DEPTH-FIRST SEARCH IS INHERENTLY SEQUENTIAL

John H. REIF *

Center for Research in Computing Technology, Aiken Computation Laboratory, Division of Applied Science, Harvard University,

Cambridge, MA 02138, US.A.

This paper concems the computational complexity of depth-first search. Suppose we are given a rooted graph G with fixed
adjacency lists and vertices u, v. We wish to test if u is first visited before v in depth-first search order of G. We show that this
problem, for undirected and directed graphs, is complete in deterministic polynomial time with respect to deterministic
log-space reductions. This gives strong evidence that depth-first search ordering can be done neither in deterministic space

(log n)° nor in parallel time (log n)*, for any constant ¢ > 0.

Keywords: Depth-first search, paralle} computation, polynomial time complete

1. Introduction

Depth-first search (DFS) is one of the most
versatile sequential algorithm techniques known
for solving graph problems. Tagan {25] and
Hopcroft and Tarjan [15] first developed depth-
first search algorithms for connected and bicon-
nected components of undirected graphs, and
strong components of directed graphs. These al-
gorithms run in linear time on a sequential unit-cost
Random Access Machine (RAM). DFS is also
used in efficient sequential algorithms for planar-
ity testing 13], bipartite matchings [12], and con-
nectivity [8], among others.

Most recent research is now devoted to the
development of parallel algorithms for graph prob-
lems. Two fundamental techniques,

(1) breadth-first search, and

(2) probabilistic search by random walks,
form the basis for many of the known efficient

* This research was supported by the National Science Foun-
dation Grant No. MCS-82-000269 and Office of Naval Re-
search Contract No. N00014-80-C-0647.

parallel graph algorithms. Breadth-first search is
used for O(log n)? time parallel Random Access
Machine (PRAM) algorithms for connectivity, bi-
connectivity, and minimum spanning trees [17]
and planarity testing [18] and a variety of other
directed and undirected graph problems. Also, the
present author [22] has used the random walk
technique of Aleliunas et al..[1] for O(log n) time
probabilistic PRAM algorithms for connected and
unconnected components, minimum spanning
trees, and a variety of other undirected graph
problems. All these parallel algorithms require only
a polynomial number of processors.
(U)DFS-ORDRER is (informally stated) the fol-
lowing problem: Given a digraph (respectively,
undirected graph) G with fixed adjacency lists,
fixed starting vertex s, and vertices u and v, test
whether u is visited before v in a depth-first search
of G starting from s. Suppose DFS-ORDER or
UDFS-ORDER could be done in (log n)*? paral-
lel time, for some model of parallel computation.
From DFS-ORDER we can quickly compute in
parallel the DFS numbering, the DFS spanning
tree, and other useful information. Then, perhaps

229

Preprint of paper appearing in Information Processing Letters, Volume
20, Issue 5, 12 June 1985, Pages 229-234.

many of the known efficient sequential algorithms
for graph problems, which use DFS, might be
easily implemented in (log n)*? parallel time.

This paper provides strong evidence that DFS
cannot be significantly sped up by the use of any
reasonable number of parallel processors. ! In par-
ticular we show that given any polynomial-time
sequential algorithm A with input of length n, a
RAM can construct in O(logn) space DFS-
ORDER and UDFS-ORDER instances each of
which has a positive solution exactly when A
accepts its input.

Thus, if we had a T(n) parallel time algorithm
for DFS-ORDER or UDFS-ORDER, we would
have a T(n)*" parallel time algorithm for simulat-
ing any polynomial time sequential computation.
This seems unlikely for T(n)= (log n)®™. Hence
we have strong evidence that DFS-ORDER and
UDFS-ORDER have no (log n)™" parallel time
algorithms.

Our reduction from polynomial time sequential
computations can also be done in O(log n) space
on a deterministic Turing Machine (TM). Suppose
DFS-ORDER or UDFS-ORDER can be done by
a deterministic TM with space (log n)*". Then

our reduction implies that any sequential poly-

nomial time computation can be simulated in
parallel time (log n)*". Again, this seems very
unlikely.

This paper is organized as follows: Section 2
defines the DFS-ORDER and UDFS-ORDER
problems. Section 3 reviews the relevant complex-
ity theory. Section 4 proves the DFS-ORDER is

polynomial time complete. Section 5 concludes our

paper.

2. Depth-first search

This section describes exactly the DFS al-
gorithm given by Tarjan [25] and Hopcroft and

-

Theoretically, some speed-up is always possible. Dymond
and Tompa [7] show that any T(n)>n time multi-tape
Turing machine can be simulated by an O()/T(n)) time
PRAM, and Reif [23] shows that any T(n) > n time sequen-
tial RAM or probabilistic RAM can be simulated by an
O(y/T(n) log T(n)) time PRAM. However, both these re-

sults require an exponential number of processors.

230

Tarjan [15]. Let G = (V, E) be a graph with vertex
set. V={1,...,n} and edge set E. If G is an
undirected graph (respectively, directed), then E
consists of unordered (respectively, ordered) pairs
of distinct vertices. For each vertex veV, we
assume a fixed adjacency list ADJ(v) of vertices
linked by an edge to v. The roor of G is vertex 1.

DFS begins at the root. On first visiting a
vertex v, the search proceeds to the first unvisited
vertex appearing in the ordered list ADJ(v), if such
a vertex exists. Otherwise, the search is exhausted
at v, so it proceeds to the last unexhausted vertex
visited before v. If no unexhausted previously
visited vertex exists, then the search proceeds to
the minimum vertex not visited thus far. The search
terminates when all vertices have been visited. The
DFS tree edges are the edges visited which lead to
previously unvisited vertices.

To mark and number vertices, we use an integer
array visit, which is initially 0 at each index, Also,
we require an integer counter i, initially 0.

begin
i<0
for each v=1 to n do visit(v) « 0
for each v=1 to n do DFS(v)
end

The recursive procedure DFS numbers the vertices
as follows:

procedure DFS(v)
begin
if visit(v) = 0 then
begin
local u
ie—=i+1
visit(v) « i
for each u € ADJ(v) in given order
do DFS(u)
end
end

The sequential RAM time for execution of DFS
is O(|V|+|E]), and a parallel execution can de-
crease this time to at best linear in |V | by parallel
examination of the adjacency lists. However, no
further speed-up, using less than an exponential

number of processors, seems possible.
(U)DFS-ORDER is the following problem:
Given a directed (respectively, undirected) rooted
graph G = (V, E) as represented above, and
vertices u, v € V, is u visited before v in DFS?

3. Computational complexity definitions

Let L and L’ be languages over a finite alphabet
2. Wesay L <, L’ (L' is log-space reducible to L)
if there exists a function f such that

(a) for each w € 2%, w € L' iff f(w)E L,

(b) fis computable in log space by a determin-
istic TM.
Let P be the class of languages accepted in de-
terministic polynomial time by TMs. L is P-com-
plete if L € P and, for each 1" € P, L’ is log-space
reducible to L. It is known (see [16]) that log-space
reducibility is a transitive relation. Thus, L is
P-complete if L’ is P-complete and L’ is log-space
reducible to L.

For the purposes of this paper, we define a

EXIT(i-1) ©

1

Iu(i,iz)
ENTER (i)

boolean circuit to be a sequence B=(B,,...,B,)
where each B, is either true, false or an expression
op(B;, B;,) where i,, i,<i and op is a binary
boolean operation. Let value(B,)=B, if B, is a
truth value true or false, and if B;=(B,, B,).
then let value(B;)= op(value(B,), value(B;)). Let
value(B) = value(B,).)

The circuit value problem is: Given a boolean
circuit B, test if value(B)= rrue. Ladner [20] has
shown that the following theorem holds.

Theorem 3.1. The circuit value problem is P-com-
plete.

It is easy to show that the following position
holds.

Proposition 3.2. The circuit value problem remains
P-complete if the circuits are restricted to only the
boolean operations: B, = true and

B,=—(B, VB,) fori=1,...,n.

5 o

EXIT(i) O«

Pl *0 S(i)
i

our(i,l) 2
IN(jlpi)
1 1
00T (i,2) L.
. IN(erl)
ouT(i,3)

1

1

OUT (i,k-1) 0\ .
' 1 IN(Jk-l'l)

m(jk.i)

Fig. 1. The digraph gadget G; simulating boolean operation B; = —(B;, or B;) where B; appears in subsequent operations B; ,...,B; .

T{i)
Jx

231

IN(i,4i,) IN(i,i
ENTER(i) o. ol (:‘,’;iz)

5(i)
OUT(i,l)I

EXIT(i) Ow-

IN(j;,i)

ouT(i,2)
IN(jz,i)

ouT(i,3)

]
oUT (i, k~1) o\
0 M0y Y

OUT{i, k)

IN(jk.i)

S

T(i)

Fig. 2. The depth-first search tree edges in digraph gadget G; in the case ENTER(1) is visited before both IN(i, i;) and IN(i, i,).

4. DFS-order is P-complete

Let B=(B,,..., B)) be a boolean circuit. We
can assume that B,=true, and, for each i=
1,...,n, B;=—(B; VB;). Consider some i>0,
where B,=—(B; VB,). Let j,,....j, >i be the
indices of the subsequent boolean operations
B,,...,B; where B; appears. We construct in this
case a digraph gadget G; with vertices V,=
{ENTER(i), IN(i, 1,), INGi, i,), S(i), Out(i, 1), ...,
Our(i, u), T(i), Exrr(i)} and edges as diagrammed
in Fig. 1. For each vertex v of G;, the numbers
labeling edges departing v give the order in which
these edges appear on the adjacency list of G;.

Suppose we perform DFS on G; from vertex
ENTER(i), assuming no vertex in G; has been pre-
viously visited. Then, Fig. 2 gives the resulting
DFS tree edges. In the case, however, that IN(i, 1,)
or IN(i, i,) has been previously visited, but no
other vertices of G, have been visited, then DFS
from vertex ENTER(I) results in the DFS tree edges
given in Fig. 3. In either case, all vertices of G; are
visited except possibly IN(i, i,), and if i <n, the
DFS proceeds to vertex ENTER(i + 1).

Note that Fig. 1 also gives an edge (ExiT(i — 1),

232

ENTER()) between G;_, and G,, and 2k edges
between G; and G;,...,G;.

Let G be the graph consisting of the union of
all these graphs G,,...,G, and their connecting
edges, as described above. Let the root of G be
Ex1T(0). We now show the following.

Lemma 4.1. S(n) is visited before T(n) in G iff
value(B) = true.

Proof. Fix an i, 1 <i<n. Suppose we have just
visited vertex ENTER(i) for the first time. We as-
sume as our induction hypothesis that for each ',
1gi'gi,

(i) if value(B;.) = true, then the DFS tree edges
in G,. are as described in Fig. 2, otherwise

(ii) the DFS tree edges of G,. are as described
m Fig. 3.

As a consequence, the DFS tree so far con-
structed consists of a single path of DFS tree edges
starting at ExiT(0) and ending at ENTER(i). Fur-
thermore, the only vertices visited before ENTER(i)
during DFS have at least one index less than i.

Suppose B, =-—(B; V B,). The value(B;)=
value(B;)= false. By the induction hypothesis

ENTER(i) O

EXIT(i)

s(i)

&

ouT(i,l)

OoUT(i,2)

» O—0——>»0—0

oUT(i,3)

ouT{i,k) {

N

T(i)

OUT (i ,k-1)

Fig. 3. The depth-first search tree edges in digraph gadget G; in the case ENTER(I) is visited before IN(i, i,) but after IN(, i,).

IN(i, i,) and IN(i, i,) have not been previously
visited so the DFS tree edges are as described in
Fig. 2.

On the other hand, if value(B,;)V value(B;)=
true, then again by the induction hypothesis, either
IN(i, 1,) or IN(i, i,) has been previously visited so
the DFS tree edges are as described in Fig. 3. In
the case where B, = —(B; A B;) we can similarly
establish (i) and (ii) from the induction hypothesis.
O

The construction of digraph G for circuit B can
obviously be done by a deterministic TM in
O(log n) space (and in fact in O(log n) time by a
PRAM). Lemma 4.1 and Proposition 3.2 imply the
following theorem.

Theorem 4.2. DFS-order is P-complete.

Let G’ =(V, E’) be the undirected graph de-
rived from G =(V, E) by substituting an undi-
rected edge {u, v} for each edge (u, v) or (v, u) € E.
For each vertex v€V, the edges which in G
depart v are ordered in the adjacency list of G’ just
as in G, and the edges which in G enter v are
ordered arbitrarily in the adjacency list of G’, but
higher (i.e., later) than any edges which departed
V.

Again, the root of G’ is EXIT(0). It is easy to
verify that the DFS spanning tree of G’ is identical
to that of G. Hence, we have the following lemma,

Lemma 4.3. S(n) is visited before T(n) in G iff
value(B) = true.

This implies the following theorem.

Theorem 4.4. UDFS-order is P-complete.

5. Conclusion

There is a growing number of problems shown
to be P-complete, including path systems [3], max
flow [11], unit resolution [19]). Proofs of P-com-
pleteness are useful both to the theory and practice
of the design of parallel algorithms. Their use is
analogous to the use of NP-completeness proofs.

Suppose one attempts to design a parallel al-
gorithm for a given problem with polynomial
number of processors and significant speed-up
over known sequential algorithms. If unsuccessful,
an alternative line of attack is to show that the
problem is deterministic polynomial time com-
plete. Thus, one can at least state that a large

233

number of competent researchers has also tackled
this problem and achieved no significant parallel
speed-up with a subexponential number of
processes.

In fact, our proof of the polynomial time com-
pleteness of DFS-ORDER and UDFS-ORDER
followed only after unsuccessful attempts to de-
velop a fast parallel algorithm for these problems.

Miklail and Kosaraju [21] posed as an open
problem to compute a DFS tree in less than linear
time, given a subexponential number of processors.
The problem remains open if the DFS search is
not constrained to follow edges in the order they
appear in the graph’s adjacency lists.

References

[1] R. Aleliunas, R.M. Karp, R.H. Lipton, L. Lovasz and C.
Rackoff, Random walks, universal traversal sequences,
and complexity of maze problems, Proc. 20th Annual
Symp. on Foundations of Computer Science (1979)
218-223.

[2] F. Chin, J. Lam and . Chen, Optimal paraliel algorithms
for the connected components problem, Foundations of
Computer Science (FOCS), 1981.

{3] S.A. Cook, An observation on time-storage trade off, J.
Comput. System Sci. 9 (3) (1974) 308-316.

{4] S.A. Cook, Towards a complexity theory of synchronous
parallel computation, Presented at: Internat. Symp. itber
Logik und Algorithmik zu Ehren von Professor Hort
Specker, Ziurich, Switzerland, 1980.

[5] D. Dobkin, R.J. Lipton and S. Reiss, Linear programming
is log-space hard for P, Inform. Process. Lett. 9 (2) (1979)
96-97.

[6] P.W. Dymond, Speed-up of multi-take Turing machines
by synchronous parallel machines, Tech. Rept.. Dept. of
EE and Computer Science, Univ. of California, San Diego,
CA,

[7] P.W. Dymond and M. Tompa, Speed-ups of deterministic
machines by synchronous parallel machines, Proc. 15th
Symp. on Theory of Computing, Boston, MA (1983)
336-346.

[8] S. Even and R.E. Tarjan, Network flow and testing graph
connectivity, J. SIAM Comput. 4 (4) (1975) 507-512.

234

[9] S. Fortune and J.C. Wyllie, Parallelism in random access
machines, in: Proc. 10th ACM Symp. on Theory of Com-
putation (1978) 114-118.

[10] L. Goldschlager, A unified approach to models of syn-
chronous parallel machines, in: Proc. 10th Annual ACM
Symp. on the Theory of Computing, San Diego, CA (1978)
89-94,

{11] L.M. Goldschlager, R.A. Shaw and J. Staples, The maxi-
mum flow problem is log-space complete for P, Theoret.
Comput. Sci. 21 (1982) 105-111.

[12] J.E. Hopcroft and R.M. Karp, An n°/? algorithm for
maximum matching in bipartite graphs, J. SIAM Comput.
2 (1973) 225-231.

[13] J.E. Hopcroft and R.E. Tarjan, Efficient planarity testing,
J. ACM 21 (1974) 549-568.

[14] J.E. Hopcroft and R.E. Tarjan, Dividing a graph into
triconnected components, SIAM J. Comput. 2 (3) (1973).

{15] J.E. Hopcroft and R.E. Tarjan, Efficient algorithms for
graph manipuiation, Comm. ACM 16 (6) (1973) 372-378.

[16]) J.E. Hopcroft and J.D. Ullman, Introduction to Automata
Theory, Languages and Computation (Addison-Wesley,
Reading, MA, 1979).

[17] J. Ja’Ja’, Graph connectivity problems on parallel com-
puters, Tech. Rept. GS-78-05, Dept. of Computer Science,
Penn. State Univ., PA, 1978.

[18] J. Ja’Ja and J. Simon, Parallel algorithms in graph theory:
Planarity testing, SIAM J. Comput. 11 (2) (1982) 372-378.

(191 N.D. Jones and W.T. Laaser, Complete problems for
deterministic polynomial time, Theoret. Comput. Sci. 3 (1)
(1976) 105-117.

[20] R.E. Ladner, The circuit value problem is log-space com-
plete for P, SIGACT News 7 (1) (1975) 18-20.

21} AJ. Miklail and S.R. Kosaraju, Graph problems on a
mesh-connected processor array, Proc. 14th Annual ACM
Symp. on Theory of Computing, San Francisco, CA (1982)
345-353.

[22] J.H. Reif, Symmetric complementation, J. ACM 31 (2)
(1984) 401--421.

[23] J.H. Reif, On the power of probabilistic choice in synchro-
nous parallel computations, SIAM J. Comput. 13 (1) (1984)
46-55.

[24] C. Savage and J. Ja'Ja’, Fast, efficient parallel algorithms
for some graph problems, SIAM J. Comput. 10 (4) (1981)
682-691.

(25] R.E. Tarjan, Depth-first search and linear graph al-
gorithms, SIAM J. Comput. 1 (2) (1972) 146-160.

[26] J.C. Wyliie, The complexity of parallel computations, Ph.D.
Thesis and Tech. Rept. 79-387, Dept. of Computer Sci-
ence, Cornell University, 1979,

