then \(t\) is properly simplified by \(\psi\). Selection \(t\) is (properly) simplifiable if \(t\) is (properly) simplified by some element of \(\Gamma'_{GVG^*}\).

Our proof that selection simplifications actually improve elements of \(\Gamma'_{GVG^*}\) (Theorem 3.3.2) will allow us to show that \(\Gamma'_{GVG^*}\) is a semilattice with respect to the partial ordering \(\ast\) (Theorem 3.3.3). The unique minimal element of \(\Gamma'_{GVG^*}\) will then be shown in Theorem 3.3.4 to be the minimal fixed point of \(\psi\). We require first some technical Lemmas.

Lemma 3.3.1 For each \(t \in V\) which is a selection or input
variable, and every control path from the start block s to $\text{loc}(t)$, there is a maximal access sequence $(t=u_1,\ldots,u_k)$ such that $\text{loc}(u_1),\ldots,\text{loc}(u_k)$ are distinct blocks in p.

Proof by induction. We consider (t) to be a trivial access sequence. Suppose we have an access sequence $(t=u_1,\ldots,u_i)$ such that $\text{loc}(u_1),\ldots,\text{loc}(u_i)$ are distinct blocks in p. We further assume that $\text{loc}(u_i)$ occurs in p before $\text{loc}(u_1),\ldots,\text{loc}(u_{i-1})$. If u_i is neither a selection or input variable then $(t=u_1,\ldots,u_i)$ is a maximal access sequence. Otherwise, let p_i be the subsequence of p from s to the first occurrence of block $\text{loc}(u_i)$. Then there is a text expression u_{i+1} such that (1) $\text{loc}(u_{i+1})$ is contained in p_i and distinct from $\text{loc}(u_i)$ and (2) (u_i,u_{i+1}) is either a value edge (in the case u_i is an input variable) or a selection pair (if u_i is a selector sign). Hence $(t=u_1,\ldots,u_i,u_{i+1})$ is an access sequence and $\text{loc}(u_{i+1})$ is distinct from $\text{loc}(u_1),\ldots,\text{loc}(u_i)$. Since p is finite, we have our result. □

Lemma 3.3.1 will be used to construct maximal access sequences relative to fixed control paths. The next Lemma is analogous to Lemma 2.2.2 of Chapter 2.

Lemma 3.3.2 For each $\psi \in \Gamma^\text{GVC}*$ and $t \in V$, $\text{origin}(\psi(t)) \neq \text{loc}(t)$.

Proof by contradiction. Suppose for some $t \in V$,

$$\text{origin}(\psi(t)) \neq \text{loc}(t).$$

Then there must exist an input variable X^n in $\psi(t)$ such
that \(n \not\in \text{loc}(v) \), and hence there is an \(n \)-avoiding control path \(p \) from the start block \(s \) to \(\text{loc}(t) \). Also, there must exist an \(u \in V \) also located at \(n \) such that \(\psi(u) = X^+n \). By Lemma 3.3.1, there is a maximal access sequence \((t = u_1, \ldots, u_k) \) such that \(\text{loc}(u_1), \ldots, \text{loc}(u_k) \) are distinct blocks in \(p \). Let \(j \) be the maximal integer \(\leq k \) such that
\[\psi(u_1) = \ldots = \psi(u_j). \]
If \(L(u_j) \) is an input variable the \(\psi(u_1) = \psi(u_j) = X^+n \), so \(\text{loc}(u_k) = n \) is contained on \(p \), contradicting the assumption that \(p \) avoids \(n \). Otherwise, if \(L(u_j) \) is a function sign or constant sign, then \(\psi(u) = \psi(u_k) \dagger X^+n \), a contradiction with \(\psi(u) = X^+n \).

The following Lemma shows that certain covers of simplifiable selection operations have a very special form.

Lemma 3.3.3 For each properly simplifiable selection \(t \in V \), and \(\psi \in \Gamma'_{GVC*} \), if \(t \) is not simplified by \(\psi \), then \(\psi(t) \) is of the form \((\text{sel}_1 \ldots \text{sel}_k X^+n) \) where \(\text{sel}_1, \ldots, \text{sel}_k \) are selector signs and \(X^+n \) is an input variable.

Proof by induction on subexpressions of \(\psi(t) \).

Basis Step. By assumption \(t = (\text{sel} u) \) is not simplified by \(\psi \), so \(\psi(t) \) is of the form \((\text{sel} \psi(u)) \). Also, note that since \(t \) is simplified by some element of \(\Gamma'_{GVC*} \), \(t \) has no departing selection pairs entering error.

Induction step. Suppose for some \(i, 1 \leq i \leq k, \psi(t) \) is of the form \((\text{sel}_1 \ldots \text{sel}_k \alpha) \). Consider any selector operation \(t' = (\text{sel}_1 u') \) such that \(\psi(u') = \alpha \). We also assume in our induction hypothesis that \(t' \) has no departing
selection pairs entering error.

Suppose \(\psi(u') = a \) is not a selection operation or input variable.

Case 1. Suppose \(u' \) is an input variable. Let \(p \) be a control path from the start block \(s \) to \(\text{loc}(u') \). By Lemma 3.3.1 we can construct a maximal access sequence from \(u' \) to some \(u \in V \). From this we can show that \(t' \) has a departing selection pair entering error, a contradiction with the induction hypothesis.

Case 2. Suppose \(u' \) is not an input variable. If \(u' \) is a construction operation for which \(\text{sel}_i \) is a selection, then \(t' \) is not a reduced expression, which is impossible. Otherwise, if \(u' \) is a constant sign or some other sort of function application other than a selection, then \(t' \) has a departing selection pair entering error, a contradiction with the induction hypothesis.

Hence \(\psi(u') \) is either a selection or input variable. To complete our induction proof, for any selection \(\tau \) such that \(\psi(\tau) = a \), if \(\tau \) has a departing selection pair entering error, then so does \(t' \), a contradiction. \(\square \)

Now we show that simplification of selection operations always improves an element of \(GVG^* \).

Theorem 3.3.2 For \(\psi, \psi' \in GVG^* \) and selection operation \(t \in V \), if \(t \) is not simplified by \(\psi \) and \(t \) is properly simplified by \(\psi' \) then \(\text{origin}(\psi'(t)) \neq \text{origin}(\psi(t)) \).
Proof. For any \(N' \subseteq N \), let \(\text{LCA}(N') \) be the latest (furthest) from the start block \(s \) common ancestor of the nodes in \(N' \) relative to the dominator tree of the control flow graph \(F \). By Lemma 3.3.2, \(\psi(t) \) is of the form \((\text{sel}_1 \ldots \text{sel}_k X^n)\). We proceed by induction on subexpressions of \(\psi(t) \).

Suppose for some \(i, 1 \leq i \leq k \), if \(i < k \), for every selection \(\tau \in V \) such that \(\psi(\tau) = (\text{sel}_{i+1} \ldots \text{sel}_k X^n) \) then \(\text{LCA}\{w \mid (\tau, w) \text{ is a selection pair departing from } \tau\} \downarrow n \). Consider any selection \(t' \in V \) such that \(\psi(t') = (\text{sel}_i \ldots \text{sel}_k X^n) \). Let \(u' \) be the immediate subexpression of \(t' \), so \(\text{origin}(\psi(t')) = \text{origin}(\psi(u')) \). Then there exists a (possibly trivial) maximal access sequence from \(u' \) to some \(\tau \) such that \(\psi(u') = \psi(\tau) \). By the induction hypothesis, \(\text{LCA}\{w \mid (\tau, w) \text{ is a selection pair departing from } \tau\} \downarrow n \). We can then show that \(\text{origin}(\psi'(t)) \uparrow \text{LCA}\{w' \mid (t', w') \text{ is a selection pair departing from } t'\} \downarrow n \).

Since \(t \) is simplified by \(\psi' \), \(\psi'(t) = \alpha \) where \(\psi'(t') = \alpha \) for all selector pairs \((t, t')\). Hence,

\[
\text{origin}(\psi'(t)) = \text{origin}(\alpha) \uparrow \text{LCA}\{w \mid (t, w) \text{ is a selection pair}\} \downarrow n.
\]

\(\downarrow n = \text{origin}(\psi(t)) \). \(\Box \)

In Section 2.2 we defined a partial function \(\text{min} \) from \(\text{EXP}^2 \) to \(\text{EXP} \); we extend \(\text{min} \) to a partial mapping from \((\text{r'}\text{GVG}^*)^2 \) to \(\text{r'}\text{GVG}^* \) so that for each \(\psi, \psi' \in \text{r'}\text{GVG}^* \), if \(\psi(t) \)
= ψ(t) \text{ min } ψ'(t) is defined for each text expression t, then ψ \text{ min } ψ' = ψ, and otherwise ψ \text{ min } ψ' is undefined.

Theorem 3.3.3 \(r'\text{GVG}^* \) forms a finite semilattice with respect to \(* \).

Proof. It is sufficient to show that \(\text{min} \) is well defined over \(r'\text{GVG}^* \). Suppose for \(ψ' \), \(ψ \in r'\text{GVG}^* \), \(ψ \text{ min } ψ' \) is defined, so there is a text expression t such that \(ψ(t) \text{ min } ψ'(t) \) is undefined but \(ψ(u) \text{ min } ψ'(u) \) is defined for all u which are proper subexpressions of t' such that \(ψ(t) = ψ(t') \). Thus t is either a selection operation or an input variable. Consider any control path p from the start block s to \(\text{loc}(t) \). By Lemma 3.3.1, we can construct a maximal access sequence \((t=u_1, \ldots, u_k) \) such that \(\text{loc}(u_1), \ldots, \text{loc}(u_k) \) are unique blocks of p. Let j be the maximal integer \(≤ k \) such that \(ψ(u_1) = \ldots = ψ(u_ j) \). By the proof of Theorem 2.2.1 of Section 2.2, we need only consider the case where \(t_j \) is a selection operation (sel u). Since j is maximal, \(t_j \) is not simplified by \(ψ \) and \(ψ(t_j) = (\text{sel } ψ(u)) \). If \(t_j \) is also not simplified by \(ψ' \) then \(ψ'(t_j) = (\text{sel } ψ'(u)) \) and by the induction hypothesis \(a = ψ(u) \text{ min } ψ'(u) \) is defined, so \(ψ(t_j) \text{ min } ψ'(t_j) = (\text{sel } a) \). Otherwise, suppose \(t_j \) is simplified by \(ψ' \). If \(ψ'(t_j) = \text{error} \) then \(ψ(t_j) \text{ min } ψ'(t_j) = \text{error} \). If t is properly simplified by \(ψ' \) then by Theorem 3.3.2, \(\text{origin}(ψ'(t_j)) \not\in \text{origin}(ψ(t_j)) \), so \(ψ(t_j) \text{ min } ψ'(t_j) = ψ'(t_j) \). □

Theorem 3.3.4 \(* \) has a unique, minimal fixed point \(ψ^* \) which
is the minimal element of r'_{GVG^*}.

Proof Clearly, any fixed point of ψ' is an element of r'_{GVG^*}. By Theorem 3.3.3, r'_{GVG^*} has a unique minimal element $\psi^* = \min r'_{GVG^*}$. Let $\psi^* = \psi'(\psi^*)$. In proof of Theorem 2.2.1, we showed that $\psi^*(X^n) = X^n$ for each input variable X^n such that $\psi^*(X^n) = X^n$. Now suppose there is a selection $t \in V$ such that $\psi^*(t) = a$ where $a = \psi^*(t')$ for all selection pairs (t, t'), but $\psi^*(t) \neq a$. Let ψ be the mapping from text expressions to EXP such that for each text expression u, $\psi(u)$ is derived from $\psi^*(u)$ by substituting a for each occurrence of $\psi^*(t)$ in $\psi^*(u)$, and reducing the resulting expression. Hence $\psi \in r'_{GVG^*}$ but by Theorem 3.3.2 $\text{origin}(\psi(t)) \neq \text{origin}(\psi^*(t))$, a contradiction with the assumption that ψ^* is the minimal element of r'_{GVG^*}. □

In the next section we describe a method for actually constructing ψ^*, the minimal element of r'_{GVG^*}.

3.4 The Computation of ψ^*, the minimal fixed point of ψ

Now we describe a method for actually constructing ψ^*, the minimal fixed point of ψ' which was shown in Theorem 3.3.4 to be the minimal element of $r'GVG^*$. There are two main steps. We first reduce constant propagation with selection and constant reductions to constant propagation with only constant reductions; the latter problem is solved efficiently by the methods of Chapter 2. We then find ψ^* by constructing, by the methods of Chapter 2, the minimal element of $rGVG_0, rGVG_1, \ldots, rGVG_R$ where GVGO, GVGI, \ldots, GVGR is a sequence of global value graphs derived from GVG*.

Associate with each text expression t which is a selection (sel u), a new, distinct program variable SV*_t called the selection variable of t. The corresponding input variable SV$^*_{loc(t)}$ will be unambiguously represented by dropping its superscript. The selection variable SV*_t is installed in place of t in GVG* by relabeling t with the selection variable SV*_t, deleting the edge (t,u) originally departing from t and adding the selection pairs departing from t to the edge set. Conversely, the selection variable SV*_t is replaced by t by reversing this process.

Let GVG be a labeled digraph derived from GVG* by replacing any number of selections with their corresponding selection variables. Note that by definition of selection pairs, for any selection t relabeled in GVG with selection
variable SV_t, if p is a control path from the start block s to $loc(t)$ then t has a departing selection pair (t, u), which is also a value edge of GVG, such that $loc(u)$ is distinct from $loc(t)$ and contained in p. Hence, GVG is a global value graph. Also, note that since the node set of GVG is V, the node set of GVG^*, we continue to identify the nodes in V with text expressions. However selections in V may now be labeled in GVG with selection variables rather than selector signs. By Theorem 2.2.1, Γ_{GVG} has a unique, minimal element ψ. Chapter 2 gives an efficient method for the construction of ψ. Let us review these results.

GVG is reduced if $\psi(t)$ is the label of t in GVG for all $t \in V$ such that $\psi(t)$ is a constant sign. A reduced global value graph may be derived from GVG by the simple constant propagation algorithm presented in Section 2.3. We now assume GVG is reduced.

Recall that our method proceeds by induction on rank of text expressions. The rank of $t \in V$ labeled in GVG with a constant sign in GVG is 0. If t is labeled in GVG with a function sign θ, and $u_1, ..., u_k$ are the immediate successors of t in GVG, then the rank of t in GVG is

$$1 + \max\{\text{rank}(u_1), ..., \text{rank}(u_k)\},$$

and by definition of Γ_{GVG},

$$\psi(t) = (\theta \psi(u_1) ... \psi(u_k)).$$

Note that the rank induces a topological ordering (from
leaves to roots) of the dags of blocks from which GVG is built.

The case in which \(t \) is labeled with an input variable \(X^n \) is more difficult. Recall that a value path in GVG is a path \(p \) traversing only nodes linked by value edges and \(p \) is maximal relative to a fixed beginning node if \(p \) ends at a node with no departing value edges. The rank of \(t \) is

\[
\text{MIN}\{\text{rank}(w) \mid w \text{ lies at the end of a maximal value path in GVG from } t\}.
\]

This \(t \in V \) is a value source relative to \(\psi \) if \(\psi(t) = X^n \).

We have from Chapter 2

Theorem 2.4. \(t \) is a value source of \(\psi \) iff there exist two maximal, almost disjoint (containing only one element in common) value paths in GVG from \(t \) to \(u_1, u_2 \in V \) such that \(\psi(u_1) \neq \psi(u_2) \). Furthermore, for each \(t \in V \) labeled with an input variable \(X^n \), either

1. \(\psi(t) = \psi(u) \) for all \(u \) contained at the end of maximal value paths in GVG from \(t \), or
2. \(\psi(t) = \psi(u) \) where \(u \) is the unique value source contained on all maximal value paths in GVG from \(t \).

The problem of discovering the value sources of \(\psi \) is reduced in Section 2.6 to the computation of dominator trees, for which there is an efficient algorithm due to Tarjan[T4].

The next Theorem reduces constant propagation with selection and constant reductions, to constant propagation
with only constant reductions.

For this we will require two special mappings

\[M_1(\text{GVG}): \Gamma_{\text{GVG}} \rightarrow \Gamma'_{\text{GVG}} \]

\[M_2(\text{GVG}): \Gamma'_{\text{GVG}} \rightarrow \Gamma_{\text{GVG}} \]

For any \(\psi \in \Gamma_{\text{GVG}} \), let \(M_1(\text{GVG})(\psi) \) be the mapping \(\psi_1 \) from \(V \) to \(\text{EXP} \) such that for all \(t \in V \), \(\psi_1(t) \) is derived from \(t \) by repeatedly

1. Substituting \(\text{sel } \psi(u) \) for each selection \(w = \text{sel } u \) such that \(\psi(w) = \text{SV}_t \) is the selection variable of \(t \).
2. Substituting \(\psi(u) \) for each \(u \in V \) labeled in \(\text{GVG} \) with an input variable.

Observe that \(\psi_1 \in \Gamma'_{\text{GVG}} \).

Let \(\psi_2 = M_2(\text{GVG})(\psi) \) be the mapping from \(V \) to \(\text{EXP} \) such that for each \(t \in V \),

1. \(t' \) is derived by substituting selection variable \(\text{SV}_u \) for each nonsimplifiable selection \(u \in V \) such that \(u \) is labeled in \(\text{GVG} \) with the selection variable \(\text{SV}_u \).
2. \(\psi_2(t) \) is derived from \(t' \) by substituting \(\psi^*(u) \) for each \(u \) labeled with an input variable in \(\text{GVG} \) and such that \(\psi^*(u') = \psi(u') \) for each \(u' \in V \) such that \(\psi^*(u') \) is a proper subexpression of \(\psi^*(u) \).

Observe that \(\psi_2 \in \Gamma_{\text{GVG}} \).

Theorem 3.4.1 If \(\text{GVG} \) is derived from \(\text{GVG}^* \) by substituting selection variables for all selections, and \(\overline{\psi} \) is the minimal element of \(\Gamma_{\text{GVG}} \), then for each \(t \in V \), \(\psi^*(t) \) is a constant
sign c iff $\overline{\psi}(t) = c$.

Proof. Suppose $\overline{\psi}(t)$ is a constant sign c, but $\psi^*(t) \neq c$

Let $\psi_1 = M1(GVG)(\overline{\psi})$. Hence $\psi_1(t) \neq \psi^*(t)$ and $\psi_1 \in \Gamma^*GVG^*$, contradiction with the assumption that ψ^* is the minima element of Γ^*GVG^*.

ONLY IF. Suppose $\psi^*(t)$ is a constant sign c, but $\psi'(t) \neq c$

Let $\psi_2 = M2(GVG)(\overline{\psi})$. Then $\psi_2(t) \neq \overline{\psi}(t)$ and $\psi_2 \in \Gamma GVG$, contradiction with the assumption that $\overline{\psi}$ is the minima element of ΓGVG.

We now define a sequence of global value graphs GVG_0, GVG_1, \ldots

derived from GVG. GVG_0 is the reduced graph derived fro GVG. For $r = 0, 1, \ldots$ let $NSS(r)$ be the set of selection of rank r which are not simplifiable and let GVG_{r+1} be derived from GVG_r by restoring each $t \in NSS(r)$; i.e., if t (sel u) then the label of t is set to sel, all selectio pairs departing from t are deleted, replaced by the origina edge (t, u). Let ψ_r be the minimal element of ΓGVG_r. Let ψ = $\max\{r \mid GVG_r$ contains a node of rank $r\}$.

Theorem 3.4.2 $\psi_r = \psi^*$.

Proof. Observe that each selection $t \in V$ is labeled with selection variable SV_t iff t is not simplifiable. Also, have $\psi^* \in \Gamma GVG_R$ which implies that $\psi^* \neq \psi_R$, and we have $\psi_R \in \Gamma'^*GVG^*$ which implies that $\psi_R \neq \psi^*$. Hence $\psi^* = \psi_R$.

The remaining problem is the determination o
simplifiable selections in V.

Theorem 3.4.3 For all selections \(t \in V \) of rank \(r \) and labeled in \(GVG_r \) with a selection variable, \(t \in NSS(r) \) iff \(t \) is a value source relative to \(\psi_r \).

Proof IF. Suppose \(t \in NSS(r) \) but \(t \) is not a value source of \(\psi_r \), so \(\psi_r(t) = \alpha \) where \(\alpha = \psi_r(t') \) for all selection pairs \((t,t') \). Let \(\psi_r = M1(GVG_r)(\psi_r) \). Then \(\psi_r \in GVG^* \) and \(t \) is simplified by \(\psi_r \), so by Theorem 3.3.2, \(\text{origin}(\psi_r(t)) \downarrow \text{origin}(\psi_r(t)) \), a contradiction with the assumption that \(\psi_r \) is the minimal element of \(GVG^* \).

ONLY IF. Suppose \(t \) is simplified by \(\psi_r \), so there exists an expression \(\alpha \) such that \(\psi_r(t) = \psi_r(t') = \alpha \) for all selection pairs \((t,t') \). Let \(\hat{\psi}_r = M2(GVG_r)(\psi_r) \). Then \(\hat{\psi}_r(t) = \hat{\psi}_r(t') = \alpha \) for all selection pairs \((t,t') \) and \(\hat{\psi}_r \in GVG_r \). If \(t \) is a value source of \(\psi_r \), then by Theorem 3.3.2, \(\text{origin}(\hat{\psi}_r) \downarrow \text{origin}(\psi_r) \), a contradiction with the assumption that \(\psi_r \) is the minimal element of \(GVG_r \). Thus \(t \) is not a value source of \(\psi_r \). \(\square \)

Let a trivial value path be of the form \((t) \) where \(t \in V \) is a node labeled with either a constant or function sign.

Corollary 3.4.1 For each \(t \in V \), \(t \) is of rank \(r \) in \(GVG_r \) iff there is a (possibly trivial) maximal value path in \(GVG_r \) from \(t \) to a node of rank \(r \) in \(GVG_r \) and such that \(p \) avoids all elements of \(NSS(r) \).

Proof Observe that for any \(t \in V \) labeled in \(GVG_r \) with a constant or function sign, \(t \) is of rank \(r \) in \(GVG_r \) iff \(t \) is
of rank r in GV_G. Otherwise, suppose $t \in V$ is labeled with an input variable in GV_G.

Suppose t is of rank r in GV_G. Then there is a maximal value path p from t to some $t' \in V$ such that all nodes of p are of rank r in GV_G. Hence, p avoids all elements of $NSS(r)$, and p is a maximal value path in GV_G. Since t' is labeled with a constant or function sign, t' is also of rank r in GV_G.

Suppose, on the other hand, that there is in GV_G a maximal value path p from t to some t' of rank r in GV_G such that p avoids all elements of $NSS(r)$. It is always possible to find such a p containing only nodes of rank r in GV_G. Hence, p is a maximal value path of GV_G and t is of rank r in GV_G. \[\square \]
Our algorithm for computing ψ^*, the minimal fixed point of ψ', is summarized below.

Algorithm 3B.

INPUT GVG*.

OUTPUT ψ^*, the minimal fixed point of ψ'.

begin

Discover all selection pairs by Algorithm 3A;

Let GVG be derived from GVG* by installing a selection variable in the place of each selection;

Apply Algorithm 2A to construct GVG0, the reduction of GVG;

for $r := 0$ by 1 to ∞ do

begin

Apply Algorithm 2B to construct V_r, the set of all text expressions of rank r in GVG*;

if V_r is empty then return ψ^*;

Compute by Algorithm 2C, ψ_r, the minimal element of GVG*;

Let NSS(r) be the set of selection of V_r which are value sources relative to ψ_r;

comment By Theorem 3.4.3, NSS(r) is the set of nonsimplifiable selections of rank r in GVG*;

for all $t \in V_r$ contained on a (possibly trivial) maximal value path in GVG* avoiding all elements of NSS(r) do

begin

comment By Corollary 3.4.1, t is of rank r in GVG*;

$\psi^*(t) := \psi_r(t)$;

end;

Let GVG*r+1 be derived from GVG*r by replacing each selection variable SV_t in VSr with the original selection t;

end;

end;

Let l be the length of the text of program P and recall that GVG* is of size $O(|V| + |E|) = O(l\cdot |\Sigma| |A|)$.

Theorem 3.4.4 Algorithm 3B is correct and costs $O(l^2 + |\Sigma| |A|)$ bit vector and $O(l(l + |\Sigma| |A|))$ elementary operations.

Proof The correctness of Algorithm 3b follows directly from Theorems 3.4.1-3.4.3.
By Theorem 3.2.2, the computation of all selector edges by Algorithm 3A costs $O(\varepsilon^2 + |I| |A|)$ bit vector operations. For each $r = 1, 2, \ldots$ the computation of v_r may cost $O(\varepsilon + |I| |A|)$ elementary operations by the results of Chapter 2. Since the maximum r such that V_r is not empty is $\leq \varepsilon$, the total time cost of Algorithm 3b is $O(\varepsilon^2 + |I| |A|)$ bit vector and $O(\varepsilon (\varepsilon + |I| |A|))$ elementary operations.
Figure 3.5. The global value graph GVG^* for the program of Figure 3.4.
3.5 Type Covers and Type Declarations.

Types are expressions used to specify the shape of structured objects. A type cover of text expression \(t \) is a closed form expression for the type of \(t \) which holds on all executions of the program \(P \). We show that the methods of the last section may be applied to the construction of type covers. Type covers have applications analogous to the usual sort of covers used to represent values of text expressions. For example, if the type cover of text expression \(t \) is a constant type, then the value of \(t \) has a fixed type over all executions of \(P \). Text expressions which have the same type cover have values of the same shape on each execution of \(P \) (whereas, text expressions given the same type declaration may have different values of different shape over particular executions of \(P \); see the latter part of this Section). A text expression \(t \) which is a construction operation is redundant if (1) every execution of \(P \) from the start block \(s \) to \(\text{loc}(t) \) passes thru a block containing a text expression \(t' \) with type cover common to \(t \) and furthermore, (2) the structured object computed by \(t' \) is dead (not referenced) on every execution path following \(\text{loc}(t) \) (in other words, the storage allocated for \(t' \) could be used to store \(t \)).

A type declaration of program \(P \) is used to specify, for each text expression \(t \), the set of all types of values that
t may evaluate to, over all executions of P. A recursive
type declaration uses recursion to specify infinite sets of
types. In the latter part of this Section we discuss
methods due to Tennenbaum[Te] and Schwartz[Sc2] for the
automatic construction of type declarations for "type-free"
programs (programs written without explicit type
declarations). The method due to Schwartz is direct
(noniterative) and more powerful than Tennenbaum's iterative
method since it results in recursive type declarations for
text which may have an infinite set of types (whereas, the
method of Tennenbaum results in weaker, non-recursive type
declarations).

We shall observe that the set of all possible types of
a given text expression, over all executions of the program
P, need not be a context-free language although the type
declaration facilities of most programming languages are
essentially context-free grammars. Hence, it is not
possible to construct "tight" (exact) type declarations
within most programming languages.

Fix (U,I) as an interpretation of program P as
described in Section 3.1. Recall that the universe of
structured values U is built from a set of atoms in the
fixed set ATOM and k-adic constructor signs in CONS. Also,
recall that EXP is the set of expressions built from input
variables (representing the value of program variables on
input to blocks in N), constant signs in C, and k-adic function signs in θ (including operator signs in OP, constructor signs in CONS, and selector signs in SEL).

Let τ be a mapping initially of domain ATOM u I into EXP such that
(1) For each a ∈ ATOM, τ(a) is a symbol denoting the type of a.
(2) For each program variable X ∈ I, there exists an unique variable τ(X) = TX.

Extend τ to a homomorphic mapping from EXP to EXP thusly:

(a) for each constant sign c ∈ C, if c is of the form X^s
 (representing the value of program variable X on input to
 the start block s) let τ(X^s) = τ(X)^s = TX^s. Otherwise,
 let τ(c) = τ(I(c)).
(b) for each input variable X^n, τ(X^n) = τ(X)^n = TX^n.
(c) τ distributes over function applications thus:
 τ(θ a_1 ... a_k) = (θ τ(a_1) ... τ(a_k)).
Also, extend τ to subsets S of EXP and U:
 τ(S) = {τ(a) | a ∈ S}.

A type cover of program P is a mapping ψ from the text expressions of P to τ(EXP) such that for each text expression t of P,
 EXEC(ψ(t),p) = τ(EXEC(t,p))
for all control paths p from the start block s to loc(t).
For example, consider the control flow graph of Figure 3.7. Let \(\tau(1) = \text{int} \). Note that \(\mathbb{Z}^n^+ \) and \(\mathbb{X}^m^+ \) do not have the same covers but do have the same type cover (cons \(\text{int} \) \(\text{TY}^m^+ \)).

Let \(P_\tau \) be the program derived from \(P \) by substituting \(\tau(t) \) for each text expression \(t \). Fix \((\tau(U), I_\tau) \) be the interpretation of \(P_\tau \) where \(I_\tau \) is the identity mapping over \(\tau(\text{ATOM}) \), and for each \(k \)-adic elementary operation \(\text{sign} \ op \in \text{OP} \) (recall that \(I(op) \) is a mapping from \(\text{ATOM}^k \) to \(\text{ATOM} \)) and \(a_1, \ldots, a_k \in \text{ATOM} \),

\[
I_\tau(op)(\tau(a_1), \ldots, \tau(a_k)) = \tau(I(op)(a_1, \ldots, a_k)).
\]

Theorem 3.5.1 \(\psi \) is a cover of \(P_\tau \) iff \(\psi \) is a type cover of \(P \).

Proof Consider any text expression \(t \) and control path from the start block \(s \) to \(\text{loc}(t) \). By the fact that \(\tau \) is a homomorphism over \(\text{EXP} \),

\[
\text{EXEC}(\tau(t), p) = \tau(\text{EXEC}(t, p)).
\]

If \(\psi \) is a cover of \(P_\tau \) then

\[
\text{EXEC}(\psi(t), p) = \text{EXEC}(\tau(t), p),
\]

\[
= \tau(\text{EXEC}(t, p)).
\]

On the other hand, if \(\psi \) is a type cover of \(P \) then

\[
\text{EXEC}(\psi(t), p)) = \tau(\text{EXEC}(t, p))
\]

\[
= \text{EXEC}(\tau(t), p). \quad \square.
\]
Figure 3.7. The control flow graph of a program P in LISP.
Figure 3.8. The type program P_t derived from the program P of Figure 3.7.
Let $TV = \{T_1, T_2, \ldots\}$ be a set of type variables; in the following we assume TV and the special symbol oneof is distinct from the elements of $\tau(\text{ATOM})$ and CONS. We distinguish the type variable $\text{any} \in TV$ which will represent the set of all types. Let $T EXP$ be the set of expressions built from $\tau(\text{ATOM})$, TV, and CONS. We shall assume that for a fixed program P, CONS and $\tau(\text{ATOM})$ are finite sets.

A type declaration for input variable X^+n consists of a statement of the form

\begin{quote}
\text{declare } X^+n \text{ type } a
\end{quote}

where $a \in T EXP$.

A type declaration is interpreted in the context of a type variable definition block $T DEF$, consisting of a sequence of statements of the form

\begin{quote}
$T = \text{oneof}\{a_1, \ldots, a_k\}$
\end{quote}

(or just $T = a_1$ if $k=1$) where $T \in TV - \{\text{any}\}$ and $a_1, \ldots, a_k \in T EXP$. We assume no $T \in TV$ occurs more than once on the left hand side of a statement in $T DEF$.

We now construct a set of productions (in the sense of formal language theory) by substituting for each statement

\begin{quote}
$T = \text{oneof}\{a_1, \ldots, a_k\}$
\end{quote}
of $T DEF$, the context-free productions

\begin{quote}
$T + a_1, T + a_2, \ldots, T + a_k$.
\end{quote}

Also, for the special symbol any we have the productions

\begin{quote}
$\text{any} + \tau(a)$
\end{quote}
for each $a \in \text{ATOM}$, and
\[
\text{any} + (\text{cons any ...k-times... any})
\]
for each $k > 0$ and k-adic constructor sign $\text{cons} \in \text{CONS}$. For each $T \in TV$, let $TDEF[T]$ be the context-free language generated by these productions with T considered to be the start symbol, the type variables as nonterminals, and the terminal symbols are taken from $\text{CONS} \cup \tau(\text{ATOM})$. Note that $TDEF[T]$ is a subset of $\tau(U)$ and $TDEF(\text{any}) = \tau(U)$. Also, for each $a \in TEXP$, let $TDEF[a]$ be the set $\{a' \in \tau(U) \mid a'$ is derived from a by substituting some element of $TDEF[T]$ for each type variable T occurring in $a\}.$

For each $a \in \tau(U)$, let $\text{EXPAND}(a) = \{a' \in \tau(U) \mid a'$ is derived from a by substituting some element of $\tau(U)$ for each constant sign of the form $X^s\}$. For each input variable X^n, let $\text{TYPES}(X^n) = \{a \mid a \in \text{EXPAND}(\tau(\text{EXEC}(X^n,p)))$ and such that p is some control path from the start block s to $n\}.$

Consider again the type declaration
\[
declare X^n \text{ type } a.
\]
This type declaration is \textit{proper} in the context of $TDEF$ if
\[
\text{TYPES}(X^n) \subset TDEF[a]
\]
and is \textit{tight} if
\[
\text{TYPES}(X^n) = TDEF[a]
\]
For example, a proper type declaration for input variable Xn^+ of Figure 3.7 is
declare \(X^+n \) type (cons int any).

Although the type definition facilities of many programming languages employ essentially the above scheme, it is interesting to note the scheme is not even powerful enough to give tight type definitions of programs without selection operations. Let \(f, g, \) and \(h \) be constructor signs of arity 1,1, and 3 respectively. Also, let \(\tau(0) = \text{int} \). In Figure 3.9,

\[
\text{TYPES}(Z^m^+) = \text{TYPES}(Z^+n) \\
= \{ h(f^k(\text{int}), g^k(\text{int}), r^k(\text{int})) \mid k \geq 1 \}
\]

which is clearly not a context-free language and hence is not definable by the above type declaration scheme.
\[\square\]
Figure 3.9. There is no tight type declaration for input variable Z^n.
We now describe a simplified version of the method of Schwartz[Sc2] for constructing proper (but not necessarily tight) type declarations. We require the special global value graph GVG^* and selection pairs of Section 3.2. To simplify the method, we assume that for each k-adic elementary operation sign $\text{op} \in \text{OP}$, there exists a unique $a_{\text{op}} \in \tau(\text{U})$ such that $a_{\text{op}} = \tau(I(\text{op})(a_1,\ldots,a_k))$ for all $a_1,\ldots,a_k \in \text{ATOM}$.

For each text expression t which is a selection, let $SV_t \in \text{TV}$ be the unique selection variable. Let $\hat{\tau}$ be the mapping from text expressions to TEXP such that,

1. For each constant sign $c \in \text{C}$,

 (a) if c is of the form X^s (representing the value of program variable X on input to the start block s) then $\hat{\tau}(c) = \text{any}$,

 (b) and otherwise, let $\hat{\tau}(c) = \tau(c)$.

2. For each input variable X^n, $\hat{\tau}(X^n) = TX^n$.

3. For each function application $t = (\theta a_1\ldots a_k)$,

 (a) if θ is a elementary operator $\text{op} \in \text{OP}$ then

 $\hat{\tau}(t) = a_{\text{op}}$.

 (b) if θ is a constructor sign $\text{cons} \in \text{CONS}$ then $\hat{\tau}(t) = (\text{cons} \hat{\tau}(a_1)\ldots\hat{\tau}(a_k))$.

 (c) if θ is a selector sign in SEL then

 $\hat{\tau}(t) = SV_t$,

 the unique selection variable associated with t.
We assume that $TX^+n \in TV$, for each input variable X^+n. Consider the special type variable definition block $TDEF^*$ such that for each input variable X^+n, we have the statement:

$$TX^+n = \text{oneof}\{\hat{\tau}(t) \mid (X^+n, t) \text{ is a value edge of } GVG^*\},$$

and for each text expression t which is a selection, there is a type declaration statement:

$$SVt = \text{oneof}\{\hat{\tau}(u) \mid (t, u) \text{ is a selection pair}\}.$$

Theorem 3.5.2 For each text expression t and each control path from the start block s to $\text{loc}(t)$, $\text{EXPAND}(\tau(\text{EXEC}(t, p)))$ is contained in $TDEF^*[\hat{\tau}(t)]$.

Proof Let p be the shortest control path from the start block s to some block n containing a text expression t such that $\text{EXPAND}(\tau(\text{EXEC}(t, p)))$ is not contained in $TDEF^*[\hat{\tau}(t)]$. Clearly, $n \neq s$. We proceed by induction on subexpressions of t.

Consider a constant sign c. If c is of the form X^+s then $\hat{\tau}(X^+s) = \text{any}$ and so $\text{EXPAND}(\tau(\text{EXEC}(X^+s))) = \tau(U) = TDEF[\text{any}]$. Otherwise $\tau(\text{EXEC}(c, p)) = \tau(c) = \hat{\tau}(c)$ and so $\text{EXPAND}(\tau(\text{EXEC}(c, p))) = \{\tau(c)\} = TDEF^*[\hat{\tau}(c)]$.

For each input variable X^+n, $\text{EXEC}(X^+n, p) = \text{EXEC}(X^{m'}, p')$ where $p = p'(m, n)$. By the induction hypothesis, $\text{EXPAND}(\tau(\text{EXEC}(X^{m'}, p'))) \text{ is contained in } TDEF^*[\hat{\tau}(X^{m'})]$. By
definition, TDEF[^][τ(X^+n)] contains TDEF[^][τ(X^m+)]. Hence,
EXPAND(τ(EXEC(X^+n,p))) = EXPAND(τ(EXEC(X^m+))) is contained
in TDEF[^][τ(X^+n)].

If u is a selection contained within t, then u has a
departing selection pair (u,u') such that EXEC(u,̂P) =
EXEC(u',̂P) for some control path ̂P which is a subsequence of
p starting at s. By definition, ̂τ(u) is the selector
variable SVu and TDEF[^][SVu] contains TDEF[^][τ(u')]. Also, by
the induction hypothesis EXPAND(τ(EXEC(u',p))) is contained
in TDEF[^][τ(u')]. Hence, EXPAND(τ(EXEC(u,p))) is contained
in TDEF[^][τ(u)].

Now suppose t is a function application (θ t₁...tₖ)
such that θ is not a selection and τ(EXEC(t₁,p)) is
contained in ̂τ(t₁) for i = 1,...,k. But
τ(EXEC(t,p)) = EXEC((θ τ(t₁)...τ(tₖ)),p)
= (θ τ(EXEC(t₁,p))...τ(EXEC(tₖ,p)))
Hence τ(EXEC(t,p)) is contained in ̂τ(t) = (θ ̂τ(t₁)...̂τ(tₖ)),
a contradiction. □.

This immediately implies that

Corollary 3.5 For each input variable X^+n,

```
declare X^+n type TX^+n
```

is proper, relative to type variable definition block TDEF[^].

The above method for constructing type declarations is
due to Schwartz[Sc2]. We conclude by listing TDEF[^] for the
program of Figure 3.1. Let τ(nil) = null, τ(0) = int, τ =
(car X^n), and t' = (cdr X^n).

TDEF^* = (TX^m = oneof{null, (cons int TX^m)},
 TY^m = null,
 TZ^m = int,
 TX^n = SVt',
 TY^n = oneof{TY^m, (cons SVt TY^n)},
 SVt = oneof{error, int},
 SVt' = oneof{error, null, TX^m})