

1 Introduction

1.1 The Equilibrium Problem in Classical Game Theory

In recent years, there has been a proliferation of applications of noncooperative game theory to

economics, political science, evolutionary biology, and other disciplines. A typical research project

consists of modeling an environment or strategic interaction as a formally laid out game, after which

conclusions are derived from the application of a solution concept that (hopefully) embodies the

relevant consequences of (simultaneously) rational or optimizing behavior by all agents. Even for

quite simple games, the computation of a solution concept by hand can be an arduous endeavor.

In this paper, we present algorithms for the computation of some of the most important solution

concepts of noncooperative game theory, and we derive complexity measures for these algorithms.

The algorithms are based on the observation that, for the type of �nite game studied here,

the solution concepts of interest are described by �nite systems of (real) polynomial equations and

inequalities. In general, a solution set of a �nite system of polynomial equations and inequalities

is called a semi-algebraic set, and in recent years algorithms have been developed that pass from

a given system of equations and inequalities to more direct and useful descriptions of the set

determined by the system. For computer scientists, therefore, the main novelty in this paper is the

elaboration of a new domain of application for these tools.

For pure and applied game theorists it is of interest to know that such algorithms are possible,

of course, but it is also important to have a more detailed understanding of how they are con-

structed, and �nally one should have some sense of their limitations. For the latter issue, the best

available tools are the concepts of computational complexity studied in computer science. Our brief

introduction to this subject is hopefully suÆcient to enable the reader to understand the speci�c

conclusions stated later.

Computer science has historically studied games from two perspectives. First, particular games

present decision problems whose formal complexity can be studied. For example, one can consider

the computational complexity of determining an optimal move in the game of Go as a function of

the size of the board. Second, games can be used as models of particular computational problems

or environments, particularly those involving parallel computation or networks of independent

processors. Our work contributes to these traditions, so we will briey review closely related

literature.

As can be seen from the above description, this project is interdisciplinary, and the bulk of our

work is expositional. Our aim is to provide each subaudience with enough information to appreciate

the concepts and results of the unfamiliar discipline. The remainder of this introduction begins with

a brief description of the game theoretic concepts studied here, followed by a quite cursory survey of

the fundamental concepts of the theory of computation, intended for quite naive readers. For a more

extensive introduction we recommend Hopcroft and Ullman [2] or Lewis and Papadimitriou [3]. We

then briey survey preexisting work on decision algorithms for games, �rst for pure strategies, then

for probabilistic solution concepts. Finally we outline the work of subsequent sections.

1.2 An Outline of Our Results

Three methods of presenting a game are considered here: Recursive form, Extensive form, and

Normal Form.

Perhaps most familiar in recreational games is the recursive presentation. There is a space

2

of possible positions, with a designated initial position. There are rules (i.e. computational pro-

cedures) for passing from a nonterminal position to the player whose turn it is to move, the in-

formational constraints faced by that player at the position, the set of allowed moves, and the

new positions resulting from each allowed move. There are also rules determining payo�s at each

terminal position. Both theoretically and practically, it is natural to require that these rules be

computationally simple, as is the case, for instance, in chess.

The extensive form of a game is the most popular in modeling applications. Here the set of

all legal paths through the space of positions is laid out in a tree. The informational constraints

imposed on the players' choices are represented by grouping various `nodes' of the tree into in-

formation sets; the interpretation being that whenever any node in an information set occurs a

player must choose a move without knowing which particular node within the information set has

occurred. Consideration of the example of chess show that the passage from a recursive presenta-

tion to the extensive form may be an expensive computation independent of any considerations of

skillful play.

Given a game in its extensive form, each player has a space of `pure strategies,' each of which is

a vector specifying a legal action at each information set at which the player selects a move. One

can imagine each player submitting a pure strategy to a referee, after which the referee plays out the

game according to these instructions. (In the standard interpretation of a game, it is assumed that

all possibilities for communicating to achieve coordinated behavior are already explicitly represented

in the structure of the game.) Thus, we arrive at the third mode of description of games, the

`normal form': each player i = 1; :::; n has a �nite set Si of pure strategies and a payo� function

ui : S1� :::�Sn ! <. The normal form is theoretically attractive insofar as the notation is simple,

but it should be noted that a relatively simple extensive game can have a `large' normal form, so

that for any particular game the extensive form may be simpler.

What constitutes rational behavior while playing a game against rational opponents? For games

of `perfect information' (that is, whenever a player moves he or she knows the exact state of the

game) such as chess, this is in principle a simple question. One can work backwards through the

tree, at each point determining the moves that are best on the assumption that all subsequent

choices will be optimal. When the game is not one of perfect information the problem becomes

more diÆcult, both conceptually and practically. To begin with, it is not suÆcient to consider only

pure strategies; a player who was known to always play a particular pure strategy in the game

`rock-paper-scissors' could always be beaten. Thus we are led to consider probability distributions

over pure strategies; these are called mixed strategies.

The most famous and central solution concept in noncooperative game theory is the notion of

Nash equilibrium. A vector of mixed strategies, one for each agent, is a Nash equilibrium if no agent

has any other mixed strategy that yields a higher expected payo� when his expectations concerning

the behavior of the other agents are given by the equilibrium strategies.

The mixed strategies in a Nash equilibrium have a dual interpretation: they represent both

what the agents expect of others and what the agents actually do, at least in a statistical sense.

This raises serious conceptual questions concerning the relevance of Nash equilibrium, since it need

not be the appropriate embodiment of rationality when the game is played more than once by the

same agents, but at the same time some learning process seems to be required in order for the

agents to form expectations, particularly (but not exclusively) when the game has more than one

Nash equilibrium. We will not dwell on this point, except to say that it is a valid question in the

context of each application of the theory.

A more germane conceptual diÆculty with Nash equilibrium is the fact that it fails to capture

3

Player A

Player B

acquiesce resist

�ght 0,0 -1,-1

retreat 0,0 1,1

Table 1: Illustration of Nash Equilibrium

the assumption that all agents will continue to behave rationally at any stage of play. Consider

the game illustrated in Table 1. Player A must decide whether to acquiesce or resist, and Player

B must choose whether to �ght or retreat. (Player B's choice is relevant only when A resists.)

Assume that Player A's favorite outcome is (resist, retreat), and (resist, �ght) is her least favorite

outcome, while Player B prefers (resist, retreat) to (resist, �ght). Then (acquiesce, �ght) is a Nash

equilibrium: given that Player B intends to �ght, Player A does best to acquiesce; given that

Player A always acquiesces, Player B's strategy has no e�ect on the outcome. However, Player A's

behavior is rational only in response to a "threat" that could not rationally be carried out, in that

Player A expects Player B to play a strategy that is weakly dominated: Player B never does better

by �ghting, and, in response to some strategies of Player A, �ghting is worse. Consequently, this

equilibrium is not plausible.

Historically the most inuential attempt to address this problem is the concept of Perfect

Equilibrium introduced by Selten [4]. A formal de�nition of this concept is given in x 3.2. Here

it suÆces to say that Selten's terminology is now regarded as excessively optimistic, and many

solution concepts have subsequently been proposed, but the central philosophical issues are not yet

resolved to the point of consensus.

Virtually all known solution concepts are semi-algebraic, so that they can be computed by means

of the algorithms discussed here. From the point of view of computational tractability it is useful

to distinguish between quanti�ed solution concepts, in the sense that the de�nition involves the

logical operators \for all" and \there exists," and unquanti�ed concepts. (Perfect equilibrium is a

quanti�ed concept, Nash equilibrium is unquanti�ed.) As proven by Renegar [5] (see also Renegar's

related papers [6, 7, 8]) any quanti�ed proposition is equivalent to an unquanti�ed proposition, and

the passage from the quanti�ed to the unquanti�ed version can be implemented on a computer,

but current algorithms for doing so are slow, so that unquanti�ed solution concepts are more likely

to be practical from a computational viewpoint.

Currently, most popular among researchers in economics is the concept of Sequential Equi-

librium due to Kreps and Wilson [1]. We will devote special attention to this concept, in part

because of its popularity but also because the semi-algebraic nature of this concept is far from

trivial. In fact we will show that it has an unquanti�ed de�nition. This concept is applied to

the extensive form, and it has the interesting feature that it involves not only strategies but also

`beliefs,' i.e. probability distributions over the nodes in each information set that are construed as

the conditional distributions the agents would attribute to the nodes, when and if the information

set occurred. In applications, these beliefs are both intuitively interesting and quite helpful in

computing sequential equilibria by hand. It seems reasonable to hope that these beliefs might also

facilitate the development of `speed-ups' of the formal algorithms described here.

Given any solution concept, we can apply algorithms of Canny [9] and Renegar [10] for deciding

the existential theory of real closed �elds. These algorithms determine whether the solution set of

the system is nonempty (which is actually not of great interest to us since all the solution concepts

4

considered here have been proven to have nonempty solution sets for all possible parameters) and

�nd sample solutions, all in space polynomial in the size of the information set for the game's normal

form. Using the methods of Kozen and Yap [11], we can �nd a decomposition of the strategy space

(or, in the case of sequential equilibrium, strategy-belief space) into simple pieces, each of which is

either contained in the solution set or disjoint from it. Bounds on the space and time requirements

of these algorithms imply bounds on the space and time requirements of the particular applications

considered here.

1.3 Fundamentals of Computational Complexity

We devote this subsection to a concise overview of pertinent concerns in theoretical computer

science. The following two issues are especially important for our work:

Computability and Noncomputability : Ascertain whether there exists a computational so-

lution to a given problem.

Design and Analysis of Algorithms : Specify a set of instructions to solve a problem, provide

measures of the `costs' of the algorithm in time and computational resources (such as memory),

and whenever possible prove that the algorithm is optimal in the sense that no other algorithm

could possible solve the problem at a lower `cost' (usually up to a constant factor).

1.3.1 Computability and Noncomputability

It is obvious that many problems have computational solutions. An example is the determination

of an optimal move in a tic-tac-toe game. However, some problems do not permit an algorithmic

solution. The Halting Problem is the most notorious of all these problems: ascertain whether an

arbitrary algorithm will eventually halt (as opposed to continue forever) while working on a given

input. The proof that no algorithm for this problem exists is by contradiction, and is obtained by

considering how such an algorithm would behave when it was fed itself as input. Details can be

found in any standard text on theory of computation like Lewis and Papadimitriou [3].

Another interesting and more relevant example of a problem which does not admit an algorith-

mic solution is the following:

Compute a point whose �-ball contains a �xed point of a given continuous function

from the unit disk to itself.

Super�cially this seems at odds with our goals because solution concepts in game theory are

typically described as sets of �xed points. Fortunately, however, there is no real paradox because our

algorithms exploit the fact that the problem is presented algebraically, so that a general algorithm

for �xed points is not required.

We must formally de�ne computational models to facilitate rigorous discussion of computability

issues. The most famous and best studied model of computation is the Turing machine, which

consists of a processor and a storage tape. In terms of current computational technology one would

think of the processor as consisting of a Central Processing Unit (CPU) together with the Random

Access Memory (RAM). These days, the tape usually is a magnetic memory media along with

input-output devices. In the abstract theory the relevant facts are that the processor has a �nite

set of internal states, one of which is designated as the initial state, and the tape is a doubly in�nite

5

and one dimensional recording medium on which 0's and 1's are written.2 A computational cycle

consists of reading the character on the space of the tape that is currently in the `tape reader,'

then combining this character with the current state of the processor to generate a new state

and instructions for (possibly) changing the character in the space of the tape that has just been

read, (possibly) moving the tape one space in either direction, and (possibly) declaring that the

computation is complete. In mathematical terms a Turing machine is described by specifying �nite

sets of states and characters, an initial state, and a transition function Æ:

Æ : fstatesg � fcharactersg 7! fstatesg � fcharactersg � ftape motiong � fhalt; continueg

Given the similarities between Turing machines and actual computers, it is hardly surprising

that Turing machines are capable of many computations. Church's thesis asserts that the behavior

of any computational device can be mimiced by a Turing machine. This is a metamathematical

proposition which can never be conclusively proved. However, it can be shown that some particular

model of computation is equivalent to the Turing model, and since all models of computation

proposed to date have this property, Church's thesis is accepted as a basis for theoretical work.

Roughly we think of the Turing machine as the algorithm, and the initial state of the tape as the

input. This interpretation is somewhat at odds with current technology in which most computers

are `universal devices.' That is, they accept `tapes' that specify both an algorithm and an input to

which the algorithm is to be applied. The theoretical analogue is the notion of a universal Turing

machine, i.e. a Turing machine capable of mimicing the behavior of any other Turing machine.

Universal Turing machines exist and have interesting theoretical applications.

1.3.2 Design and Analysis of Algorithms

Once we are satis�ed that an algorithmic solution exists for a given problem, we can investigate

particular algorithms to solve those problems. The fundamental concerns are:

Correctness : Prove correctness after developing a rigorous functional description of the problem.

Some generalized methods include Program Veri�cation [12, 13, 14, 15, 16, 17, 18, 19, 20] and

Program Checkers [21]. In reality, more speci�c and practical methods are employed [22, 23,

17].

Complexity : Ascertain the resources demanded by an algorithm. The most important resources

are time consumed for the algorithm to terminate and memory space required for the algo-

rithm to execute.

Optimality and Practicality : Compare the given algorithms with the theoretically best possi-

ble algorithm (even if only the existence of the `best algorithm' has been proved without an

explicit description of the algorithm).

Verifying the correctness of an algorithm is a topic in itself, and is tangential to the theme of

this paper.

In order to address the complexity issue for any particular algorithm, a computer scientist

needs a measure to determine how expensive computations performed by the algorithm are or,

more roughly, whether the algorithm is `practical' and `e�ective'. The most important resources

2Other alphabets are possible, usually theoretically equivalent, and therefore convenient for some problems. The

model can also be tailored by modifying size and structure of the recording medium (tape).

6

are the time required for an algorithm to execute and the space, in the sense of memory, required

for storage of intermediate calculations. We will briey discuss that the most useful measures of

expense are rather crude for a number of reasons.

First, the expense of applying the algorithm to any particular input is simply a number which

is highly sensitive to the particular device chosen within the class of Turing equivalent devices. For

example, if we consider the running time complexity of an algorithm, there would be considerable

disparity between the experimental values we would get using a CRAY YMP and what we would

get using a Commodore C-64. It is more interesting (theoretically) to have some sense of how fast

the expense of computation grows as some measure of the size of the input increases. Generally,

computer scientists tend to regard an algorithm as `eÆcient' if its running time is (up to order-

of-magnitude) a polynomial function of the size of the input, and `ineÆcient' if its expense grows

exponentially (or worse) with the size of the input. Roughly speaking, these order of magnitude

measures are independent of which Turing-equivalent devices is used as the basis of the calculation,

and they are also independent of the di�erent ways (e.g. roman character strings versus binary

strings) that the size of the input can be measured.

Second, measures of expense are typically based on an assumption that only one computational

resource is costly. By far the best studied notion of expense is running time. However, recently

there has been work on space (i.e. memory) requirements of algorithms. To see what is meant by

this, imagine that our model of computation is enhanced by adding a second tape to the Turing

machine, so that one now has a `working tape' for storing the results of intermediate computations

in addition to a `read-only input tape'. The spatial requirements of algorithms are compared by

studying the required length of the working tape as a function of the length of the input tape (up to

order-of-magnitude). The economists will be quick to point out that, in practice, there is a tradeo�

between time and space: the results of intermediate computations can be stored (space intensive)

or recomputed when needed (time intensive). Unfortunately, current theoretical tools are by and

large too crude to illuminate this tradeo�, except in the dynamic programming paradigm3 and

special cases where a problem is well-understood (e.g. sorting a list of entries). Moreover, other

important computational resources, in particular programming e�ort, are diÆcult to model, and

are consequently not well treated by existing theory.

Third, the most tractable measures of cost are worst-case, giving the time or space requirements

for the most expensive input of given size. It is important to recognize that this can give an

excessively pessimistic view of the utility of an algorithm. For instance it has long been known

that the Simplex Algorithm for linear programming problems has a poor worst-case performance,

but in practical experience the Simplex Algorithm usually halts quite quickly. Recently, Smale have

given a theoretical explanation, showing that for `randomly generated' problems, the probability

of generating a `bad' problem diminishes quickly as the size of the problem increases. The basic

algorithms of interest to us, those which compute the structure of semi-algebraic sets, have worst-

case running times that are quite bad, but typical running times may be much better, as suggested

by the work of Arnon and Mignotte [24].

We can now explain the style of terminology used to describe upper bounds on computational

costs. We say that a function g(n) is O(f(n)) if there exists a constant c such that g(n) � c�f(n) for

all n. Saying that a problem is `log space computable' means that there is an algorithm for solving

the problem such that if S(n) is the length of working tape required in the worst case to process

3Dynamic Programming views a algorithmic solution as a sequence of decisions. The technique involves splitting

the main problem into smaller subproblems that are solved independently, and the corresponding subsolution is

recombined to yield a solution to the main problem. Since Dynamic Programming techniques involve storing the

repeated subsolutions, we achieve a faster solution at cost of increased memory requirements.

7

an input of length n, then S(n) � O(log n). Similarly, an algorithm runs in `polylog time' if there

is a polynomial P of one variable such that the running time for an input of size n is O(P (log n)).

A problem is `polylog computable' if such an algorithm exists. Among the really bad problems are

those whose space or time requirement are towers of exponentials, i.e. functions of the form c22
P (n)

,

c22
2P (n)

, etc., where c is a constant and P is a polynomial. This is due to the fact that the space

requirement of such problems grows very fast (exponentially) as the size of the problem increases.

We say that 22
P (n)

is a `tower of two repeated exponentials', 22
2P (n)

is a `tower of three repeated

exponentials', etc. We use the notation EXPm(P (n)) to denote a `tower of m repeated exponentials'.

The following de�nitions formalize the concept of bounds.

De�nition 1.3.1 (Time Bound) An algorithm has time bound T (n) on machine M, if, when

applied on machine M to any input string ! of length n, the algorithm terminates in time T (n).

De�nition 1.3.2 (Space Bound) An algorithm has space bound S(n) on machine M, if, when

applied on machine M to any input string ! of length n, the algorithm does not consume more

than S(n) non-blank memory cells.

For recursively presented games it is useful to have the following piece of terminology.

De�nition 1.3.3 (Game's Position Space Bound) We de�ne the position space bound of a

game to be the upper bound on the number of bits required to encode any position.

De�nition 1.3.4 (Algorithm's Position Space Bound) An algorithm has space bound PS(n)

on machine M, if, when applied on machine M to any input string ! of length n, it does not use

more than PS(n) memory cells to encode any position it traverses.

1.4 Previous Work in Decision Algorithms for Pure Strategies

Games can be viewed as simple models of computational problems. Interpreting a game of perfect

information whose only outcomes are `Win' and `Lose' in this way, the most fundamental question is

the `Outcome problem', which is the problem of determining if a given player (team) has a winning

strategy over opposing players (teams). The Outcome problem is closely related to the membership

question of language and machines, which is the problem of determining if a given string occurs in a

language. A string in a language corresponds to a perfect information game, whereas the language

corresponds to a game, and a class of languages corresponds to a class of games.

The de�nition of a Turing machine facilitated the development of computability theory by for-

malizing algorithmic procedures. Similarly, several other paradigms of computation (non-determinism,

parallel, etc.) were associated with corresponding models of computations (non-deterministic

Turing machine, parallel random access machine, etc.). The need for a formal computational

model to address the computational aspects of games was ful�lled by Chandra, Kozen, and Stock-

meyer [25, 26] with the Alternating Turing Machine (A-TM). Subsequently, this model has been

extended and enhanced to model more intricate games. Reif [27] extended the A-TM model to

incorporate private and blindfold two-player games by introducing private alternating Turing ma-

chines (PA-TM) and blind alternating Turing machines (BA-TM), respectively. Azhar, Peterson

and Reif [28, 29] introduce private alternating Turing machines (PAk-TM) and blind alternating

Turing machines (BAk-TM) to model private and blindfold multiplayer games, respectively.

8

Mode of COMPUTATION Type of GAME

Deterministic Solitaire, Perfect Information, Unique next move

Non-deterministic Solitaire, Perfect Information, Open next move

Alternation Two-Player, Perfect Information

Private Alternation Two-Player, Incomplete Information

Multiperson Alternation Multi-Player, Incomplete Information

Table 2: Comparing Computation and Games

All these new types of machines have provided a deeper insight into the relationships between

time and space bounded computation. Di�erent types of games correspond to di�erent models

of computation as shown in the Table 2. In particular, it is fascinating that the simplest type of

game (Solitaire, Perfect Information, Unique Next Move) corresponds to our most natural notion of

computation (deterministic). On the other hand, the most interesting type of game (Multi-player,

Incomplete Information) corresponds to a novel and abstract notion of computation.

As treated in computer science, a normal form game is typically given as an input. However,

we can actually start with any position-space-bounded game in recursive form, where the next

move relationship is computable in log space. By the undecidability results of Azhar, Peterson,

and Reif [29], there is no recursive procedure to determine whether a game necessarily reaches a

terminal position, and to compute its normal form, if the game has more than two players, unless

the game is hierarchical.4 5 However, if the game is hierarchical, we can utilize the technique

for unraveling information of Azhar, Peterson, and Reif [28, 27]. Given a recursively represented

hierarchical game with log space computable next move relation, we can transform it into an

equivalent game G�, with space bound which is a tower of k � 1 repeated exponentials in original

space bound S(n), where k is the number of cliques (each clique is de�ned to be the maximal set

of players with exactly the same rights to view components of the game). Note that k is no greater

than the number of players.

1.5 Previous Computer Scienti�c Work on Probabilistic Games

Strategies for playing games can be classi�ed into two avors: deterministic and probabilistic.

Deterministic strategies involve specifying exactly one alternative at each position: such strate-

gies are known as `pure' strategies. Non-probabilistic games follow a set course of play once the

participating players have formulated their strategies. On the other hand, probabilistic strategies

assign probabilities to various alternatives available at each position: such strategies are known as

`behavior' strategies.

Papadimitriou [30, 31] describes the notion of `Games Against Nature' (not to be confused with

game theorists' use of this term to denote games with one player). In these games, one player plays

randomly simulating the randomness we associate with nature, and the other "existential" player

selects a pure strategy which maximizes the probability of success against this random player. In

this framework, the existential player is considered to have won the game if he can win with a prob-

ability greater than 1
2 . Games Against Nature paradigms assist in formulation of decision problems

4Hierarchical multiplayer games are multiplayer games in which the information is hierarchically arranged, i.e.

players can be arranged f1; 2; 3; :::g such that all information visible to player i is also visible to player i� 1.
5Note the similarity to the halting problem.

9

under uncertainty. These games are similar to Arthur-Merlin Games of Babai [32], in which Arthur

plays randomly, and Merlin plays existentially. Interactive Proof Systems of Goldwasser et al. [33]

are also among examples of games in which one player plays randomly whereas the other existen-

tially picks a strategy. Sipser and Goldwasser [34] have proved the equivalence of Interactive Proof

Systems and Arthur-Merlin games. Shamir [35] proves both problems are in the same complexity

class (PSPACE-complete). Condon and Ladner [36] investigated the complexity of probabilistic

game automata. Blum, Shub, and Smale [37] developed a complexity theory for computations on

real numbers, but this work did not have any game theoretic component.

1.6 Organization of This Paper

x 1 has provided an introduction to this paper along with a concise overview of the main issues

and results. x 2 de�nes our notation for games in recursive, extensive, and normal forms. It

also introduces fundamental notions of Information Sets, Moves, Initial Assessment, Utility, and

Strategy. x 3 is devoted to the development of the Sequential Equilibrium paradigm. In x 4,

we develop an algebraic characterization of Sequential Equilibrium, and associated computational

issues. The main results and conclusions are sketched in x 5.

2 Fundamentals of Noncooperative Game Theory

In this section, we precisely de�ne three models of noncooperative games. We bear an unusual

expositional burden because we desire this paper to be accessible to researchers in computer science

as well as economics, and we should explain at the outset that the �rst model is most closely related

to work in computer science, while the second two models are standard in economics.

2.1 Recursive Form

A game in recursive form is a set of rules specifying:

1. A set of positions.

2. A set of players (also known as agents).

3. A rule specifying the player whose turn it is to move at any position.

4. A speci�cation of the knowledge a player has available at his or her turn to move. Di�erent

descriptions of this knowledge are possible. For example, the position might be a string of

characters with each player observing some positions in the string and not others. However,

any such description should be equivalent to the following: the positions at which a player

moves are partitioned into information sets, the interpretation being that the player knows

only that some position in the information set has occurred.

5. A set of legal next moves from any given information set or 'state of knowledge' for a player.

6. A rule specifying the subsequent position that results from any position when any legal move

is chosen.

7. A rule specifying an initial position at which the game starts.

10

8. A rule specifying when the game terminates.

9. A vector of payo�s (real numbers awarded to each player at the termination of the game)

associated with each possible outcome.

As we will see shortly, the description above is not dramatically di�erent from the extensive

form presentation of a game. The crucial di�erence, not formally stated above, is a matter of

computational complexity, in the sense that in the recursive presentation there are algorithmic

formulations of the rules for determining (a) whether a position is terminal, (b) payo�s at terminal

positions, (c) the player to move, the set of legal moves, the information available to the player

to move, and the positions resulting from legal moves at a nonterminal position. In theoretical

analyses, it is assumed that an execution of one of these algorithms is either trivial, so its expense

can be ignored, or is an elementary computation from the point of view of a theory that measures

complexity in terms of numbers of elementary computations. The entire game tree, however, is

not presented as an input, nor is it necessarily the result of a small number of computations. In

complexity analysis that takes the extensive form as the given object, on the other hand, it is

assumed that the entire tree is explicitly laid out in the input, so that the size of the input is

roughly proportional to the number of nodes in the tree.

The description above is more general than might be immediately apparent. Some important

features allowed by our structure are as follows.

1. Players need not take turns in round-robin fashion. The rules of the game will dictate whose

turn is next.

2. A player may not know how many turns were taken by other players between its turns.

3. Communication is possible, though only through the explicitly laid out structure. That is,

some of the moves may serve as messages.

4. Positions, as we use the term, may include more information than is \on the board." Thus,

in chess, the position includes castling rights and enough information to implement the three

fold repetition rule and the �fty move rule, i.e. the history of play since the last pawn move,

capture, or loss of castling right.

2.2 Game in Extensive Form

2.2.1 Basic Notation

Instead of representing the possible plays of a game indirectly, by specifying recursive procedures for

generating them, the extensive form presents them directly, in terms of an explicitly speci�ed game

tree. For example, Figure 1 lays out a simple two-player guessing game, known in the literature

as \matching pennies" in which one player hides an object, perhaps a white pawn, in one hand,

(L)eft or (R)ight, and the other player guesses which hand, (l)eft or (r)ight, the object is in. (Chess

players will recognize that this game is commonly used to assign colors at the beginning of a game.)

A game tree consists of a set of play pre�x nodes with the the root node(s) represents the

starting position(s) of the game. In Figure 1, f; L;R;Ll; Lr;Rl;Rrg are the set of play pre�x

nodes. Each node represents a position, and its children are the positions after the next move.

Every node is connected to its children with branches labeled with each of the alternative moves

that can be chosen by the player whose turn it is to move. For example, when player 2 moves to

11

(- 1,+1)(+ 1,-2)(+2 ,-1)(-2, +2)

R r

R

LrLl R l

L
r l rl

L R

Figure 1: A Simple Guessing Game

l in response to L, we use an arc labeled l to connect L with Ll. It is important to note here that

two equivalent situations in a game which occur at di�erent stages of the game (by transposition

of moves or otherwise) are considered distinct, and they correspond to di�erent nodes in the game

tree. In general, it is possible that the identity of the player who is to move next is determined

by the situation of the game. A game represented by its game tree is said to be represented in its

extensive form. We dedicate the rest of this section to develop the notation for games in extensive

form.

Notation 2.2.1 (Multiperson Game) :

A multiplayer game can be de�ned as follows:

I is a �nite set of players.

T : There is a �nite set T of possible states of the game. Generic elements are denoted by �, �0,

etc. In Figure 1, T = f; L;R;Ll; Lr;Rl;Rrg.

(T,`) : � ` �0 denotes that there is a legal next move from � to �0 (i.e. we can transform � to

�0 in a single move). Each node of the game tree denotes a possible play situation, say �, of

the game, and its children are all plays �0 such that there is a legal next move relation from

parent to child. (T,`) forms an arborescence6.

(T,j=) : � j= �0 if and only if there is a sequence of legal moves which can transform � to �0 (i.e.

there is a sequence �1; �2; ::: such that � ` �1 ` �2 ` � � � ` �0). A particular subscript can

be speci�ed (like j=n) to restrict j= to a sequence of exactly n legal moves. Since (T,`) is an

arborescence, j= is a strict partial ordering.

W,Y : Initial Node(s)7 are nodes without predecessors. The set of initial nodes is denoted by W ,

and the non-initial nodes are denoted by Y . Y is de�ned to be the set di�erence T �W . In

Figure 1, W = fg and Y = fL;R;Ll; Lr;Rl;Rrg. In case there are several distinct initial

positions (as in most card games), we also need to specify the probability distribution over

the set of initial nodes. This distribution is called the Initial Assessment. In general, we will

assume that every initial node in the initial assessment has positive probability.

6This means that each play has at most one predecessor, and any sequence of immediate predecessors must

terminate rather than cycle. Arborescences are called forests in computer science.
7known as root(s) in computer science terminology

12

Z,X : A terminal node8 is a node in the game tree which does not have any successors. Z denotes

the set of terminal nodes, and X = T � Z is the set of nonterminal nodes. In Figure 1,

Z = fLl; Lr;Rl;Rrg, and X = f; L;Rg. Each terminal node is associated with a vector of

payo�s specifying the gain and loss experienced by each participant at the end of the game.

The payo�s are normally interpreted as von Neumann-Morgenstern utilities as speci�ed by

von Neumann and Morgenstern [38]. In Figure 1, we use ordered pairs to denote the payo�s

to the players 1 and 2, respectively.

�(�) : The function � : X 7! I de�nes whose turn is to move next at the nonterminal nodes.

`(�) : The level of � 2 T is the integer `(�) which represents the number of plays preceding �

(starting from some initial node).

p : There is a function p1 : Y 7! X , such that p1(�) = �0 if �0 ` � (i.e. �0 j= � in one move). For

n > 1, we recursively de�ne pn(�) = pn�1(p1(�)) (or equivalently pn(�) = �0 if �0 j=n �).

p(�) is de�ned to be the set of all predecessors of �: p(�) = f�0 j �0 j= �g. So, recursively

p(�) = fp1(�)g [fp(p1(�)g (or iteratively [k=1;::;`(�)pk(�)).

!(�) : The root of � is the initial position from which � is derived:

!(�) = p`(�)(�) 2W :

F (�) : For � 2 T we let F(�) be the set of immediate successors of � 2 X , which are the plays

reachable from � via one legal move. Note that F(�) = p�11 (x).

ZOF(�) consists of the set of terminating plays derivable from �. ZOF(�) = f�0 2 Z j if � 2 X

then � j= �0 else �0 = �g.

A : There is a �nite set A of legal moves.

� : There is a surjective function � : Y 7! A that labels each noninitial node with the last move

chosen prior to the occurrence of the node. At every node, each allowed move has a unique

consequence. Symbolically, if p1(�) = p1(�
0) and � 6= �0, then �(�) 6= �(�0). The result of

applying move m 2 �(F(�)) at � is denoted by FC(�;m).

Table 3 summarizes the notation developed so far.

2.2.2 Information Sets

De�nition 2.2.1 (Information Sets (Hi)) : Information possessed by players is represented by

a partition H of X into information sets. For each player i, there is a partition Hi of �
�1(i). For

� 2 ��1(i), Hi(�) is the cell of Hi containing �.

We impose the following assumptions on this structure:

1. For all i, all h 2 Hi, and all �; �0 2 h, �(F(�)) = �(F(�0)): the alternatives available to the

player are the same at � and �0.

8In computer scienti�c terminology a terminal node is better known as a leaf.

13

Notation Name Description

I Finite set of players Speci�ed by rules of the game

T Set of plays f� j � is a legal play g

` Next move relation � ` �0 if there is a legal move from � to �0

j= Derivable play relation � j= �0 if there is a sequence of moves such that � ` �1 ` �2 ` ::: ` �

W Initial position f� 2 T | p(�) = � g

Y Noninitial plays T - W = f� 2 T | p(�) 6= � g

Z Terminal plays f� 2 T | F(�) = � g

X Nonterminal plays T - Z = f� 2 T | F(�) 6= � g

�(�) Player to move next The next player to move

`(�) Length of � Number of positions in � in addition of the initial position

p1(�) Immediate predecessor of � �0 2 T such that �0 j= �

pm(�) mth predecessor of � p1(pm�1(�)) for m > 1

p(�) Predecessors of � f p1(�) g [f p(p1(�)) g

!(�) Initial predecessor of � p`(�)(�)

F(�) Immediate successors of � f �0 j � j= �0 g

ZOF(�) Terminal positions ZOF(�) � f�0 2 Z | � j= �0g

A Set of legal moves f m j � ` �0 with move m g

�(�) Move performed last m such that FC(p1(�); m) = �

Table 3: Notation and De�nitions for Extensive Form

Notation Name Description

Hi Information sets Partitions of T into sets with equivalent knowledge for player i

Hi(�) Info. set containing play � A � Hi such that 8� 2 A : visi(�) = visi(�)

m(h) Moves available at h 2 H f�(�) j � 2 F(�); � 2 hg

�(h) Player choosing at h 2 H �(�) for � 2 h

MOVSETi(m) Info. set at which move m might be chosen MOVSETi(m) = m�1(m), i.e. h 2 H s.t. m 2 m(h).

Table 4: Capturing the Incomplete Information Content

2. For all m 2 A there is a unique h 2 H such that m 2 �(F(�)) for some (hence all) � 2 h.

Let MOVSET(m) denote the information set at which move m can be chosen. Formally,

MOVSET(m) is m�1(m), i.e. the information set h 2 H such that m 2 m(h).

The �rst assumption is essential to the intended interpretation, namely that when a play in an

information set occurs, the player to move knows only that some play in that information set has

occurred, not which one. In contrast, the second assumption is a mathematical convenience rather

than a substantive assumption, and is commonly violated in notational conventions for particular

games: for example, `N-KB3' is used to denote moves available in many di�erent positions in chess.

For i 2 I we can de�ne Hi = ��1(i) be the set of information sets at which player i chooses,

and we let mi = [h2Hi
m(h) be the set of moves that could be chosen by i. For easy reference the

notation above is summarized in Table 4.

Using the machinery of notation develop above, we now state the assumption of perfect recall.

Proposition 2.2.1 (Perfect Recall) Each player knows what he or she knew previously (i.e.

does not lose any knowledge). Consider an information set h 2 Hi at which player i moves and

two plays �; �0 2 h. Suppose that there is another information set h0 2 Hi and a play �0 2 h0 with

�0 j= �. Then at � player i should remember that h0 occurred, and since player i cannot know

whether � or �0 occurred, this should also be the case at �0. That is, there should be a play �
0

0 2 h0
such that �

0

0 j= �0. Moreover, the move chosen at �
0

0 on the way to �0 should be the same as the move

14

Notation Name Description

�(X) Probability measures on any �nite set X f� : X �! [0; 1] j
P

x2X
�(x) = 1g

�o(X) Interior probability measures on X f� 2 �(x) j �(x) > 0 : 8x 2 Xg

� Initial assessment � 2 �o(W)

u = huiii2I Utility/Payo� ui is the reward for player i (associated with every conclusion)

Table 5: Notation and De�nitions for the Initial Assessment and Payo�s

chosen at �0 on the way to �: if �0 = pm(�) and �
0

0 = pn(�
0), then �(pm�1(�)) = �(pn�1(�

0)).

Among other things, perfect recall implies that if � and �0 are in the same information set, then

they are are not related by precedence. To see this suppose that �0 j= �, and observe that perfect

recall implies the existence of a node �00 in the same information set with �00 j= �0; proceeding

inductively, we can generate an in�nite sequence of nodes in the information set, all distinct since

they are ordered by j=, contrary to the assumed �niteness of the tree.

In general, for any �nite set X we let �(X) be the set of probability measures on X, and we let

�o(X) be the set of probability measures that assign a positive probability to all elements of X.

De�nition 2.2.2 (Initial Assessment) The initial assessment is a probability distribution on

the initial position (� 2 �(W)). For many purposes, though not all, an initial node that has zero

probability of occurring can simply be eliminated from the game tree (along with its successors).

Consequently, unless stated otherwise we will assume that � 2 �o(W). (We assume that every

player's initial assessment is the same).

De�nition 2.2.3 (Utility) For each player i 2 I , the payo� function ui : Z 7! < assigns a real

valued von Neumann-Morgenstern utility to each outcome. The payo� is a I � Z matrix where for

each node � 2 Z, there is an associated vector u = hui(�) j i 2 Ii, where ui is the utility/payo� to

player i. For example, Figure 1 indicates the utilities as ordered pairs for each �nal outcome.

We summarize these de�nitions in Table 5 for convenient reference.

Now, we have developed notation necessary to represent games in extensive form.

De�nition 2.2.4 (Extensive Form Game) An extensive form game is a tuple

G = ((T; j=); (A; �); (I ; �); (H); �; u)

conforming to the description above.

The extensive form of a game contains the combinatoric information which describes the game.

The remaining information consists of real numbers.

2.2.3 Strategy

A strategy for a player is a description of his or her behavior during the game. A variety of notions

of strategy are useful since, among other things, it matters whether the behavior being described is

intended, actual (perhaps in a statistical sense), or expected by others. We consider three concepts.

15

De�nition 2.2.5 (Behavior, Pure, and Mixed Strategies) A behavior strategy for player i

is a function �i : Hi ! �(A) such that for each h 2 Hi, �i(h) assigns positive probability only to

those moves in m(h). A pure strategy is a behavior strategy that assigns only degenerate probabili-

ties, i.e. it speci�es exactly one feasible move at each h 2 Hi. The set of pure strategies for agent

i is denoted by Si. A mixed strategy for agent i is a probability measure on Si.

Intuitively a behavior strategy suggests that the agent makes decisions one by one as situations

arise. In principle, though, the agent can make all decisions at the beginning by selecting a pure

strategy, after which he or she (or perhaps a delegated subordinate) simply executes the decisions

made initially. The information set-by-information set randomizations of a behavior strategy can

be replicated by a mixed strategy that assigns to each pure strategy the product of the probabilities

(given by the behavior strategy) of all the moves that the pure strategy speci�es. This raises the

question of whether the space of behavior strategies is large enough to capture all the possibilities

presented to the agent by the space of mixed strategies. A theorem of Kuhn [39] shows that,

for games of perfect recall, the answer is aÆrmative: for any mixed strategy there is a behavior

strategy that is `realization equivalent' in the sense that, for any mixed strategies for the other

agents. the mixed strategy and the behavior strategy induce the same probability distribution on

terminal nodes.

Kuhn's result [39] has a special signi�cance for our work here, since the dimension of the space

of behavior strategies (the sum, over all information sets where the agent moves, of the number

of allowed moves minus one) is typically much lower than the dimension of the space of mixed

strategies (negative one plus the product, over all information sets where the agent moves, of the

number of allowed moves). Since the algorithms for systems of polynomials considered here have

running times that grow exponentially with the number of variables, it should be more fruitful to

apply them to solution concepts expressed in terms of behavior strategies.

Although the set of mixed strategies is ill-suited for computation, it gives a view of the game

that is notationally simple, so that the following notion of a game is a popular starting point of

theoretical analysis. An n-person normal form game is a 2n-tuple (S1; ::::; Sn;u1; :::; un) where

each Si is a �nite set of pure strategies. We call the elements of S = S1 � : : : � Sn pure strategy

vectors. The utility function ui : S 7! < associated with player i maps pure strategy vectors to von

Neumann-Morgenstern utilities. As indicated above, there is a canonical procedure for passing from

an extensive form game to an associated normal form game, and the possibility, in the extensive

form, of choosing behavior in advance, suggests that the given extensive form and the derived

normal form should be equivalent from the point of view of strategic considerations. This point

has been argued with special force by Kohlberg and Mertens [40], but is not fully accepted since its

consequences (that di�erent extensive forms with the same derived normal form should be viewed as

equivalent, and that solution concepts should be invariant under this notion of equivalence between

games) are not completely understood, and seem paradoxical in some instances.

We can also think of Strategy as the approach used by the players to select which move to make

from all the alternatives available, using information accessible to them, at their turn to move.

Formulation of strategy is the most fundamental concept that emerges from investigating games in

extensive forms.

A pure strategy for a player i speci�es a single next move for that player from all the possible

legal moves. On the other hand, a mixed strategy is one in which several next moves can be chosen

with some probability distribution. In this paper, we are concerned with mixed strategies. We also

require that a strategy of player i may depend only on components of the position visible to player

i.

16

Player 1

Player 2

L R

l (-2,+2) (+1,-2)

r (+2,-1) (-1,+1)

Table 6: Simple Guessing Game in Normal Form

Recall, Hi � f� 2 H j �(�) = ig. In x 3, we will need to restrict mixed strategies to satisfy

certain equilibria criteria. Formally, we de�ne mixed strategy as follows:

De�nition 2.2.6 (Mixed Strategy) For a player i the strategy is a partial function �i : Hi 7!

�(T) such that:

1. For any � 2 Hi, �i(�) is a probability distribution on the legal next moves after �. This

distribution reects the probability that �0 2 F(�) is chosen by player i.

2. If �; �0 2 Hi and visi(�) = visi(�
0), then visi(�i(�)) = visi(�i(�

0)).

Thus, �i is a guide for player i to select the next move. Rule 1 above restricts player i to legal

moves, whereas rule 2 insures that the strategic decisions must be made using only the knowledge

visible to player i. We say that a play � is induced by strategy � if whenever �0 is a (not necessarily

proper) pre�x of �, and �0 is in the domain of �, then all pre�xes of � which occur with a nonzero

probability are contained in the set �(�0). Pure strategies can be thought of as a special case of

mixed strategies in which exactly one node occurs with probability 1.

Let Si be the set of strategies for player i, and S = S1 � ::� Sn be the set of strategies for the

game. For any � 2 �(S) and z 2 Z the probability measure using strategy � is:

Prob�(z) = �(!(z))

`(z)Y
l=1

��(pl(z))(�(pl�1(z)))

We denote the expected utility of player i under strategy � by E�[ui(z)].

2.3 Games in Normal Form

Although representation of a game in extensive form contains all relevant details, often a signi�cant

fraction of information can be superuous and over-specialized from the game theoretic perspective.

A more concise representation of games is simply by strategies alone. This is known as Normal

Form representation.

Consider Figure 1 which presents a game in extensive form. The game essentially has a�ords

two strategies for each player. Player 1 can choose to move L or R, and Player 2 chooses between

l and r. We can depict these strategies along with the associated payo�s in normal form as shown

in Table 6.

Formally, an n-person normal form game is a 2n-tuple (S1; ::::; Sn;u1; :::; un) where each Si is a

�nite set of pure strategies. A probability distribution over S1�S2� :::�Sn can be used to specify

mixed strategies. We call the elements of S = S1� ::::�Sn pure strategy vectors, and the probability

17

distribution in �(S) is associated with mixed strategies. We also have a utility function ui : S 7! <

(< denotes the set of real numbers) associated with each player i, which maps strategies to payo�s

expressed as real numbers. This function speci�es the payo� as von Neumann-Morgenstern utility

(in some conservative quantity like money) awarded to each one of the players from the game. When

a game is represented in normal form as described above, the underlying rules of the game become

irrelevant, and the game tree becomes superuous. However, if one insists we can intuitively think

of an n-person normal game as an extensive form game with the following rule: Player i chooses

strategy �i from the set of strategies Si before the choices of other involved players are known to

him/her (player i).

We can also construct an equivalent normal form for a game initially presented in extensive form

as described below. For each player i, compute the set of all available pure strategies open to player

i in the extensive form of the game. Here, pure strategy means a speci�cation of allowed actions

at each state where player i is to \move". A pure strategy accounts for all possible sequences of

\moves" which can occur. We, let ui(�1; ::::; �n) be the \expected payo�" for player i, with respect

to the probability distribution of the terminal plays resulting from the initial assessment, when the

players select the strategies �1; :::; �n, respectively.

By results of Azhar, Peterson, and Reif [29], there is no recursive procedure to compute a game's

normal form except if the game has less than three players, or if the game is hierarchical in the

sense described in Section 1.4. Game theorists have disputed as to whether important information

is lost in the process of the transformation from an extensive form game to a normal form game.

This depends on details of the equilibrium concept, and in fact will prove not to be an issue for

sequential equilibrium.

2.4 Game Theory Perspectives

In game theory, it is standard practice to consider only games of perfect recall, in the sense that

all the plays in an information set must be consistent with everything observed by the player

whose turn it is. The formal expression of this notion is cumbersome and tedious, but it has been

elucidated in x 2.2.2.

Chance (or nature) may be a player in its own right. If the probabilities associated with its

choices are known, we can construct a frequency distribution for all possible outcomes, and from

this distribution we can compute the `expected outcome' as well. However, in our discussion, we are

not allowing chance (or nature) an opportunity to participate in the game. The reason is that we

do not want to get distracted by superuous complications, especially since, for all practical intents

and purposes, we can transport all chance moves back to the initial stage of initial assessment. As a

result of such treatment of chance moves, we are able to gain simplicity of notation and description.

Nevertheless, we will discuss chance moves where it seems to us that the implicit generalization of

the material may not be obvious.

In games of perfect information, each and every player is in a position to access all relevant

information to know the exact state of the game before it decides which one of the possible alter-

native moves to select. Chess is an example of a perfect information game. In Chess, a player has

complete knowledge of the board position on its turn before it selects one of the options available.

It may very well be true that a player does not select the optimal move for the position at hand, but

the fact remains that the player's computational shortcoming is not a result of lack of information.

On the other hand, in games of incomplete information the players are forced to make choices

without complete information about the state of the game. An example of a game of incomplete

18

information is the card game bridge. At any stage during hand play, a player knows everything

about his cards, but does not have complete information about the hands of other players. In

general, a player may be given a set of branch points to which the game may have progressed. Such

sets are called the information sets. In bridge, information sets correspond to partial information

gathered during the course of the play (e.g. one of the opponents is out of the trump spades but

has high diamonds, and the other opponent is out of hearts). A nontrivial amount of information is

still up to speculation. The rules of the game determine all legal moves which the player can make

in a given situation. In order for this to make sense, the set of allowed actions must be the same at

all points in an information set. Furthermore, for each node in an information set and each allowed

action, there must be a unique successor node resulting from the action. In the running example

of bridge, the content of opponents' or partner's hand does not a�ect a player's legal leads, or

response to another player's leads. Some such plays might not be pro�table in view of the contents

of information sets, but are they nonetheless are legal.

3 Equilibrium

Many notions of \equilibrium" have been de�ned during the development of game theory. The

�rst formal de�nition of an equilibrium concept for general games, which generalized the notion of

a minimax point for two player zero-sum games, was formulated by Nash. Since then, modi�ca-

tions, mainly in the direction of increasing restrictiveness, have been proposed to overcome certain

problematic features. This paper concentrates on one of these, namely the concept of Sequential

Equilibrium proposed by Kreps and Wilson [1], but we should emphasize that, although this concept

has computational advantages, the algorithms for semi-algebraic geometry presented below could

be applied to almost every known solution concept for �nite games, since (with few exceptions)

these concepts are de�ned in terms of polynomial equations and inequalities in the payo�s and

strategic probabilities.

Since sequential equilibrium is a rather complex notion, it can be better understood in relation

to alternative equilibrium concepts.

3.1 Nash Equilibrium

3.1.1 Formulation of Nash Equilibrium Concept

Intuitively, a vector of mixed strategies is a Nash Equilibrium if every player's strategy is an

optimal response to the other players' strategies in the sense that no player could increase his or

her expected payo� by deviating from the given (`equilibrium') strategy, assuming other players

persist with their (`equilibrium') strategies.

Let us develop some notational machinery to aid formal de�nition of Nash Equilibrium. Con-

sider a normal form game (S1; :::; Sn;u1; :::un) and the associated notation developed in x 2.2.3.

Given a mixed strategy vector � = (�1; :::; �n) 2 �i�(Si), one can compute an expected payo�

for any player j. Assuming that the behaviors of various players are statistically independent, the

expected payo� is given by the following expression:

E�[uj] =
X
s2S

�1(s1) � : : : � �n(sn) � uj(s):

19

Notation 3.1.1 (Substitution) For � 2 �i�(Si) and �j 2 �(Sj), let �j�j be the mixed strategy

vector obtained by replacing �j with �j.

De�nition 3.1.1 (Best Response) We say that �j is a best response for player j to � if E(�j�j)(uj) �

E(�j!j)(uj) for all !j 2 �(Sj); the set of such best responses is denoted by BRj(�).

Since E(uj j�) is a multilinear function (in the obvious sense), hence linear in �j , BRj(�) is the

set of probability measures on Sj that assign positive probability to pure strategies that are best

responses to �. In particular, BRj(�) is nonempty.

De�nition 3.1.2 (Best Response Correspondence) The best response correspondence BR: �(S1)�

:::��(Sn) 7! �(S1)� :::��(Sn) is de�ned by BR(�) = BR1(�)� :::� BRn(�).

De�nition 3.1.3 (Nash Equilibrium) A mixed strategy vector �� is a Nash equilibrium if �� 2

BR(��).

In addition to proposing this equilibrium concept, Nash [41] pointed out that the best response

correspondence satis�es the hypotheses of the Kakutani �xed point theorem [42], so the set of Nash

equilibria is always nonempty. Clearly this is a minimal requirement for jointly rational behavior

because if a mixed strategy vector does not satisfy this condition then some player can obtain a

higher expected payo� by changing to another strategy.

3.1.2 Inherent DiÆculties Associated with the Notion of Nash Equilibrium

Although Nash equilibrium has always had a central position in game theory, it has, in every period,

been subject to attacks from one direction or another. We �rst briey describe the questions that

have been raised concerning its relevance, then proceed to the arguments suggesting that it is

less restrictive than it should be; the latter considerations motivate the de�nition of sequential

equilibrium.

Within the traditional \one shot" interpretation of a game { as a social situation that occurs only

once, and encompasses all interactions between the agents { it is diÆcult to explain how the agents

learn each other's strategies. Bernheim [43] and Pearce [44] (independently) formalized this critique,

arguing that, for the one shot interpretation, a weaker solution concept is the correct description of

the consequences of the assumption that the rationality of all agents is common knowledge. Recently

another interpretation has been advanced as a foundation for Nash equilibrium, namely that the

game occurs repeatedly, so that historical information can be consulted in forming expectations

about the behavior of other agents, but the agents involved in any particular instance do not expect

to encounter each other in the future, so that considerations of revenge, rewards, reputation, and

so forth, do not drive a wedge between the current payo�s and true motivations. In sharp contrast

to the one-shot interpretation, this view has no diÆculty with multiple equilibria: di�erent cultures

can have di�erent, stable, sets of customs.

The modern view implicitly regards Nash equilibria as stationary states of an underlying process

of strategic adjustment, but general principles do not provide clear cut guidance for modeling these

dynamics. This is an area of active research and presently the support for Nash equilibriumprovided

by this interpretation seems less than complete in the following sense: although any stationary point

of a reasonable adjustment process should be a Nash equilibrium, it may happen that all equilibria

are unstable, with the only stable phenomena being cycles or more complicated attractors.

20

(+1000,+1000)(-200,+200)

(-100,-100)
Cease FireAttack

Destroy the World Cease Fire

Figure 2: Death Before Dishonor

Right

MidMid

Left Right

Mid

Left

(4,0) (1,1) (4,3) (4,0)(1,1)(4,3)

NimblePassive
Active

(2,-10)

Figure 3: Extensive Form of a Game without `Beliefs' with Nash Equilibrium (Passive, Mid).

Finally Nash equilibrium is vulnerable to the critique that, as a matter of both casual observation

and extensive experimental evidence, it is simply wrong as a predictor of behavior in particular

games. A careful evaluation of this point seems to require the elaboration of a philosophy of inexact

science, so we will not discuss it further.

For us the most relevant criticism of Nash equilibrium is that it is incomplete as a description

of the consequences of it being common knowledge that all agents are rational.

A simple and compelling example is the Death before Dishonor game shown in Figure 2. Clearly,

a mutual Cease Fire is the optimal outcome for both players. However, Destroy the World is a

Nash equilibrium if Player 1 believes that Player 2 will choose to Attack.9

Figure 3 presents a slightly more complicated example. Here, as the reader can easily verify,

(Passive, Mid) is a Nash equilibrium. This time Mid is not a dominated move for Player 2, but it

is unreasonable since there are no `beliefs' about the relative likelihood of the plays in Player 2's

information set for which Mid is a best response.

What these examples illustrate is that Nash equilibrium does not require rationality, in the

sense of payo� maximization, in situations that occur with probability zero under the equilibrium

strategies. Perhaps more important, agents are not required to believe that others will behave

rationally in such situations. This seems clearly contrary to the spirit of the equilibrium concept,

which is to elaborate those properties of behavior which follow from the assumption that the

9If Player 2 is attacking, destruction of the world is a Nash equilibrium because neither player can increase expected

utility by changing strategy. This Nash equilibrium is not only illogical, but also unrealistic and absurd: Player 1 is

countering a threat that Player 2 could not rationally carry out.

21

rationality (in any contingency) of all agents is common knowledge.

Although most researchers accepted the Nash equilibrium concept as central, a certain amount

of confusion has surrounded its interpretation.

The players are required to behave as if they are unaware of their strategic interdependence.

This assumption is plausible only if there are numerous players, and the consequence of a single

deviation is negligible. Cournot tatonnement [45] is an example of dynamic process where each

player adjusts its strategy optimally under the myopic assumption that the others will not alter the

game situation. However, this presumption of every player is rendered erroneous after each move

[45]. If this process converges we must arrive at a Nash equilibrium. Nevertheless, the players go

through a series of adjustments without any guarantee of the process converging.

If, as can easily happen, there are several Nash equilibria, the theory seemed to be at odds with

itself, since the information available is insuÆcient to lead the players to select one of the equilib-

ria. Nash equilibria are the only expectations that are potentially self-reproducing when players

respond rationally. They can be thought of self-ful�lling prophecies or self-enforcing agreements.

Guaranteeing the uniqueness of Nash equilibrium is a diÆcult procedure which can be applied only

to special types of games. On the other hand, in the interpretation of game as a social interaction,

multiple equilibria are no more mysterious than the fact that two cultures can have di�erent but

stable sets of customs.

When a game is played repeatedly, the Nash equilibrium concept does not accommodate deriva-

tion of any bene�t to a player by learning about the game, or understanding the behavior of other

players, or incorporating any other knowledge. In reality, mixed strategies represent the expecta-

tions the players have about each other's behavior, where these expectations are derived from the

society's history of behavior in this game.

Nash equilibria outcomes are not Pareto optimal in general. We refer interested readers to

Grote's analysis [46] for a rigorous treatment of Pareto optimality concerns in reference to Nash

equilibria.

Although Nash equilibrium seems to be a coherent description of rational behavior in such

interpretations, it is far from a complete description. This can be shown by the simple and com-

pelling example of Death before Dishonor game formulated in Figure 2. As we noted earlier, a

mutual Cease Fire is the optimal outcome for both players. However, Destroy the World is a Nash

equilibrium if Player 1 believes that Player 2 has chosen to Attack10 . This Nash equilibrium is not

only illogical, but also unrealistic and absurd: Player 1 is countering a threat that Player 2 could

never carry out. This is illustrated more vividly by the next example.

Consider the extensive form in Figure 4, and the derived normal form shown in Table 7. The pair

(Draw ;Passive) is a Nash equilibrium of this game: Player 1 does best to play Draw if he expects

Player 2 to play Passive, if Player 1 assigns all probability to Draw, then Player 2's strategy has

no e�ect on his expected payo� (so there is no better response than Passive to Draw).

This equilibrium is clearly unreasonable when we examine the above game in its extensive form.

If Player 1 chooses Gamble then Player 2's strategy will inuence its payo�. On the other hand,

Player 2 will be prefer to choose Active. Player 1 can anticipate this, so he will choose Gamble.

Game theorists say that the equilibrium (Draw ;Passive) is sustained by a `non-credible' threat.

Figure 3 presents a slightly more complicated example. Here, as the reader can easily verify,

(Passive, Mid) is a Nash equilibrium. This time Mid is not a dominated move for Player 2, but it

10If Player 2 is attacking, destruction of the world is a Nash equilibrium because neither player can increase his

utility by changing its strategy

22

(+2 ,+1)

(+1 ,+1)

(0 ,0)

PassiveActive

GambleDraw

Figure 4: Extensive Form a Game with Nash Equilibrium (Draw ;Passive) sustained by a `Non-

credible' Threat.

Player 2

Player 1

Active Passive

Draw (+1,+1) (+1,+1)

Gamble (+2,+1) (0,0)

Table 7: Normal Form of a Game with Nash Equilibrium (Draw, Passive) Sustained by a `Non-

credible' Threat.

is unreasonable since there are no `beliefs' about the relative likelihood of the plays in Player 2's

information set for which Mid is a best response.

3.2 Perfect Equilibrium

The next major advance after Nash [41] was the paper by Selten [4], which de�ned the (rather

optimistically titled) notion of perfect equilibrium. For sake of completeness, we present a brief

overview of this notion. We �rst de�ne this notion for the normal form, then consider how it can

be applied to extensive form games.

In earlier work Selten had de�ned the notion of subgame perfection as a response to these

diÆculties. A node in the game tree is the initial node of a subgame if all agents always know

whether it has occurred, i.e. every information set is either contained in the set consisting of the

given node and its descendants or disjoint from this set. A behavior strategy is a subgame perfect

equilibrium if it is a Nash equilibrium and its restriction to every subgame is a Nash equilibrium of

the subgame. The undesirable Nash equilibrium of Death Before Dishonor is disquali�ed by this

criterion, but this concept does not handle the other example presented above in which there are

no nontrivial subgames, and in general the notion of a subgame is rather special, so that one should

not expect subgame perfection to rule out all the \bad" equilibria of the sort that it addresses. The

following more restrictive equilibrium notion does not su�er from this aw.

De�nition 3.2.1 [Perfect Equilibrium] �� 2 �i�(Si) is a perfect equilibrium if there is a sequence

f�rg � �i�
o(Si) with �� 2 BR(�r) for all r and �r 7! ��.

Remark 1 The most important mathematical fact about the set of perfect equilibria is that it is a

nonempty subset of the set of Nash equilibria.

23

Remark 2 Note that a perfect equilibrium necessarily assigns probability 0 to all pure strategies

si that are weakly dominated: we say that strategy si is weakly dominated by strategy ti if there

ui(si; sI�fig) � ui(ti; sI�fig) for all sI�fig 2 SI�fig = �j 6=iSj with strict inequality for at least one

sI�fig.

The reader may wish to examine the examples above to verify that the concept of Nash equi-

librium described above as unreasonable is also not perfect in the sense of De�nition 3.2.1.

It turns out that applying the concept of perfection to the normal form derived as above is

not the correct application of the perfect equilibrium concept to extensive form games. Informally,

the diÆculty is that normal form perfection does not require a player to behave rationally at an

information set that cannot be reached under the player's equilibrium strategy due to a choice

made by the player at an earlier information set. For a more expansive treatment of this point,

with examples, the reader is referred to x 13 of Selten's paper [4].

Those unfamiliar with the intellectual history of game theory may wonder why such a long time

elapsed between Nash's paper and later attempts to develop more re�ned concepts. Certainly an

important factor was the belief that the normal form was suÆcient for the description of rational

behavior in equilibrium. The fact that notation for extensive form games is bulky and cumbersome

may also have contributed to the delay.

Between 1950 and 1975, the accepted solution concept for games in extensive form was Nash

equilibrium applied to the associated normal form game. This solution concept has the diÆculty

(which is not apparent when looking only at the normal form) that it allows irrational behavior at

information sets that are reached with zero probability. In addition, any sensible theory of rational

behavior at unreached information sets must incorporate some theory of beliefs concerning the

relative likelihood of the nodes in such informations sets. Presuming that the beliefs are irrelevant

at information sets reached with zero probability would not render complete treatment, since the

equilibrium concepts has to be well-de�ned to account for all possible deviations of the players from

equilibrium.

3.3 Sequential Equilibrium

A more suitable approach is to apply the perfect equilibrium concept to the `agent normal form',

which is obtained by regarding each information set as a di�erent player. The mixed strategy

vectors of the agent normal form are, of course, precisely the behavior strategies. To see the import

of perfect equilibrium in this context, suppose that �� is a perfect equilibrium of the player normal

form, and that h�ri is a sequence of totally behavior strategies converging to �� with �� 2 BR(�r)

for all r. Suppose the initial assessment assigns positive probability to all initial plays. Then, for

any r, the behavior strategy �r induces a probability distribution on terminal plays that is totally

mixed, since any allowed sequence of moves has positive probability. In particular, every play in the

game tree occurs with positive probability, so the condition �� 2 BR(�r) implies utility maximizing

behavior at information sets that occur with probability zero under ��.

Moreover, each �r induces a well de�ned conditional probability distribution on the plays in each

information set. For a given information set this distribution may be thought of as the Bayesian

beliefs of the player who chooses there. Knowledge of the strategy �� alone is enough to compute

that player's expected payo� conditional on any node in the information set and any choice of

action. Combining this information with a belief, in the sense of a distribution over the nodes in

the information set, one can compute expected payo�s for each of the available actions, thereby

de�ning a notion of rationality.

24

We must confront the following problem. The beliefs at an information set are conditional

probabilities, and are not unambiguously determined by �� unless the conditioning event (i.e. the

information set) occurs with positive probability. At the same time, even when they are not com-

pletely determined, they should not be completely arbitrary; among other things an agent should

not believe that his opponents' actions are correlated when the opponents have no way to coordi-

nate their behavior. Kreps and Wilson [1] discuss a number of conditions that could be imposed on

the relationship between strategies and beliefs, settling, with misgivings, on De�nition 3.3.1 below.

De�nition 3.3.1 (System of Beliefs) A system of beliefs is a function � : X 7! [0; 1] such thatP
x2h �(x) = 1 for each h 2 H.

De�nition 3.3.2 (Assessments) An assessment is a pair (�; �) in which � is a behavior strategy

and � is a system of beliefs.

De�nition 3.3.3 (Consistent Assessments) We say that an assessment (�; �) is consistent if

it is the limit of a sequence f(�r; �r)g where each �r is totally mixed and �r is the system of beliefs

derived from �r by forming conditional probabilities.

De�nition 3.3.4 (Sequentially Rational Assessments) We say that an assessment (�; �) is

sequentially rational if the behavior strategy � assigns positive probability only to those moves whose

expected payo�s, computed from (�; �) in the manner described above, are not less than the expected

payo� of some other move allowed at the same information set.

De�nition 3.3.5 (Sequential Equilibrium) A sequential equilibrium is an assessment that is

both consistent and sequentially rational.

Remark 3 The sequential equilibrium concept is weaker than the notion of agent normal form

perfection in the following sense:

If �� is a perfect equilibrium, then it is the limit of a sequence h�ri of totally mixed

strategies with �� 2 BR(�r) for all r, and this implies that �� is a best response to each

assessment (�r; �r) in the sense described above. The expected payo�s of moves are

continuous functions of the assessment, so if �� is a limit point of the sequence h�ri,

then �� is a best response to the assessment (��; ��), and of course this assessment

must also be consistent. This argument shows that every perfect equilibrium of the

player normal form is the behavior strategy component of a sequential equilibrium.

There are sequential equilibria whose behavior strategy components are not perfect equilibria.

Among other things, a (weakly) dominated action may have positive probability in a sequential

equilibrium, but not in a perfect equilibrium. The sequential equilibrium can be regarded as the

natural generalization of the Nash equilibrium for games in extensive form. It is similar in spirit,

since sequential rationality is a minimal condition for rational behavior in the environments in

question. (The notion of consistency may not be a minimal requirement for beliefs to be sensible.

See x5 of Kreps and Wilson's paper [1] for a discussion of this issue.) It is possible [47] to de�ne a

best response correspondence that has the set of sequential equilibria as its set of �xed points and

that coincides with the best response correspondence de�ned above in the special case of normal

form games, so the sequential equilibrium is also a natural generalization of the Nash equilibrium

from a mathematical viewpoint.

25

4 Algebraic Characterization of Sequential Equilibrium

4.1 Consistency and Sequential Rationality

The language of the theory of real closed �elds consists of formulae and propositions built up

out of polynomial equations and inequalities, together with the logical quanti�ers \for all" and

\there exists." In this subsection we present formulae that make it evident that the de�nition of

the sequential equilibrium is a formula in this language. This result alone suÆces to imply the

applicability of the algorithms for computing semi-algebraic sets discussed in x4.5. In subsequent

subsections we reexpress the de�nition in ways that do not employ any logical quanti�ers. Insofar as

the computational complexity of the algebraic algorithms is exponential in the number of variables,

and the typical method of computing sets de�ned by quanti�ed formulae is to compute the set

de�ned by the associated unquanti�ed formula, then project, this reexpression should result in a

considerable reduction in computational complexity.

Let BS denote the space of behavior strategies, and let BSo denote the subspace of interior

behavior strategies. Given � 2 BS, we can compute the probability that an arbitrary play � 2 T will

occur by multiplying the initial assessment of the initial position (from which that play originates)

with probabilities of each move along the play.

Prob�(�) = �(!(�)) � (�(�(p1(�))) � � � �(�(p`(�)(�)))):

This equation reects our assumption that the players' behavior is statistically independent,

that is, they cannot correlate their behavior with each other, or with unobserved choices of nature.

Let M = �h2H�(h) be the space of beliefs, and let Mo = �h2H�
o(h) be the space of interior

beliefs. Recall that � is assumed to be interior, so if � is interior then Prob�(�) > 0 for all � 2 T.

In this situation, we can de�ne Bayesian beliefs by taking conditional probabilities:

For � 2 T : ��(�) =
Prob�(�)

Prob�(H(�))

These numbers constitute a vector of probability distributions �� 2 �o(h).

Let the space of consistent interior assessments be 	o = f(�� ; �) j � � BSog, and let 	 be the

space of consistent assessments (recall that this is the closure of 	o in M � BS). The formulae

above show that 	o is a semi-algebraic set, and in general the closure of any semi-algebraic set is a

semi-algebra set since, if F is the formula de�ning a set X, i.e. X = fxjF (x)g, then the closure is

the set of x satisfying the formula \for all � > 0 there exists x such that F (x) and kx� xk2 < �."

We now explain how an assessment (�; �) determines expected payo�s for the various moves.

To begin with we note that � alone determines expected payo�s for all players at all plays in a

game tree.

Lemma 4.1.1 For each behavior strategy � there is a unique system of expected payo�s for each

� 2 T where the payo� to player i at this node is denoted by E�(ui j �) and de�ned (backward)

inductively by:

ui(�), for � 2 Z,

E�(ui j �) = P
a2m(�) �(a) �E

�(ui j FC(�; a)), for � 2 X .

26

Proof: De�ne Zj inductively by letting Z0 = Z, and Zj = f� j FC(�) � Zj�1g.

It is clear that the condition above de�nes E�(ui j �) uniquely for all � 2 Zj � Zj�1
if E�(ui j �) has already been de�ned for all � 2 Zj�1. The proof follows from the

principle of mathematical induction. 2

At an information set h 2 H , the possible consequences of choosing a 2 m(h) are the plays

FC(�; a), for � 2 h. The expected payo� associated with move a is the belief-weighted average of

the expected payo�s of the plays FC(�; a).

E�;�(ui j h; a) =
X
�2h

�(�) � E�((ui j FC(�; a)):

De�nition 4.1.1 (Sequentially Rational) An assessment (�; �) is sequentially rational if, for

all h 2 H and a 2 m(h), �(a) > 0, implies that E�;�(ui j h; a) � E�;�(ui j h; a
0) for all a0 2 m(h),

that is, players do not assign positive probability to moves that have suboptimal expected payo�s.

For our purposes, it is crucial that the equilibrium conditions be of the form Q � 0, where Q

is a polynomial whose variables are the components of �, �, u, and possibly other quantities. To

make this completely explicit note that the inductive de�nition of E�(ui j �) shows that this term

is a polynomial in the components of � and u, so E�;�(ui j h; a) is a polynomial in the components

of �; �, and u. Now observe that sequential rationality is equivalent to the condition:

8a; a0 2 m(h); h 2 H : �(a) � (E�;�(u�(h) j h; a)�E�;�(u�(h) j h; a
0)) � 0:

4.2 Functional Notations

In the remaining section, we will show how the set of consistent assessments can be decomposed

into �nitely many sets, each of which can be described by means of �nitely many (unquanti�ed!)

polynomial inequalities, and subsequently we can employ results from the theory of real closed

�elds to compute solutions. The basic technique is to develop a set of constraining non-algebraic

relationships, and then apply logarithms to these relationships to achieve algebraic constraints.

De�nition 4.2.1 (Basis) The basis of an assessment (�; �) is b(�; �) = bX(�) [bA(�), where

bX(�) = f� 2 X j �(�) > 0g and bA(�) = fa 2 A j �(a) > 0g. In general, a basis is a set

b = bX [bA � X [A.

Intuitively, basis b(�; �) consists of the elements of Z (leaf nodes) which occur with non-zero

probability under the system of beliefs �, and all the moves (2 A) which are made under the

strategy �.

De�nition 4.2.2 (Quasiconsistent) A basis is said to be quasiconsistent if there is at least one

move at every information set. Formally, a basis b = bX [bA is quasiconsistent if bA \m(h) 6= fg

for all h 2 H.

De�nition 4.2.3 (Consistent) We say that a basis b is consistent if b = b(�; �) for some consis-

tent assessment (�; �).

27

Our principal concerns are:

1. To determine computable conditions for the consistency of a basis .

2. To provide an algebraic characterization of the set of consistent assessments for each consistent

basis.

3. To bound the complexity of these tasks.

We now �x a basis b that will be the focus of our discussion for the remainder of this section.

Since b cannot possibly be consistent unless it is quasiconsistent, the quasiconsistency of b will be

a maintained hypothesis.

The following notation facilitates the analysis. For each � 2 X we let m� : (<+)A 7! <+ be the

monomial, whose variables are the components of some strategy !, that computes the probability

of reaching � from the root of the its tree:

m�(!) =

`(�)�1Y
k=0

!(�(pk(�)))

For � 2W , m�(!) � 1 (for any !). We can regard BSo as a subset of (<)A in the obvious way

to derive the following formula for the probability that node � occurs:

Prob�(�) = �(!(�)) �m�(�) for � 2 X and � 2 BSo:

For � 2 X we let l� : <A 7! < be the linear function:

l�(!) =

`(�)�1X
k=0

!(�(pk(�)))

Now observe that:

lnm�(!) = l�(ln!)

where ln! denotes the vector in <jAj whose components are the natural logarithms of the com-

ponents of !. Our overall strategy is to conduct the analysis in logarithmic terms so that linear

algebra can be brought to bear, then rephrase the results in multiplicative terms so that the relevant

equations are algebraic.

We are now ready to de�ne the requisite linear functions. Let m(b) = bA, and let Lm(b) : <
A 7!

<m(b) be the standard projection onto a coordinate subspace. We also de�ne EQ(b) to be the set

of pairs of strategic plays in the basis that are in a common information set:

EQ(b) = f(�; �0) j there is some h with �; �0 2 h \ bXg

Let LEQ(b) : <
A 7! <EQ(b) be the linear function whose (�; �0)-coordinate is l� � l�

0

. For � 2 BSo,

the (�; �0)-component of LEQ(b)(ln�) is then

LEQ(b)(ln�)[�; �
0] = ln

�
Prob�(�)

Prob�(�0)

�
� ln

�
�(!(�))

�(!(�0))

�
;

28

so, among other things, for each information set h the information in LEQ(b)(ln�) allows one

to compute the conditional probability distribution on h \ bX induced by �. Let L : 7!

(Lm(b)(); LEQ(b)()) be the Cartesian product of Lm(b) and LEQ(b). Roughly, the use of the fol-

lowing result will be to characterize \orders of improbability" that support the given basis b: if

each move has an order of improbability, which we think of as the negation of the logarithm of the

probability assigned to the move in a some behavior strategy, then (up to order of magnitude) the

belief probabilities at each information set will be dominated by those nodes in the information

set that are minimal with respect to the sum of the orders of improbability associated with moves

required to reach the node.

Lemma 4.2.1 There is a set of moves B � A with the property that LjRB is 1-1 and L(<B) =

L(<A). There exist algorithm(s) for �nding such a set, which runs in space polynomial in the

cardinality of the set T, i.e. jTj. Any such set satis�es bA � B.

Proof: Consider two vector spaces W1 and W2 such that L : W1 7! W2 is lin-

ear, and w1; :::; wn is a basis for a vector space W1. We know from elementary lin-

ear algebra that L(spanfw1; :::; wi�1; wi+1; :::; wng) 6= L(W1) if and only if ker(L) �

spanfw1; :::; wi�1; wi+1; :::; wng. Consequently, in general, there must be some wi with

L(spanfw1; :::; wi�1; wi+1; :::; wng) = L(W1) unless ker(L) = f0g. By computing cer-

tain determinants, we can ascertain whether or not this latter inclusion holds, pro-

vided we are given a matrix for L in terms of w1; :::; wn, and some basis for W2.

This can be accomplished by standard polylog algorithms for solving linear systems

like Csanky's algorithm [48]. It is necessarily the case that bA � B, since otherwise

Lm(b)(<
B) 6= Lm(b)(<

A). The lemma follows. 2

Let V be the kernel of L. Fixing a B satisfying the conditions of Lemma 4.2.1, we have

V \<B = f0g and V +<B = <A. Let ProjV : <A 7! V and Proj<B : <A 7! <B be the projections

of <A onto V and <B, respectively (parallel to <B and V , respectively). Consequently, for 2 <A

we have ProjV () 2 V , Proj<B () 2 <
B, and ProjV () + Proj<B () = .

4.3 Labeling

Our next step is to introduce a labeling system which assigns a non-negative real number for each

node, and every edge.

De�nition 4.3.1 (Labeling) A labeling for the extensive form is a function K taking A and Y

into the non-negative integers.

In particular, we de�ne b-labeling, and show that it is equivalent to the consistency properties

of b:

De�nition 4.3.2 (b-labeling) A b-labeling is a function K : Y [A �! <+ satisfying the follow-

ing conditions:

1. For a 2 A : K(a) = 0 if and only if a 2 bA.

2. For � 2 Y : K(�) =
P`(�)�1

k=0 K(�(pk(�))).

29

3. For �; �0 2 T: If (�; �0) 2 EQ(b) then K(�) = K(�0).

4. For �; �0 2 T: If �; �0 2 h, with � 2 bX and �0 =2 bX, then K(�) � K(�0) + 1.

We now show that the consistency of b is equivalent to the existence of a b-labeling because we

have phrased the de�nition of a b-labeling in such a way that the set of b-labelings coincides with

the set of feasible solutions of a particular linear program. Consequently, the following results show

that the enumeration of the set of consistent bases can be achieved by the simplex algorithm.

Lemma 4.3.1 If b has a b-labeling, then it is consistent.

Proof: Suppose that K is a b-labeling.

Fix � 2 BSo, and for a 2 A and positive integers n, we de�ne �n:

�n(a) = c(n;MOVSET(a)) � (
1

n
)K(a) � �(a)

where MOVSET(a) is de�ned to be m�1(a), and the normalizing constant c is de�ned

as follows:

c(n; h) =
1P

a2m(h)(
1
n
)K(a) � �(a)

Let �n be the belief derived from �n, and let (�
�; ��) be a limit point of the sequence

f(�n; �n)g, i.e. (�
�; ��) = limn!1(�n; �n).

Since b is quasiconsistent, there must be a move available at every information set.

Furthermore, by Condition 1, K(a0) = 0 if and only if a0 2 bA, therefore (
1
n
)K(a0) = 1 if

a0 2 bA. Consequently,

lim
n!1

c(n; h) =
1P

a02(m(h)\m(b)) �(a)
:

Since the constant c(n; h) is non-zero, it follows that limn!1 �n(a) > 0 if and only if

limn!1(1
n
)K(a)�(a) > 0, and since �(a) is always positive, this will be the case if and

only if K(a) = 0, which by Condition 1 happens if and only if a 2 bA. Recall that

��(a) = limn!1 �n(a). It follows that �
�(a) > 0 if and only if a 2 bA.

Recall,

Prob�n(�) = �(!(�)) �

`(�)�1Y
k=0

(�n(�(pk(�))))

For � 2 X , our labeling scheme yields

Prob�n(�) =

�(!(�)) �

`(�)�1Y
k=0

c(n;MOVSET(�(pk(�)))) � (
1

n
)K(�(pk(�))) � �(�(pk(�)))

Applying Condition 2, we get:

Prob�n(�) =

30

�(!(�)) � (
1

n
)K(�) �

`(�)�1Y
k=0

c(n;MOVSET(�(pk(�)))) � �(�(pk(�)))

By its de�nition:

�n(�) =
Prob�n(�)

Prob�n(H(�))

We see now that �n(�) is a constant times (1=n)K(�) divided by a sum in which the

term corresponding to each �0 2 slH(�) is a constant times (1=n)K(�0), so ��(�) =

limn!1 �n(�) > 0 if and only if K(�) � K(�0) for all �0 2 slH(�), and in view of

Condition 4 this occurs precisely when � 2 bX .

Lemma 4.3.2 If b is consistent then there exists a b-labeling.

Proof: Suppose that b is consistent, so that b = b(��; ��) for some (��; ��) =

limn!1(�n; �n), where, for each n, �n is an interior strategy and �n is the belief de-

rived from �n. We note that limn!1 ln(�n(a)) = ln(��(a)) for all a 2 bA. Moreover,

for (�; �0) 2 EQ(b), we have:

limn!1 l�(ln�n)� l�
0

(ln�n)

= limn!1 ln[Prob�n(�)=�(!(�))] � ln[Prob�n(�0)=�(!(�0))]

= limn!1 ln[�n(�)=�(!(�))] � ln[�n(�
0)=�(!(�0))]

= ln[��(�)=p(!(�))] � ln(��(�0)=�(!(�0))]

= ln[(�
�(�)�(!(�0)))

(��(�0)�(!(�)))
]:

Consequently, the sequence hL(ln�n)i is convergent.

Since L = L Æ ProjRB and L is 1-1 on <B, the sequence hProjRB (ln�n))i must also

converge, and in particular it must be bounded.

On the other hand, for any �; �0 2 h such that � 2 bX and �0 =2 bX, l
�(ln�n) �

l�
0

(ln�n) �! 1 as n �! 1. Furthermore, for any 2 <A we have = ProjRB () +

ProjV () so the fact that (ProjRB (ln �n)) is bounded implies l�(ProjV (ln �n)) �

l�
0

(ProjV (ln �n)) �! 1 as n �! 1. Fixing an n such that l�(ProjV (ln �n)) �

l�
0

(ProjV (ln �n)) � 1 for all �; �0 2 h such that � 2 bX and �0 =2 bX, for each a 2 A let

K(a) be the a-component of �ProjV (ln�n), and let K(�) be de�ned by Condition 2.

Conditions 1 and 3 follow from the fact that ProjV (ln�n) 2 ker(L), and the inequality

above implies Condition 4, so K is a b-labeling, and the Lemma follows. 2

Theorem 4.3.1 b is consistent if and only if it has a b-labeling.

Proof: The theorem follows from Lemma 4.3.1 and 4.3.2 above. 2

Remark 4 Our proof that consistency implies the existence of a b-labeling is di�erent from Kreps

and Wilson's paper [1], and in fact we would like to take this opportunity to point out that their

proof is incorrect. Speci�cally the K constructed at the bottom of their page 887 need not be a

b-labeling, as the readers can verify for themselves.

31

4.4 Algebraic Characterization of Consistent Assessments

Having characterized the consistent basis, we now turn to the problem of giving an algebraic

characterization of the set of consistent assessments for a given consistent basis. Henceforth, we

assume that b is consistent, and we �x a b-labeling K.

Our method is to introduce a set of auxiliary variables that is homeomorphic to the set of

consistent assessments with basis b by an algebraic homeomorphism. Let

�b;B = f� 2 (<+)A j �(a) = 1 if a =2 B; and 8h :
X

a2m(h)\m(b)

�(a) = 1g

Recall that bA � B, so �b;B is nonempty.

De�nition 4.4.1 (Strategy and Belief) Given � 2 �b;B, we de�ne a behavior strategy �(�) by

0, if a =2 bA,

�(�)(a) =

�(a), if a 2 bA

We de�ne an associated belief �(�) by

0, if � =2 bX,

�(�)(�)=

�(!(�)) � m�(�)P
�02H(�)\bX

[�(!(�0))�m�0 (�)]
; if� 2 bX.

Lemma 4.4.1 The function � �! (�(�); �(�)) is a homeomorphism between �b and the set of

consistent assessments (�; �) with b(�; �) = b.

Proof: Fix � 2 �b;B. For n = 1; 2; ::: we de�ne �n 2 BSo by:

�n(a) = c(n;MOVSET(a)) � �(a) � (
1

n
)K(a)

where c(n; h) = [
P

a2m(h) �(a) � (
1
n
)K(a)]�1.

Clearly, as n �! 1, c(n; h) �! 1 for all h. Therefore, �n �! �(�). Supposing

�n be the belief derived from �n, straightforward computations show that �n �! �(�).

Consequently, the assessment (�(�); �(�)) is consistent, and of course our construction

guarantees that b(�(�); �(�)) = b.

Conversely, suppose that (�; �) is consistent with b(�; �) = b. Let h�n j n = 1; 2; 3; :::i

be a sequence in BSo with (�n; �n) �! (�; �) where, for each n, �n is the belief derived

from �n. We claim that

(�; �) = (�(�); �(�)) for � = exp(lim
n!1

ProjRB (ln �n))
11

To begin with we must show that the limit exists, and this is equivalent to the

convergence of the sequence hL(ln�n) j n = 1; 2; 3; :::i. However, for a 2 bA we have

limn!1 ln�n(a) = ln�(a), and for (�; �0) 2 EQ(b) we have:

11For x 2 <A, exp(x) is the vector with components exp(x(a)).

32

limn!1 l�(ln�n)� l�
0

(ln�n)

= limn!1 ln[�n(�)=�n(�
0)]� ln[�(!(�))=�(!(�0))]

= ln[�(�)=�(�0)]� ln[�(!(�))=�(!(�0))].

We must now verify that (�(�); �(�)) = (�; �). For a 2 bA we have:

�(�)(a) = �(a)

= exp(limn!1 ln �n(a))

= limn!1 �n(a) = �(a).

For (�; �0) 2 EQ(b) we have:

ln[�(�)(�)=�(�)(�0))]� ln[�(!(�))=�(!(�0))]

=l�(ln �)� l�
0

(ln �)

=limn!1 l�(ln �n)� l�
0

(ln �n)

=limn!1 ln[�n(�)=�n(�
0)]� ln[�(!(�))=�(!(�0)))]

=ln[�(�)=�(�0)]� ln[�(!(�))=�(!(�0))]:

For any �nite set X and any � 2 �o(X), the ratios �(�)
�(�0)

completely determine

�. Consequently, we have shown that �(�) = �. We have proved that the image of

(�(�); �(�)) is precisely the set of consistent assessments with basis b.

We will now show that (�(�); �(�)) is one-to-one. Suppose (�(�1); �(�1)) = (�(�2); �(�2)):

Subsequently, �(�1) = �(�2) implies that �1(a) = �2(a) for all a 2 m(b). Hence,

Lm(b)(ln �1) = Lm(b)(ln �2). For (�; �0) 2 EQ(b), the equation �(�1) = �(�2) is eas-

ily seen to imply that:

l�(ln �1)� l�
0

(ln �1) = l�(ln �2)� l�
0

(ln �2):

Consequently, LEQ(b)(ln �1) = LEQ(b)(ln �2). Thus L(ln �1) = L(ln �2), but the condition

�1(a) = �2(a) = 1 (for a =2 B) implies that ln �1; ln �2 2 <B . Therefore, Lemma 4.2.1

yields �1 = �2.

The map (�(�); �(�)) is visibly continuous, so it now suÆces to show that its inverse

is also continuous. Let f1 = Lm(b) : <A 7! <m(b) be the standard projection. For

(�; �0) 2 EQ(b), let f2 : (<
+)bX 7! (<+)EQ(b) be given by

f2(�)(�; �
0) =

�(�)=�(!(�))

�(�0)=�(!(�0))

Let f(�; �) = (f1(�); f2(�)) 2 <
m(b)�<EQ(b). The point of this construction is that

if (�(�); �(�)) = (�; �) for some � 2 �b;B, then we must have L(ln �) = ln f(�; �). Since

ln � 2 <B it follows that:

� = exp[(Lj<B)
�1(ln f(�; �))]:

The continuity of this formula establishes the continuity of (�(�); �(�))�1 , and the

lemma follows. 2

33

4.5 Repercussions of Algebraic Consistency: Our Algorithms for Sequential

Equilibria

We now summarize the results of this section in a way that displays the set of consistent assessments

for a given basis as the projection of an algebraic variety.

Proposition 4.5.1 We have established the following:

� A basis b is consistent if and only if it has a b-labeling.

� If a basis b is consistent and B is as in Lemma 4.2.1, then the set of consistent assessments

with basis b is the set of (�; �) 2 <X � <A for which there is � 2 <A satisfying the following

conditions

1. For (� =2 bX): �(�) = 0.

2. For (a =2 bA): �(a) = 0.

3. For (a =2 B): �(a) = 1.

4. For (a 2 bA): �(a) = �(a).

5. For (h 2 H): X
a2m(h)\m(b)

�(a) = 1:

6. For � 2 bX:

�(�) � [
X

�02H(�)\bX

�(!(�0)) �m�0(�) = �(!(�)) �m�(�):

The procedure for computing the set of sequential equilibria has two phases, the �rst of which is

the enumeration of the consistent bases. This can be accomplished using linear programming, and

should be a relatively small part of the total computational burden. The second phase analyzes the

set of sequential equilibria for each consistent basis. One possibility is to ask, for each consistent

basis, whether the basis has any sequential equilibria. Since the set of consistent assessments is a

semi-algebraic set, by virtue of Proposition 4.5.1, and the equilibrium conditions are semi-algebraic,

such queries are instances of the existential question for the theory of real closed �elds. Ben-Or,

Kozen, and Reif [49], Canny [9] and Renegar [10] present algorithms for this problem. The most

eÆcient, in terms of asymptotic requirements, is Renegar's, which requires polynomial space, and

whose temporal requirements grow exponentially with the number of variables, but are polynomial

in the size of the system for a �xed number of variables. More detailed information (dimension,

number of components, etc.) can be obtained by applying the cellular decomposition algorithm

of Kozen and Yap [11] to those consistent bases with nonempty sets of sequential equilibria. The

latter algorithm also requires exponential (parallel) time.

The exponential time requirements of the algorithms described above are discouraging, since

they suggest that the range of practical application of our procedures will be rather small, and

will grow slowly with advances in computing technology. While we do not disagree completely

with this assessment, we think it is mitigated by at least two factors. The �rst is simply the

observation that algorithmic computation can hardly fail to be an improvement over calculation

by hand, so that implementations of our procedures would have some usefulness. Second, there is

the possibility of speed-up. To a certain extent this could be a matter of improving the general

algorithms for dealing with systems of polynomials. Perhaps more interesting and fruitful, though,

34

would be those improvements that take advantage of the speci�c nature of the problem. To a

certain extent at least, the qualities of mind described vaguely by the phrase \strategic insight" are a

matter of deft application of ideas that allow one to eliminate certain possibilities without extensive

computation; the most elementary examples are the implications of dominance. Implementations

of the algorithms given here would provide a framework in which such ideas could be precisely

speci�ed, tested, and re�ned.

In conjunction with our observation that the sequential rationality condition can be described

in this fashion, this shows that the set of sequential equilibria decomposes into a �nite system of

semialgebraic sets (i.e. a set of polynomials with rational coeÆcients and real variables). Subse-

quently, we can apply the decision algorithm for deciding the existential theory of real closed �elds

Canny [9] and Renegar [10]. These algorithms run in space polynomial in its input, i.e. size of

semialgebraic sets. Subsequently, we can apply the methods of Kozen and Yap [11] to compute

the algebraic cell decomposition of the semialgebraic sets. Finally, using the results of Ben-Or,

Feig, Kozen, and Tiwari [50], we can compute the roots in exponential space. This will give us (in

the reverse transformed space), the connected components of consistent assessments, which give

connected components of mixed strategies satisfying sequential equilibria. This algorithm runs

in space exponential in its input, i.e. size of semialgebraic sets. Since the size of semialgebraic

sets is polynomial in the size of the information sets, we get the following theorem specifying the

complexity of our algorithm:

Theorem 4.5.1 In space polynomial in the size of the information sets we can compute an example

mixed strategy satisfying the sequential equilibria condition. Furthermore in space exponential in a

polynomial of size of the information sets, and we can compute the connected components of mixed

strategies satisfying sequential equilibria.

5 Conclusion

In this paper, we reduced producing an example mixed strategy satisfying the sequential equilibrium

to the existential theory of real closed �elds. Furthermore, we can see that the solution of the

resulting semialgebraic sets are polynomial in the size of the information set.

Result 1 In space polynomial in the size of the information sets, we can compute an example

mixed strategy satisfying the sequential equilibria condition. In space exponential in a polynomial

of the size of the information sets, we can compute the connected components of mixed strategies

satisfying sequential equilibria.

We can unravel information by using techniques of Azhar, Peterson, and Reif [28, 29]. This

yields the following result:

Result 2 Given a recursively represented game, with a position space bound S(n) and a log space

computable next move relation, we can determine the existence of sequential equilibrium and com-

pute an example mixed strategy satisfying the sequential equilibria condition, all in space bound

O(S(n)2), Furthermore, in space O(S(n)3), we can compute the connected components of mixed

strategies satisfying sequential equilibria.

The sequential equilibrium concept is generally regarded as a powerful description of simultane-

ous rational behavior in an environment in which rationality is common knowledge. One possible

35

application of the decision algorithm proposed here is as an experimental tool in the development

and analysis of applications of game theory in computer science and economics. Another application

of our algorithm is for exploration of new re�nements to equilibria concepts.

There is an extensive literature concerned with the possibility of even further re�ning the

sequential equilibrium concept, where certain equilibria are disallowed to accommodate further

restrictions of concern to the economists. For example, see McLennan [51], Cho [52], and Kohlberg

and Mertens [40].

References

[1] Kreps and Wilson. Sequential equilibria. Econometrica, 50(4):863{894, July 1982.

[2] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages and

Computation. Addison-Wesley Publishing Company, 1975.

[3] Harry Lewis and C.H. Papadimitriou. Elements of Theory of Computation. Prentice-

Hall, Inc., Englewood Cli�s, New Jersey, 1981.

[4] R. Selten. Spieltheoretische behandlung eines oligopolmodells mit nachfragetragheit.

Zeitschrift fur die gesamte Staatswissenschaft, 121:301{324, 1975.

[5] James Renegar. On the computational complexity and geometry of the �rst-order

theory of the Reals: Part iii - quanti�er elimination. Technical Report 856, School

of Operations Research and Industrial Engineering, Cornell University, Ithaca, NY

14853-7501, August 1989.

[6] James Renegar. On the computational complexity and geometry of the �rst-order

theory of the Reals: Part i. Technical Report 853, School of Operations Research and

Industrial Engineering, Cornell University, Ithaca, NY 14853-7501, July 1989.

[7] James Renegar. On the computational complexity and geometry of the �rst-order

theory of the Reals: Part ii. Technical Report 854, School of Operations Research and

Industrial Engineering, Cornell University, Ithaca, NY 14853-7501, July 1989.

[8] James Renegar. On the computational complexity of approximating solutions for

Real algebraic formulae. Technical Report 858, School of Operations Research and

Industrial Engineering, Cornell University, Ithaca, NY 14853-7501, August 1989.

[9] John Canny. A new algebraic method for robot motion planning and real geometry.

In Proceedings, 28th Annual IEEE Symposium on Foundations of Computer Science,

pages 39{48, October 1987.

[10] James Renegar. A faster pspace algorithm for deciding the existential theory of real

closed �elds. In Proceedings, 29th Annual IEEE Symposium on Foundations of Com-

puter Science, pages 291{295, October 1988.

[11] D. Kozen and C. ~K. Yap. Algebraic cell decomposition in nc. In Proceedings of 26th An-

nual IEEE Symposium on Foundations of Computer Science, pages 515{521, October

1985.

[12] E. Dijkstra. A Discipline of Programming. Prentice-Hall, Inc., 1976.

36

[13] C. Hoare. An axiomatic basis for computer programming. Communications of the

ACM, 12(10):576{583, 1969.

[14] R. Floyd. Assigning meanings to programs. In Proc. Symposium Applied Math, vol-

ume 19, pages 19{32, 1967.

[15] S. Hantler and J. King. An introduction to proving the correctness of programs. ACM

Computing Surveys, 8(3):331{353, 1976.

[16] J. King. Proving programs to be correct. IEEE Transactions on Computers, C-

20(11):1331{1336, 1971.

[17] S. Owicki and D. Gries. An axiomatic proof technique for parallel programs. Acta

Informatica, 6:319{340, 1976.

[18] Z. Manna and A. Pnueli. Temporal veri�cation of concurrent programs. In R. Boyer

and J. Strother, editors, The Correctness Problem in Computer Science. Academic

Press, 1981.

[19] L. Deutsch. An Interactive Program Veri�er. PhD thesis, Univ. Of Calif., Berkeley,

1973.

[20] D. Good, R. Cohen, C. Hoch, L. Hunter, and D. Har. Report on the language Gypsy.

Technical Report ICSCA-CMP-10, The University of Texas, Austin, Texas, 1978.

[21] Manuel Blum and Sampath Kannan. Designing programs that check their work. In

Proceedings, 21st Annual ACM Symposium on Theory of Computing, pages 86-97,

May 1989.

[22] R. Apt and W. Roever. A proof system for communicating sequential processes. ACM

Transactions on Programming Languages and Systems, 2(3):359{385, 1981.

[23] G.M. Levin and D. Gries. A proof technique for communicating sequential process.

Acta Information, 15:281{302, 1981.

bitemOG76 S. Owicki and D. Gries. An axiomatic proof technique for parallel pro-

grams. Acta Informatica, 6:319{340, 1976.

[24] Dennis S. Arnon and Maurice Mignotte. On mechanical quanti�er elimination for

elementary algebra and geometry. Journal of Symbolic Computation, 5:237{259, 1988.

[25] A. ~K. Chandra and L.~J. Stockmeyer. Alternation. In Proceedings of 17th Annual IEEE

Symposium on Foundations of Computer Science, pages 98{108, October 1976.

[26] A.K. Chandra, D.C. Kozen, and L.J. Stockmeyer. Alternation. Journal of ACM,

28(1):114{133, 1981.

[27] John H. Reif. The complexity of two-player games of incomplete information. Journal

of Computer and System Sciences, 29(2):274{301, 1984.

[28] Salman Azhar, Gary L. Peterson, and John H. Reif. Decision Algorithms for Multi-

player Non-Cooperative Games of Incomplete Information. In Journal of Computers

and Mathematics with Applications, Vol. 43, Jan. 2002, pp 179-206.

37

[29] Salman Azhar, Gary L. Peterson, and John H. Reif. Lower Bounds for Multiplayer

Non-Cooperative Games of Incomplete Information. In Journal of Computers and

Mathematics with Applications, Volume 41, April 2001, pp 957-992.

[30] C.H. Papadimitriou. Games against nature. In Proceedings of 24th IEEE Symposium

on Foundations of Computer Science, pages 446{450, October 1983.

[31] C.H. Papadimitriou. Games against nature. Journal of Computer and System Sci-

ences, 31:288{301, 1985.

[32] L. Babai. Trading group theory for randomness. In Proceedings, 17th Annual ACM

Symposium on Theory of Computing, pages 421{429, May 1985.

[33] S. Goldwasser, S. Micali, and C. Racko�. The knowledge complexity of interactive

protocols. In Proceedings, 17th Annual ACM Symposium on Theory of Computing,

pages 291{304, May 1985.

[34] S. Goldwasser M. Sipser. Public coins versus private coins in interactive proof systems.

In Proceedings, 18th Annual ACM Symposium on Theory of Computing, May 1986.

[35] A. Shamir. Ip = pspace. In Proceedings, 31st Annual IEEE Symposium on Foundations

of Computer Science, pages 11{15, October 1990.

[36] A. Condon and R. Ladner. Probabilistic Game Automata. In Journal of Computer

and System Sciences, June, 1988, Volume 36, Number 3, pages 452-489.

[37] L. Blum, M. Shub, and S. Smale, On a theory of Computation and Complexity over

the Real Numbers: NP-Completeness, Recursive Functions and Universal Machines.

In Bulletin of American Mathematical Soceity, July, 1989, volume 21, number 1, pages

1-46.

[38] John von Neumann and O. Morgenstern. Theory of Games and Economic Behavior.

Princeton University Press, Princeton, New Jersey, 3rd edition, 1953.

[39] H. Kuhn. Extensive Games and the Problem of Information, volume 2, pages 193{216.

Princeton University Press, Princeton, New Jersey, 1953.

[40] E. Kohlberg and J.-F. Mertens. On the strategic stability of equilibria. Econometrica,

54:1003{1037, September 1986.

[41] J. Nash. Noncooperative games. Annals of Mathematics, 54:443{460, 1951.

[42] S. Kakutani. A generalization of brouwer's �xed point theorem. Duke Mathematical

Journal, 8:457{458, 1944.

[43] B.D. Bernheim. Rationalizable strategic behavior. Econometrica, 52:1007{1028, July

1984.

[44] D.G. Pearce. Rationalizable strategic behavior and the problem of perfection. Econo-

metrica, 52:1029{1050, 1984.

[45] Herve Moulin. Game Theory for Social Sciences, page 129 and 146. New York Uni-

versity Pres, New York, NY, 2nd edition, 1986.

38

[46] J. Grote. Global theory of games. J. of Mathematical Economics, 1(3):223{236, 1974.

[47] Andrew McLennan. Consistent conditional systems in noncooperative game theory.

International Journal of Game Theory, 18, 1989.

[48] L. Csanky. Fast parallel matrix inversion algorithms. SIAM J. Computing, 5:618{623,

1976.

[49] M. Ben-Or, D. Kozen, and J.H. Reif. The complexity of elementary algebra and

geometry. Journal of Computer and System Sciences, 32:251{264, 1986.

[50] M. Ben-Or, Ephraim Feig, D. Kozen, and P. Tiwari. A fast parallel algorithm for

determining all roots of a polynomial with real roots. SIAM Journal of Computing,

17(6):1081{1092, December 1988.

[51] Andrew McLennan. Justi�able beliefs in sequential equilibrium. Econometrica,

53:889{904, July 1985.

[52] I.-K. Cho. A re�nement of sequential equilibrium. Econometrica, 55:1367{1389,

November 1987.

39

