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Abstract

This paper gives improved parallel methods for several exact factorizations of some classes of symmetric positive
definite (SPD) matrices. Our factorizations also provide us similarly efficient algorithms for exact computation of
the solution of the corresponding linear systems (which need not be SPD), and for finding rank and determinant
magnitude. We assume the input matrices have entries that are rational numbers expressed as a ratio of integers
with at most a polynomial number of bits�. We assume a parallel random access machine (PRAM) model of
parallel computation, with unit cost arithmetic operations, including division, over a finite fieldZp, wherep is a
prime number whose binary representation is linear in the size of the input matrix and is randomly chosen by the
algorithm. We require only bit precisionO(n(� + log n)), which is the asymptotically optimal bit precision for
�� log n. Our algorithms are randomized, giving the outputs with high likelihood�1− 1/n�(1). We compute
LU andQR factorizations for dense matrices, andLU factorizations of sparse matrices which ares(n)-separable,
reducing the known parallel time bounds for these factorizations from�(log3 n) toO(log2 n), without an increase in
processors (matching the best known work bounds of known parallel algorithms with polylog time bounds). Using
the same parallel algorithm specialized to structured matrices, we computeLU factorizations for Toeplitz matrices
and matrices of bounded displacement rank in timeO(log2 n) with n log log n processors, reducing by a nearly
linear factor the best previous processor bounds for polylog times (however, these prior works did not generally
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require unit cost division over a finite field). We use this result to solve in the same bounds: polynomial resultant;
and Padé approximants of rational functions; and in a factorO(log n) more time: polynomial greatest common
divisors (GCD) and extended GCD; again reducing the best processor bounds by a nearly linear factor.
© 2005 Elsevier Inc. All rights reserved.

Keywords:Parallel algorithms; Linear systems;LU factorization; Dense matrices; Sparse matrices; Newton iteration; Structured
matrices; Toeplitz matrices; Displacement rank; Polynomial greatest common divisors; GCD; Resultant; Padé approximation

1. Introduction

1.1. Assumptions and machine model

For our model of computation, we assume the algebraic parallel random access machine (PRAM)
where each arithmetic or logical operation such as addition, subtraction, multiplication, division, and
comparison over the domain of rational numbers, and over the finite fieldZp for any primep, can be done
in one step by a given processor. We also assume the floor function, which gives the largest integer� a
given rational number. Processors can execute such operations in parallel. Our time complexity bounds
are based on arithmetic complexity, that is the number of these parallel steps. We also assume the PRAM
has a sequential source of random numbers. We assume then × m matrices input to our algorithms
haveP-rational entries: either integer entries of magnitude�2�, where��nO(1), or rational entries
expressible as ratio of integers of this magnitude.

1.2. Motivation

Many problems in engineering and science rely on the solution of linear systems. As the problem
size of a linear system grows, the resulting linear systems can grow to enormous size, and can, in turn,
require very large computational effort to solve. This motivated the search for algorithms which are
work efficient. One of the success stories in the field of computer science algorithms and numerical
analysis was the development of efficient sequential algorithms for rapid solution of linear systems.
Previous researchers have exploited sparsity and/or the structure of the linear system to improve these
computations. The use of parallel processing can potentially give a further increase in speed. However,
there remains a considerable discrepancy between the theoretical methods proposed for parallel solution
of linear systems and themethods that are actually used. Our goals aremoremodest; we wish to establish,
theoretically, improved time and processor bounds, keeping in mind that this is at best just a first step
toward the more practical goals just discussed.

1.3. Bounds on basic computations on matrices and polynomials

Basic computations on dense matrices, such as multiplication, inverse, etc. require a large amount of
sequential time which is theoreticallyn�∗

where�∗ drops significantly below 3 ([25,81] give the best
known bound 2.376) but with significant increase in constant factors, so that in practice this sequential
time is close ton3. Even with major breakthroughs, the sequential time must remain�n2. This can be
excessive for many applications. LetM(n) be the minimum number of PRAM processors necessary to
multiply two n × n matrices inO(log n) parallel steps. The best known bound [25,81] onM(n) is n�,
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where� = 2.376. Parallel algorithms for dense matrices must also do at least this amount of work, and
this results in either excessive processor requirements or slow time bounds.
Let P(n) denote the number of arithmetic processors used to multiply two degreen polynomials in

O(log n) parallel time. (Since we are primarily concerned only with parallel complexity bounds, we will
not define separate notation for the sequential time for this task. Instead, we observe thatO(P (n) log n)

upper bounds the number of arithmetic operations used to multiply two degreen polynomials.) It is
known thatP(n) = O(n) if the field supports an FFT of sizen but otherwise the best bound isP(n) =
O(n log log n) [21].

1.4. Known techniques and results

1.4.1. Newton’s iteration
The sequential use of Newton’s iteration for the approximate inverse of well conditioned or diagonally

dominant (DD) matrices was developed by Ben-Israel [4], Ben-Israel and Cohen [5], and Hotelling
[40,41]. Later Pan and Reif [69,71] considered parallel applications; they showed that the inverse of a
well-conditioned nonsingularn×n dense integer or rational matrix, and the solution of the corresponding
linear system, can be approximately computed with high accuracy by Newton iterations in parallel time
O(log2 n) withM(n) processors, without construction of the characteristic polynomial.

1.4.2. Hensel lifting and variable diagonal
Subsequently Pan [62,63] showed that the inverse of an arbitrary (not necessarily well conditioned)

nonsingularn× n dense integer or rational matrixA can be exactly computed in parallel timeO(log2 n)

withM(n) processors (similar results are also known for matrix inverse over arbitrary fields [42,47,48]
using a reduction to the computation of the characteristic polynomial or a related form). Thus the linear
systemAx = b can be exactly solved within this complexity by computingx = A−1b, whereA−1 is the
matrix inverse.
The general technique of approximate solution via Newton’s iteration, followed by Hensel lifting, has

a long history in numerical and algebraic computation. Pan [62,63] developed what he calls thevariable
diagonal technique, which modifies the input matrix (which initially may have arbitrary condition, so
could be very badly conditioned), so that the resulting matrix is strongly DD and has condition nearly
1. Explicit computation of matrix inverses of badly conditioned matrices is thus avoided, and instead
inverses of DD matrices are approximated.
Given a nonsingular integermatrixA, the variable diagonal technique constructs amatrixĀ = A+psI

for a random primep and for a large integers, so thatĀ is strongly DD andĀ = A (modp). SinceĀ
is DD, Newton’s iteration can be effectively applied to approximate the inverseĀ−1, the determinant
det (Ā) andadj Ā = Ā−1det (Ā). SinceĀ is an integer matrix, rounding-off turns the approximations
into exact values ofdet (Ā) andadj Ā. Then applying the standard homomorphism from the rationals
Q to the finite fieldZp to rational matricesĀ−1 andA−1 givesĀ−1 (modp) ≡ A−1 (modp). This is
extended by Moenck and Carter’s Newton–Hensel lifting procedure, toĀ−1 modulo a high power ofp.
From this,adj A, det (A),A−1 are recovered.

1.4.3. Matrix factorizations
Numerical analysis practitioners often solve linear systems by computing a matrix factorization and

solving the resulting triangular linear systems. For example, given a nonsingularn × n matrixA. If A is
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symmetric positive definite (SPD), thenA can be factoredA = LU whereU = LT (also known in this
case as a Cholesky factorization), whereL is nonsingular lower triangular andU is nonsingular upper
triangular.
Previous results of Pan[63] gaveparallel timeO(log3 n)withM(n)processors for factoring denseSPD

matrices, includingLU andQRfactorizations, and also computing their reduction into upper Hessenberg
form. Also, Pan et al. [74] show the solution and determinant ofb-banded matrices can be computed in
parallel timeO(log n log b) withM(b)n/b processors.
Many efficient parallel algorithms for exact computation of the determinant ofA (for recent examples,

see [42,47,48]) also require the computation of the characteristic polynomial ofA. In contrast, given the
LU decomposition as above, ifA = LU , thendet (A) = det (L)det (U), and otherwise ifATA = LU ,
thendet (A)2 = det (AT A) = det (L)det (U). The determinants of these triangular matrices are obtained
by multiplying all the elements of their principal diagonals.
Furthermore, singular value decompositions and eigenvalue computations generally begin withQR

factorization which is computable from theLU factorization. Eigenvalue computations generally use a
further reduction to upper Hessenberg form computed from theQRfactorization (see [35]). Thus, matrix
factorizations of various types are used extensively in numerical computations and are essential in many
applications. For dense matrices, known efficient parallel algorithms for exactLU andQR factorization
and reduction to upper Hessenberg form [63] costO(log3 n) time.

1.4.4. Recursive factorization of matrices
Recursive factorization(RF) of matrices is a divide and conquer technique used in many

theoretically efficient sequential algorithms for matrix inverse. For example, the Strassen blockmatrix al-
gorithm computes the inverse of ann × n matrix by partitioning it into four blocks
(each of size(n/2) × (n/2)), and so reduces the problem to computing matrix inverses and products
on the block submatrices. A similar technique can be used forLU factorization of SPD matrices (see
[1]) by RF of the Schur complement submatrices induced by block Gaussian elimination, and Trench
[83] also used this technique for the inversion of Toeplitz matrices. The requirement that the matrix
be SPD presents no difficulties, as we can use the normal form reduction given in
Section 2.2.

1.4.5. Symmetric matrices with separable graphs
A family of graphs iss(n)-separableif, given a graphG in the family ofn�O(1) nodes, we can delete

a set ofs(n) nodes, separatingG into subgraphs in the family of size� 2
3n nodes. Clearly,d-dimensional

grids or dissection graphs ares(n) = O(n
d−1
d ) separable, and Lipton and Tarjan [54] showed planar

graphs areO(
√
n)-separable. A sparsity graph of a symmetric matrix has a vertex for every row (col-

umn) of the matrix and an edge wherever there is a nonzero entry of the adjacency matrix. Matrices with
separable sparsity graphs arise naturally from VLSI circuit problems, structure problems, and discretiza-
tion of 2- or 3- dimensional PDEs. For example,d-dimensional PDEs result in matrices whose sparsity

graphs ared-dimensional grids or related dissection graphs which ares(n) = O(n
d−1
d ) separable. Lipton

et al. [53] developed sequential algorithms for RF of sparse matrices with separable sparsity graphs.
Pan and Reif [69,73] later developed parallel algorithms for RF (but notLU or QR factorizations) of
nonsingular SPD matrices. For this, Pan and Reif [69,73] gave bounds of parallel timeO(log3 n) with
n + M(s(n)) processors. Gazit and Miller [31] gave bounds of parallel timeO(log2 n log log n) with
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n + M(s(n)) processors and Armon and Reif[3] decreased this parallel time toO(log2 n) with n +
M(s(n))1+� processors, for� > 0.

1.4.6. Stream contraction
Is a technique developed by Pan and Reif [72] to decrease the time to solve combinatorial matrix

problems over semirings; the stream contraction method decreased the parallel time by a logarithmic
factor without a processor penalty.

1.5. Dense structured matrices

There is a large body of work on sequential algorithms which reduce the amount of work in the case
where the dense matrices possess certain regular structures. Throughout this paper, we refer to such ma-
trices asstructured. Examples of structured matrices include: Toeplitz matrices and their generalizations,
Vandermonde matrices and their generalizations, Hilbert matrices and their generalizations, Hankel ma-
trices and their generalizations; the generalizations include block matrices with a constant number of
submatrix blocks of a single above type (for example Hankel block matrices).

1.5.1. Displacement operators for compact generation and compression of structured matrices
Kailath and his collaborators [45,46] generalized Toeplitz and Hankel matrices by defining various

classes of matrices with boundeddisplacement rank. These matrices can be stored compactly by repre-
senting themby theirdisplacementgenerators. Asanadditional benefit, theuseof displacementgenerators
gave fast sequential algorithms for the inversion and factorization of such matrices (see [2,14,23,44,59].
These so-called Schur algorithms for matrices with constant displacement rank run efficiently on se-
quential machines. Their implementation on parallel machines has been extensively studied by Kailath
and his many coworkers and Ph.D. students. Unfortunately, it is not clear how to parallelize the Schur
algorithm to getprovable small parallel time with small processor bounds; the known [67,68] polylog
time algorithms have quadratic processor bounds.
A matrixA = [aij ] isToeplitzif ai,j = ai+k,j+k for eachkwhere the matrix elements are defined. We

define (this is a slight simplification of standard definitions) ann × n matrix to havedisplacement rank
� if it can be written as the sum of� terms, where each term is either (i) the product of a lower triangular
Toeplitz matrix and an upper triangular Toeplitz matrix or (ii) the product of an upper triangular Toeplitz
matrix and a lower triangular Toeplitz matrix.
Note that any matrix has displacement rank at mostn, and a Toeplitz matrix and its inverse has

displacement rank 2 (see [34]). Also, for this definition of displacement rank, the inverse of a matrix
of displacement rank� has displacement rank�. We will also consider block matrices, with a constant
number of submatrix blocks of a single above type (for example block Toeplitz matrices), which have
bounded displacement rank.
It happens (and we will discuss this in detail in later sections) that the above structured matrices,

particularly generalized Toeplitz and their generalizations, appear naturally and are used in many appli-
cations. Thus, computations on structured matrices are interesting in their own right. Perhaps the most
prevalent class of structured matrices are Toeplitz matrices and Toeplitz block matrices, which arise in
many computations on polynomials. Examples of Toeplitz block matrices are Sylvester and their sub-
matrices known as subresultant matrices (see [19]), which arise in polynomial greatest common divisors
(GCD), LCD and univariate resultant computations. It is well known (see [15,19]) that Toeplitz matrices
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and matrices of bounded displacement rank also arise naturally in many other algebraic computation
and signal processing applications, such as: linear prediction (see[55]), decoding error correcting codes
and linear feedback shift-register synthesis (see [37]), Padé approximants least-squares estimation (see
[36,43]), and data compression applications.

1.5.2. Previous results for structured matrices
There are known efficient sequential algorithms [14,18,59] for inverse, determinant, linear system

solution, factorization, and finding the rank for the case of Toeplitz matrices and matrices of bounded
displacement rankwith sequential time costP(n) log2 n (see Section 1.3 for definition ofP(n)), but there
are no such results for efficient parallel algorithms. Previously, the best parallel algorithms [64,67,68,70]
for theseproblems required�(log2 n) timeusingnP (n)/ log nprocessors, andall polylog (O(logO(1) n))
time parallel algorithms used at least�(n2/ logO(1) n) processors.

1.6. Our results

This paper provides efficient parallel algorithms for factoring matrices in timeO(log2 n) with a near
optimal number of processors. We show our algorithms are nearly optimal in terms of time, processors,
and bit precision.Our parallel algorithms are randomized, giving the outputswithin the stated boundswith
high likelihood�1−1/n�(1), using constant number of random variables each ranging over a domain of
size(n‖A‖)O(1). The only exceptions are the rank and Hessenberg computations, which require a further
linear number of such random variables.
All our computations require bit precisionO(n(� + log n)), which is the asymptotically optimal

bit precision for�� log n since the determinant, exactLU factorization, and matrix inverse require bit
precision at least�(n�).
Note that we assume a PRAM model of parallel computation, with unit cost arithmetic operations,

including division, over a finite field, whereas prior works did not generally require unit cost division
over a finite field. See the Conclusion, Section 9 for a further discussion of the repercussions of this
assumption. Since numerical analysis practitioners would not necessarily use algorithms which need the
precision of the computation in the worst case (i.e., worst ill-conditioned matrix) as it happens in our
proposed algorithms, the most convincing motivation for our algorithms is their theoretical interest.
To solve the various matrix problems considered in this paper, we compute a RF of an SPD matrix,

using the techniques of Newton’s iteration and Newton–Hensel lifting, as well as the Variable Diagonal
technique. We provide improvements to these techniques by application of a generalization of the stream
contraction technique of Pan and Reif [72] to do a multilevel, pipelined Newton iteration, followed by
multilevel, pipelined Newton–Hensel lifting. Our algorithms give an exact factorization, but nevertheless
avoid computation of the characteristic polynomial or related forms.
Using reductions to the RF algorithm, we exactly compute, for SPD matrices,LU andQR factoriza-

tions, and in the generic case where the minimal polynomial is the characteristic polynomial, we also
compute their reduction into upper Hessenberg form via a Las Vegas randomized algorithm. Using further
reductions to theLU factorization, for arbitrary integer or rational matrices (which need not be SPD), we
exactly compute solution of the corresponding linear systems, the determinant magnitude, the inverse,
and the rank.
Note: To simplify our presentation, we presenta gradual development and refinement of the RF al-

gorithm. We first describe our RF algorithm and provide the analysis in the case of dense unstructured
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matrices, and only later introduce the complexities of structured matrices; there we specialize the RF
algorithm and extend its analysis to the important case of inputs matrices with bounded displacement
rank.
Our parallel algorithms for dense and sparse matrices: In the case of dense and sparse matrices, we

reduce the known parallel time bounds for factorization of these matrices from�(log3 n) toO(log2 n)

without an increase in processors, matching the best known work bounds of known parallel algorithms
with polylog time bounds. For dense matrices, we show that all of these factorizations and computations
can be done in parallel timeO(log2 n) withM(n) processors. For sparse matrices, (withO(n) nonzero
entries) which ares(n)-separable as defined above, we showLU andQR factorizations can be done in
parallel timeO(log2 n) with n + M(s(n)) processors wheres(n) is of the formn� for 0< � < 1.
Our results for structured matrices: Our results apply also to a large class of structured matrices, in

particular Toeplitz matrices and matrices of bounded displacement rank.This is where we get our most
significant improvements and results over previous work.We show that for this class of SPD structured
matrices, we can compute an exactLU factorization efficiently in parallel with polylog time bounds,
dropping processor bounds from quadratic to linear.
We first describe our parallel algorithm for structured linear systems of bounded displacement rank

which costs timeO(log3 n) usingP(n) processors (whereP(n) is defined in Section1.3). This processor
reduction fromn2 toP(n) is themajor result of this paper, and uses techniques specific to these structured
matrices. Using the generalized stream contraction technique, we decrease our time bounds toO(log2 n),
usingP(n) processors. We also give parallel algorithms, with the same bounds, for finding the exact
solution, determinant magnitude, inverse, and rank of these structured matrices.
We apply these results to develop efficient randomized parallel algorithms for the following problems

in the same parallel timeO(log2 n) andP(n) processor bounds: (i) polynomial resultant, and (ii) Padé
approximants of rational functions [36,61], and with a factorO(log n)more time, (iii) polynomial GCDs
and extended GCD. With a factor ofO(log n) time increase and the same processor bounds, we also
solve: (v) the real root problem: finding all the roots of a polynomial with only real roots. We are the first
to give parallel algorithms for these problems that cost polylog time with a linear number of processors.
Our results drop by a nearly linear factor the best previous processor bounds for polylog time parallel
algorithms for all these problems, and our results are within a constant factor of work compared to the best
sequential work bounds ofO(P (n) log2 n). (Also we obtain similar parallel bounds for the symmetric
tridiagonal eigenvalue problem: finding all the eigenvalues of a symmetric tridiagonaln × n matrix.
However, Bini and Pan [11] previously gave polylog time bounds for this problem with a linear number
of deterministic processors.)
Cautionary remarks: Due to the size of the constant factors in our complexity bounds, and our use the

arithmeticmodel (which does not take into account the Boolean cost), we feel our results are of theoretical
interest only.

1.7. Organization of the paper

In Section 1, we have motivated the problems we solve and stated our results and previous results.
Section 2 gives some preliminary definitions. In this section, we definematrix notations, and problems,

as well as introduce the RF Sequence and Tree of matrices. We also discuss a well-known reduction
involving normal forms which allows us to assume that the input matrix is SPD.
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To simplify the presentation of RF algorithms, we first describe in Section3 our parallel algorithm to
compute the RF Tree of a matrix and provide the (much simpler) analysis in the case of dense matrices.
A statement of the RF algorithm is given Section 3.3. Details of the two components of the algorithm,
namely Newton–Hensel lifting and Newton iteration are separately dealt with in detail in Sections 3.4
and 3.5. The analysis of the RF algorithm, with the proof that it costs parallel timeO(log2 n) usingM(n)

processors, is completed in Section 3.6.
In Section 4, we introduce the complexities of structured matrices and the important concept ofdis-

placement rank. We describe the specialization of our parallel algorithm for the RF computation required
for matrices of bounded displacement rank, and modifications and extensions required to efficiently do
Newton–Hensel Lifting and Newton iteration in this case. There we also extend the analysis of the RF
algorithm to this considerably more complicated case, which is our main result.
Section 5 specializes our RF computation to parallel nested dissection (ND), giving efficient parallel

factorizations of symmetric matrices withs(n)-separable graphs inO(log2 n) time andn + M(s(n))

processors.
Section 6 gives applications of the RF computation. We provide efficient reductions of several matrix

problems (such as determinant, matrix inverse, linear system solution,LU, QR, and Hessenberg factor-
izations, singular value decomposition, and RANK) to RF computation, and applications to specialized
classes of matrices, including sparse and structured matrices. We also give applications to polynomial
computations, and to parallel algorithms for Sturm sequences and the real root problem.
Section 7 proves some condition bounds for randommatrices. Section 8 gives a randomized algorithm

for general problem of constructing displacement generators.
Section 9 concludes the paper with mention of open problems and acknowledgements.

2. Preliminaries

This section contains some definitions, notations and previously known results that will be of use later
in this paper.

2.1. Matrix definitions

Throughout this paper all logarithms are base 2. All matrix products are inner products. Vectors and
matrices are denoted by lower and upper case characters, respectively.
Generally, we assume input matrixA is a square matrix of sizen × n, except where we computeQR-

factors, where the inputAcan be a rectangular matrix of sizem×n, wherem�n.Many of our algorithms
assume, without loss of generality, thatn is a power of 2. Note that, although all our results apply to
rational matrices, we can always multiply a rational matrix by an appropriate integer to form an integer
matrix. For simplicity, we assume without loss of generality throughout this paper the matricesinput to
our factorization algorithms have integer entries of�2�, where��nO(1). However, our algorithms will
in general generate and output rational matrices.
I andOdenote identity and null matrices of the appropriate sizes. SuperscriptT indicates transposition,

soAT denotes the transpose of a matrix or of a vectorA. A is defined to besymmetricif AT = A. Let
det (A) denote thedeterminantof A. A is singular if det (A) = 0, else it isnonsingular. Therankof A
is the dimension of the linear space spanned by the columns ofA. If A is nonsingular, then theinverse
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A−1 is defined and theadjoint is the matrix adj(A) = det (A)A−1. If A is an integer matrix, then so is the
adjoint.
LetA = [aij ] denote the elements ofA. Theprincipal diagonalofAare the elementsa11, a22, . . . , ann.

Let diag(a0, . . . , an−1) be the diagonal matrix with diagonal elementsa0, . . . , an−1 and 0 at the off-
diagonal elements. A submatrix ofA will be induced by a sequence of rows, sayi1, i2, . . . , in′ and
columns, sayj1, j2, . . . , jm′ . A principal submatrixof A is a square submatrix induced by selecting the
same sequence of row indices, sayi1 = j1, i2 = j2, . . . , in′ = jn′ as column indices, and it is aleading
principal submatrixof A if these indices are consecutive starting at 1, say i1 = j1 = 1, i2 = j2 =
2, . . . , in′ = jn′ = n′.A ispositive definiteif xT Ax > 0 for all nonzero vectorsx. If A is positive definite,
every principal submatrix is also positive definite. IfA is positive definite, thenA is always nonsingular.
A matrix is calledSPD if it is symmetric and positive definite. For any nonsingular matrixA, ATA is
SPD.
A hasorthonormal columnsif ATA = I . If A is also square thenA is anorthogonalmatrix.A is lower

(upper) triangular if aij = 0 for i < j (j < i, respectively).A isb-bandedif aij = 0 for 2|j − i|+1> b,
so the nonzeros occur within only a band of widthb around the diagonal.A is b-block diagonalif A has
nonzero entries only at a sequence of disjointb × b blocks on the diagonal.

2.1.1. Matrix norms and required bit precision
Let the elements of matrixA = [aij ]. Forp = 1,2,∞, let ‖A‖p = supx �=0

‖Ax‖p
‖x‖p denote thep-norm

of matrixA, so‖A‖1 = maxj
∑

i |aij | and‖A‖∞ = maxi
∑

j |aij |. For each suchp = 1,∞, (see[35])
‖A‖p/n� maxi,j |ai,j |�‖A‖2. Also, for each suchp = 1,∞, (see [35, p. 57])‖A‖p/√n�‖A‖2�‖A‖p√
n.We can bound|det (A)|�n!(maxi,j |aij |)n�(n(maxi,j |aij |))n. These norm bounds imply

Proposition 2.1. Assuming for eachi, j that |aij |�2�, then‖A‖2�2�n1.5 and |det (A)|�2�, where
� = n(� + log n).

Note that this bound on the determinant is tight for�� log n since the determinant for the tridiagonal
matrix with entries of magnitude 2� has value 2�(n�) and so the exact matrix inverse andLU factorization
requires bit precision at least�(n�). Thus, although the input bit precision is onlyO(�) per input entry,
any algorithm for these problems will require computations involving bit precision�(n�) per output
entry.
If A is nonsingular, letcondp(A) = ‖A‖p · ‖A−1‖p for p = 1,2,∞. Note that for nonsingu-

lar A, cond2(A) = ‖A‖2 · ‖A−1‖2�1, so ‖A−1‖2�1/‖A‖2. The above norm bounds imply that
cond∞(A)n�cond2(A)�cond∞(A)n for eachp = 1,∞. A is well conditionedif condp(A)�nO(1)

for anyp ∈ {1,2,∞}. Note that ifA is well conditioned, then so areATA andAAT .
Note: Throughout this paper,we drop the subscript p when we wish to indicate the 2-norm, so‖A‖ =

‖A‖2.

2.2. The normal form reduction

We compute the inverse and solve linear systems for the class of rational matrices. The only restriction
is that they must have (a) input representation of a polynomial number of bits and (b) be nonsingular.
They do not have to be positive definite.
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Our paper gives an efficient parallel algorithm for theRF of suchmatriceswith the additional restriction
that the input be SPD. The requirement that the matrix beSPDpresents no difficulties. To solve the
associated matrix inverse and linear systems problems, the input matrix is not SPD, we use a well-known
reduction involving normal forms. Even if a nonsingularA is not SPD,the normal formAAT always
is SPD, soAAT can be factored asAAT = LU whereU,L are triangular (this squares the condition
number, which is not a problem since using the techniques of this paper we can make the condition
number nearly 1). So we can apply the RF algorithm giving factorizationAAT = LU . We now show this
factorization ofAAT allows us to solve the associated linear system and to compute the inverse ofA.
With this preprocessing, and given ann-vectorb, the linear systemAx = b can be solved using the

same factorizationAAT = LU in two back-solving stages by first solving forn-vectory and then for
n-vectorz in the triangular linear systemsLy = b,Uz = y (for which there are well-known highly
efficient parallel algorithms; see[42]). Then we letx = AT z.
Note that(AAT )−1 = U−1L−1, so the inverse ofA isA−1 = AT (AAT )−1 = ATU−1L−1.

2.3. RF sequences of matrices

RF SEQUENCE Problem: If possible, compute a sequence of matricesA = A0, A1, . . . , Alog n where
for d = 0,1, . . . , log n − 1, Ad is ann/2d × n/2d matrix which is partitioned as

Ad =
[
Wd Xd

Yd Zd

]
,

whereWd,Xd, Yd, Zd are matrices each of sizen/2d+1×n/2d+1 andAd+1 = Zd −YdW
−1
d Xd is called

theSchur complementof Gaussian elimination of the variables of blockWd.

If, for anyd, no such factorization is possible, thenA has no RF Sequence. However, any SPD matrix
has a unique RF sequence (see[35]).

Proposition 2.2(Follows from known properties of Schur complements and Pan and Reif[69,73]). In
the RF sequence, assumingA0 is SPD, then for alld,0�d� log n−1and� ∈ {0,1}d ,Ad+1 andWd are
SPD, ‖Ad+1‖, ‖Wd‖�‖Ad‖, ‖A−1

d+1‖, ‖W−1
d ‖�‖A−1

d ‖, 1/‖A−1
d ‖� min(‖Ad+1‖, ‖Wd‖), 1/‖Ad‖�

min(‖A−1
d+1‖, ‖Wd‖−1), cond(Wd)�cond(A).

Proposition 2.3. The inverse of A can be recursively computed from the RF sequence of A, as follows:

A−1
d =

[
I −W−1

d Xd

O I

] [
W−1

d O

O A−1
d+1

] [
I O

−YdW
−1
d I

]
.

The above formula expresses the inverse of the input matrix in terms of a constant number of products,
sums and two inverses of fourn/2× n/2 submatrices.
Note that the Schur complement of an integer matrixAmay not be an integer matrix. Therefore we

define a multiplierm0 = 1 and ford > 0,md = ∏d−1
i=0 det (Wi).

Lemma 2.1. AssumingA0 = A is an integer matrix, then for eachd�0,mdAd is an integer matrix.



96 John H. Reif / Journal of Computer and System Sciences 71 (2005) 86–143

Proof. We have definedAd to be the matrix derived fromA by d stages of successive block Gaussian
elimination of the variables corresponding toW1, . . . ,Wd−1. Note thatWd is of sizen/2d+1 × n/2d+1.
The eliminated variables after staged are thus the firsted = n(1− 1/2d) = ∑d−1

i=0 n/2i+1 variables of
the original linear system ofA corresponding to the upper lefted × ed submatrixWof A. Consider the
alternative partition

A =
[
W X

Y Z

]
.

By well-known properties of block Gaussian elimination, we can get the same matrixAd by a block
Gaussian elimination fromA, where we eliminate all theseed variables in a single stage rather thand
stages. ThusAd is also equal to the Schur complementZ − YW−1X derived by Gaussian elimination
of the variables of submatrixW from A. Hence, the recursive formulae for the RF sequence can be
applied to give a partialLU factorization ofW into a product of block triangular matrices with the
matricesW0, . . . ,Wd−1 on the diagonals. Since the determinants of a triangular matrix are obtained by
multiplying all the elements of their principal diagonals (see the proof of Lemma6.2), we have that

det (W) =
d−1∏
i=0

det (Wi) = md.

SinceA is assumed to be an integer matrix, all its submatrices includingW,X, Y,Z are integer matrices
anddet (W)W−1 is the integer adjoint matrix. Thus

mdAd = det (W)Ad = det (W)Z − Y (det (W)W−1)X

is an integer matrix. �

2.4. RF trees of matrices

TheRF TREE Problemis defined as follows: given ann × n matrix A, wheren is a power of 2,
compute, if possible, a full binary tree of depth logn whose nodes are matrices, and where all nodes at
depthd,0�d� log n aren/2d × n/2d matrices with notationA� where� ∈ {0,1}d is a binary string of
lengthd.
Let 〈〉 denote the empty string. Ifd = 0 then� is the empty string andA〈〉 = A is the root of the tree.

For 0�d < log n, each matrixA� at depthd has exactly two children in the tree,A�1 andA�0 at depth
d +1 which will be defined by recursion. In particular, ford = 0,1, . . . , log n−1,A� is ann/2d ×n/2d

matrix which is partitioned as

A� =
[
A�0 X�

Y� Z�

]
,

whereA�0, X�, Y�, Z� are matrices each of sizen/2d+1×n/2d+1 andA�1 = Z� −Y�A
−1
�0 X� is theSchur

complement. If, for anyd, no such factorization is possible (this occurs when someA�0 is singular), then
A has no RF tree.
Important note: The RF tree ofA is very similar to the RF sequenceA = A0, A1, A2, . . . , Alog n

defined in Section2.3. All nodes in the RF sequence are subscripted with an integer denoting the depth,
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whereas all nodes in the RF tree are labeled with a binary string whose length is the depth (thus in the RF
tree, the depth is implicitly defined from the length of this binary string and does not have to be explicitly
included in the subscript). In particular,Ad = A� for eachd = 1, . . . , log n, where� = 1d . The only
difference is that the RF tree also recursively factors each of theWd = A�0 matrices appearing in the RF
sequence. Any SPD matrix has an RF sequence and therefore an RF tree, and it is unique. Since we have
recursively defined:A�1 = Z� − Y�A

−1
�0 X�, this implies:

Proposition 2.4 (Follows from known properties of Schur complements and Proposition 2.2,
Pan and Reif[69,73]). In the RF, assumingAd is SPD, then for alld,0�d� log n− 1 and� ∈ {0,1}d ;
A�1, A�0 are SPD, ‖A�1‖, ‖A�0‖�‖A�‖; ‖A−1

�1 ‖, ‖A−1
�0 ‖�‖A−1

� ‖;1/‖A−1
� ‖� min(‖A�1‖, ‖A�0‖);

1/‖A�‖� min(‖A−1
�1 ‖, ‖A−1

�0 ‖); cond(A�0)�cond(A).

This RF tree gives the following useful recursive formulae holding for all� ∈ {0,1}d , where 0�d� log
n − 1.

Proposition 2.4. The LU factorization of A can be recursively computed from theRF tree of A,as follows:

A� =
[

I O

Y�A
−1
�0 I

] [
A�0 O

O A�1

] [
I A−1

�0 X�

O I

]
.

Proposition 2.5. The determinant of A can be recursively computed from the RF tree of A, as follows:
det (A�) = det (A�0)det (A�1).

Proposition 2.6. The inverse of A can be recursively computed from the RF tree of A, as follows:

A−1
� =

[
I −A−1

�0 X�

O I

] [
A−1

�0 O

O A−1
�1

] [
I O

−Y�A
−1
�0 I

]
.

Note: Throughout the rest of this paper, we will deal only with RF trees. Thus we will hereafter simply
call an RF tree anRF, and we will call the RF tree problem simply the RF problem unless otherwise
indicated.

3. Our parallel algorithm for computing an RF of a matrix

In this section, we describe how to compute an RF for SPD matrices. We start with some definitions.
Fix an SPDn × n matrix A, wheren is a power of 2, with integer entries of magnitude�2�, where
��nO(1).

3.1. Random choice of modulus

Proposition 3.1(See Schwartz[80] and Zippel[84] ). Let p be a prime number selected at random from
the interval[2(n‖A‖∞)c0/n,2(n‖A‖∞)c0], for any c0 > 2. If det (A) �= 0, then0 /≡ det (A) (modp)
with probability�1− �(n log(n‖A‖∞)/(n‖A‖∞)c0)�1− 1/n�(1).
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3.2. Multipliers for the RF

We now define multipliersm� for the matricesA�. Definem〈〉 = 1 for 〈〉 = the empty string, and for
any binary string�, let m�0 = m� and letm�1 = m� det (A�0). These multipliers are defined similarly
to the multipliers defined in Section2.3, except that they are subscripted by binary strings rather than
integers. For example, for� = 1d,m� is identical to the multipliermd defined in Section 2.3, since
A� = Ad. Note that eachA�0 is a submatrix ofA�, so the multiplierm�0 for A�0 is defined to be the
same as the multiplierm� forA�.We have definedA� to be the upper leftn/2|�| ×n/2|�| submatrix of the
matrix derived fromAby k stages of successive block Gaussian elimination of the variables of the blocks
A�i0, for i = 1, . . . , k. Note thatA�i0 is of sizen/2

|�i |+1 × n/2|�i |+1. The variables eliminated (by this
Gaussian elimination) after stage� are thus the firste� = ∑k

i=1 n/2|�i |+1 variables of the original linear
system ofA corresponding to the upper lefte� × e� submatrixWof A.

We now show thatm�A� is an integer matrix ifA is an integer matrix. Using an inductive argument
similar to oneused in theproof of Lemma2.1. To see this, letk be thenumber of ones in�. Let�11, . . . , �k1
be the prefixes of� ending with 1 in order of increasing length. Using a similar argument as Lemma 2.1
(but instead withWbeing the upper left submatrix ofA), we consider the partition

A =
[
W X

Y Z

]
.

SinceA is assumed to be an integer matrix, all its submatrices includingW,X, Y,Z are integer matrices.
Bywell-known properties of blockGaussian elimination, we get the samematrix asA� by blockGaussian
elimination fromA, where we eliminate all thesee� variables in a single stage rather thankstages. Hence,
A� is also equal to the upper leftn/2|�| × n/2|�| submatrix of the Schur complementZ − YW−1X
derived by Gaussian elimination of the variables of submatrixW from A. Note thatA� depends only
on the elements of the upper left(e� + n/2|�|) × (e� + n/2|�|) submatrix ofA, and not on any other
elements ofA outside on this submatrix. Thus the recursive formulae for theLU factorization of the RF
factorization given in Proposition2.4 can be applied to give a partialLU factorization ofW into a product
of block triangular matrices with the matricesA�10, . . . , A�k0 on the diagonals. Since the determinant
of a triangular matrix is obtained by multiplying all the elements of its principal diagonal, we have that
det (W) = ∏k

i=1 det (A�i0) = m�. Sincedet (W)W−1 is the adjoint matrix of integer matrixW, it is also
an integer matrix. Thusm�A� = det (W)A� = det (W)Z − Y (det (W)W−1)X is an integer matrix.
By Proposition 2.4,‖A�1‖, ‖A�0‖�‖A�‖. Hence by Proposition 2.1, it follows that there is a constant

ĉ such that|m�|�∏d
i=1 2ĉ(1/2

i )��2(
∑d

i=1 1/2i )ĉn(�+log n)�2ĉn(�+log n) where� is of lengthd and� =
n(� + log n).We have shown

Lemma 3.1. AssumingA〈〉 = A is an integer matrix, and the entries of A have magnitude�2�, then
for eachd�0, and for each binary string� of lengthd,m�A� is an integer matrix and|m�|�2ĉ� where
� = n(� + log n) and ĉ is a constant.

Now we will define an ordering to evaluate the multipliersm� fast in parallel. LetG be the directed
acyclic digraph derived from the RF tree by simply (i) renaming each nodeA� by its index�, so the nodes
of G are strings{� ∈ {0,1}d |d� log n}, (ii) including all tree edges reverse directed from the children
to parents, and (iii) adding directed edges from each node of form�1 to its sibling of form�0. Note
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that the longest directed path inG has 1+ 2 log n nodes. Hence the nodes ofG can be partitioned into
1+2(depth of the RF tree)= 1+2 log n blocks�0, . . . ,�2 log n so that the evaluation ofm� is executed
in parallel for all� ∈ �j in 1+ 2 log n sequential stages forj = 0, . . . ,2 log n. In particular, we can
let�0 = {〈〉} contain just the empty string〈〉 corresponding to the root, and for eachd = 1, . . . , log n

let�2d−1 = {�0|� ∈ {0,1}d−1}, and�2d = {�1|� ∈ {0,1}d−1}. This ordering of the directed edges ofG
allows for the recursive computation ofm�0 = m� andm�1 = m� det (A�0) (since it will be the case that
computingdet (A�0) requires the computation ofm�0).

3.3. RF algorithm

We now describe our algorithm:

Algorithm RF
INPUT: ann × n integer nonsingular SPD matrixA, with integer entries of magnitude�2�, where

��nO(1), and w.l.o.g., we assumen is a power of 2.
Let � = n(� + log n). All of our computations will use bit precision at mostO(�).

1. Letp be a random prime from the interval 2(n‖A‖∞)c0/n < p < 2(n‖A‖∞)c0, for somec0 > 2.
2. Let Ā = A + �I, where� = p(n‖A‖∞)c1 is an integer andc1 is a sufficiently large positive integer
constant.

3. Apply the Newton iteration of Section3.5 using bit precisionO(�), to compute an approximate RF
of Ā within accuracy 2−c�, for a sufficiently large positive constantc.

4. Using the RF tree forĀ, within accuracy 2−c�, compute by Proposition2.4 an approximateLU
factorization of the rational matrices̄A� in the RF ofĀ and from these compute by Proposition 2.5 a
rational approximation todet (Ā�) up to accuracy within 2−c�.

5. Construct the ordered partition�0, . . . ,�2 log n of the strings{� ∈ {0,1}d |d� log n} defined above.
For eachj = 0, . . . ,2 log n do (in sequence).
For each binary string� ∈ �j do in parallel.
Recursively approximately compute, up to accuracy within 2−c�, multipliersm̄� for the matricesĀ�

from the approximation to their determinants, as follows:
If � = 〈〉 then let m̄〈〉 = 1.
Else if |�| > 0 then do
(i) Let � = �′b, whereb is the last bit of�.
(ii) If b = 0 then do let m̄� = m̄�′ .
Else if b = 1 then do let m̄� = the product ofm̄�′ and the approximation ofdet (Ā�′0).

6. For eachd = 0, . . . , log n and� ∈ {0,1}d, in paralleldo:
To compute the integer matrix̄m�Ā� exactly, round to the nearest integer the product ofm̄� times this
rational approximation tōA�. This gives the exact RF of̄A.
LetA (modp) denote the matrix derived from a rational matrixAby applying the standard homomor-
phism from the rationalsQ to the finite fieldZp.

7. Applying the homomorphism fromQ to Zp, reduce(modp) the exact RF ofĀ, yielding the RF
(modp) of A. (Note that we can apply this homomorphism fromQ to Zp, since we have assumed a
model of computation with unit cost division over a finite field.) Also, computedet (A�) (modp) by
Proposition2.5 and compute(A�)

−1 (modp) by Proposition 2.6 in parallel for each� ∈ {0,1}d for
d = log n, log n − 1, . . . ,0.
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8. If det (A�) ≡ 0 (modp) for any� in the previous steps,then go to step 1 and choose anotherp.
9. Apply Newton–Hensel lifting of Section3.4 to computefor i = 0, . . . , k∗ = �log(c�/ log p)� the
RF(modp2

i
) of A. This gives us the RF(modp2

k∗
) of A.

10. For each� ∈ {0,1}log n in paralleldo

Setdet (A�) (modp2
k∗
) to be the scalar entry inA� (modp2

k∗
).

Comment: Here we consider each leaf of the RF tree. In this case,A� (modp2
k∗
) is a 1× 1 matrix,

whose scalar entry is its determinant(modp2
k∗
).

11. For eachd = log n − 1, log n − 2, . . . ,0 do (in sequence)

for all � ∈ {0,1}d in paralleldo computedet (A�) (modp2
k∗
) by the recursive formulaedet (A�) =

det (A�0)det (A�1) (modp2
k∗
) implied by Proposition2.5.

12. For eachj = 0, . . . ,2 log n do (in sequence)
for each binary string� ∈ �j do in parallel

Recursively compute the multipliersm� (modp2
k∗
) for the matricesA� from their determinants

(modp2
k∗
), as follows:

If � = 〈〉 then letm〈〉 = 1.
Else if |�| > 0 then do
(i) Let � = �′b, whereb is the last bit of�.
(ii) If b = 0 then do letm� = m�′ (modp2

k∗
).

Else if b = 1 then do letm� = m�′ det (A�′0) (modp2
k∗
)

13. for eachd = 0, . . . , log n and� ∈ {0,1}d, in paralleldo:
Using the RF(modp2

k∗
) ofA computed above, representA� exactly as the rational fraction of integer

matrices:m�A� (modp2
k∗
) divided bym� (modp2

k∗
).

14. OUTPUT The exact RF ofA.

After we define Newton–Hensel lifting (Section3.4) and Newton iterations (Section 3.5), we complete
the proof and analysis of the RF algorithm in Section 3.6. There we show that if the input to our RF
algorithm is assumed (as stated in the algorithm) to be a nonsingular matrixA, then with high likelihood
�1− 1/n�(1), the execution will not loop from step 8 back to step 1, so the stated time bounds thus hold
with high likelihood�1− 1/n�(1). The RF algorithm is thus always correct, but theoretically may loop
forever, with probability 0. (Alternatively, we may alter the RF algorithm to not necessarily assume the
input is nonsingular, and simply terminate after only one such loop from step 8. Then if the input matrix
A is nonsingular, this termination will occur with low likelihood�1/n�(1). So on termination, we can
conclude, with high likelihood�1− 1/n�(1), that the input matrixA is nonsingular, noting that we may
now be in error with low likelihood�1/n�(1).)

3.4. Newton–Hensel lifting

3.4.1. Lifting of a matrix
Fix a nonsingularn×nmatrixAand a primep. In this sectionweassume thatwehave already computed

A−1 (modp). Zassenhaus extended Hensel’s lifting to exponentially increase the modulus. The resulting
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Newton–Hensel lifting is the following algorithm:

INPUT: a positive numberk, andn × n matricesA andA−1 (modp).
1. S(0) = A−1 (modp)
2. For i = 1, . . . , k do S(i) = S(i−1)(2I − AS(i−1)) (modp)2i .

Moenck and Carter[57] show

Proposition 3.2. S(k) = A−1 (modp2k ).

3.4.2. Newton–Hensel lifting of modular RFs
Recall that the RF ofA is a full binary tree of depth logn. Each internal node is ann/2d ×n/2d matrix

A�. The RF ofA� is defined in terms of the RF of twon/2d+1× n/2d+1 matrices, namelyA�1 andA�0,
and furthermoreA�1 is defined in terms of submatrices ofA� and the inverse ofA�0.
Let anRF (modp) of ann × n matrixA be an RF of matrixAwhere each element is taken(modp).

This will also be called amodular RF. In this section we assume that we are given an RF(modp) of
matrixA . We shall compute the RF(modp2

k
) of A.

Recall thatM(n) = n� is the minimum number of PRAM processors necessary to multiply twon× n

matrices inO(log n) parallel steps, where we assume� > 2.

Proposition 3.3.
∑log n

d=0 2dO(M(n/2d))�O(M(n)).

Note that the obvious way to compute the RF(modp2
k
) of A is by proceeding level by level through

the RF in logn stages, each requiringO(k log n) time andO(M(n))�2dO(M(n/2d)) processors for
the requiredk matrix products for the nodes of depthd. This requires total parallel timeO(k log2 n)

usingO(M(n)) processors. However, we can do better with the following:

3.4.3. Newton–Hensel lifting algorithm for an RF
INPUT: RF(modp) of A and numberk�1.
For each matrixA� in the RFdo in parallel:

1. INITIALIZATION:
(i) Let A(0)

� ≡ A� (modp)
(ii) ComputeS(0)� ≡ A−1

� (modp) from the RF(modp) of A by applying Proposition2.6.
2. For eachi = 1, . . . , k do

Loop Invariant: We have just computed
A
(i−1)
� ≡ A� (modp2

i−1
) andS(i−1)� ≡ A−1

� (modp2
i−1

).

Let S(i)� = S
(i−1)
� (2I − A

(i−1)
� S

(i−1)
� ).

Ford < log n, let

A(i)
� =

[
A
(i)
�0 X

(i)
�

Y
(i)
� Z

(i)
�

]
,

whereA(i)
�0 , X

(i)
� , Y

(i)
� , Z

(i)
� arematriceseachof sizen/2d+1×n/2d+1and letA(i)

�1 = Z
(i)
� −Y

(i)
� S

(i)
�0X

(i)
� .
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OUTPUT: RF(modp2
k
) of A given by the{A(k)

� }.
This algorithm, as stated, requires parallel timeO(k log2 n) usingO(M(n)) processors. However, we

can use the technique ofstream contraction(see[72]) to decrease the time toO((k + log n) log n) time
without a processor penalty. The idea is to note that for eachd,0�d < log n, and each� ∈ {0,1}d
defining an internal nodeA� at depthd, the following hold:
1. The matricesA�0 (modp2

i−1
) andA�1 (modp2

i−1
) are defined in terms of submatrices ofA� (mod

p2
i−1

).

2. The computationS(i)� ≡ A−1
� (modp2

i
) depends on the previous computationsS

(i−1)
�1 ≡ A−1

�1 (mod

p2
i−1
andS(i−1)�0 ≡ A−1

�0 (modp2
i−1

).

This implies that we can pipeline the computation, using stream contraction, as follows: as our basis
step t = 0 we computeS(0)� for all d = 0, . . . log n and each� ∈ {0,1}d . We assume for our in-
duction hypothesis that at timet,0� t < k + log n we have computed eachS(i)� for all i, d, � where
0�d� log n,0�i� t − d and� ∈ {0,1}d . Then we apply the RF formula and compute one further
product at each node of the recursion tree to compute by timet + 1 eachS(i+1)� for all i, d, � where
0�d� log n, i = t + 1 − d and� ∈ {0,1}d . Summarizing, we have (using a small constant factor
slowdown to reduce the processor bounds fromO(M(n)) toM(n)):

Lemma 3.2. Given anRF (modp) of ann × n matrix A, we can compute anRF (modp2
k
) of A in

parallel timeO((k + log n) log n) usingM(n) processors.

3.5. Newton iterations for approximation of an RF of diagonally dominant matrices

3.5.1. �-Diagonally dominant matrices
Let A be ann × n symmetric matrix whereA = [aij ]. We defineA to be �-DD for some� > 0

if for all i,1�i�n, �|aii | >
∑n

j=1,j �=i |aij |. A is DD if A is �-DD for 0 < � < 1. Let D(A) =
diag(a11, a22, . . . , ann) denote then × n diagonal matrix with the diagonal entriesa11, a22, . . . , ann.
ThenD(A)−1 = diag(1/a11,1/a22, . . . ,1/ann) is then × n diagonal matrix with the diagonal entries

1/a11,1/a22, . . . ,1/ann. Since‖I − D(A)−1A‖∞�maxi
∑n

j=1,j �=i |aij |
|aii | < �, it follows:

Proposition 3.4. If A is �-DD then‖I − D(A)−1A‖∞ < �.

We will useB(0) = D(A)−1 as the initial approximation to the inverse ofA in our Newton iterations.
Letmindiag(A) = mini |ai,i |.
Note: Lower bounds onmindiag(A) will later provide us with upper bounds on the norm of an

approximate inverse ofA, which will be used in the proof of our RF algorithm.

Proposition 3.5. If A = (ai,j ) is a symmetric�-DDmatrix of sizen×n, then one stage of Gaussian elimi-
nation results in amatrixA′ that is symmetric, �/(1−�)-DDandwithmindiag(A′)�(1−�)mindiag(A).

Proof. Let the row and column indices ofAbe in{1, . . . , n}. LetA′ = (a′
i,j ) be the symmetric matrix of

sizen−1×n−1matrix derived fromAby one stageofGaussian elimination, say by elimination of the first
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column and row ofA. For notational ease, we allow the row and columns indices ofA′ to be in{2, . . . , n}.
For alli,2�i�n, Gaussian elimination givesa′

i,j = ai,j −a1,j ai,1/a1,1.SinceA is symmetric and�-DD,
|a′

i,j |� |ai,j |+ |a1,j ||ai,1|/|a1,1|� |ai,j |+ �|ai,1|. Also |ai,i |� |a′
i,i |+ |a1,i |2/|a1,1|� |a′

i,i |+ �2|ai,i |, so
|ai,i |� |a′

i,i |/(1− �2). This also implies that|a′
i,i |� |ai,i |(1− �2) somindiag(A′)�mindiag(A)(1−

�2)�mindiag(A)(1− �). SinceA is �-DD we have
n∑

j=2,j �=i

|a′
i,j | =

n∑
j=2,j �=i

|ai,j − a1,j ai,1/a1,1|��(|ai,i | + |ai,1|)��(|ai,i | + �|ai,i |)

= �(1+ �)|ai,i |��(1+ �)|a′
i,i |/(1− �2) = �|a′

i,i |/(1− �).

It is also easy to verify thatA′ is symmetric. �

It follows by induction that ifA is symmetric and�-DD, then k Gaussian elimination stages re-
sults in a matrix that is symmetric,�/(1− k�)-DD, and where themindiagof that resulting matrix is
�mindiag(A)(1− k�). Since block Gaussian elimination can be done by at mostn repeated Gaussian
elimination stages,

Proposition 3.6. If A is �-DD, then all the matricesA� in the RF of A are at least�/(1− n�)-DD and
havemindiag(A�)�mindiag(A)(1− n�).

In the following, we will consider ann × n, DD, symmetricA = (ai,j ). Define a quantity to bevery
smallwith respect toA if it is of the form (n‖A‖)−c′

, for some constantc′ > 1. Note that the sum of two
very small quantities with respect to the same matrix is also very small. (Note that this definition allows
� = (n‖A‖)−c′

and�′ = (n‖A‖)−c′′
to both be very small quantities, which may have distinctc′, c′′. Also

note, this definition ofvery smallsimplifies our proofs of rapid convergence; we can alter this definition
of very small so that� is a larger quantity, but this decreases the overall bit complexity of our algorithm
only by a constant factor.) Let a nonsingularAbestrongly well conditionedif cond2(A)�1+ � for a very
small � (with respect toA), and let a nonsingularA bestrongly DD if A is �-DD for a very small�. Let
A ≈ Ã if ‖A − Ã‖ is very small with respect toA.

Proposition 3.7. Suppose A is symmetric and strongly DD. Then
1. All the matricesA� in the RF of A are strongly DD and havemindiag(A�)�mindiag(A) − o(1).
2. A−1 ≈ D(A)−1 and is also strongly DD.
3. If ‖I − BA‖∞ is very small(with respect to A), then‖B‖∞�(1/(mindiag(A)) + o(1).

Proof. The first statement is implied by Proposition3.6, and the observation that ifA� is strongly DD
then bothA�0 andA�1 are also strongly DD. The second statement requires a detailed proof. SinceA is
strongly DD, thenA is �-DD for a very small� = (n‖A‖)−c′

, for some constantc′ > 2. Let b be theith
column ofA−1. Let b∗ the maximum of any|bj |, for j �= i. For eachj �= i, since(Ab)j = 0 andA
is symmetric and�-DD, it follows that|bj |��b∗ + |bi ||ai,j |/|aj,j |��(b∗ + |bi |), since|ai,j |/|aj,j |��.
Thus b∗ = maxj �=i |bj |��(b∗ + |bi |), so b∗��|bi |/(1 − �). Also, since(Ab)i = 1, it follows that
|bi |�1/|ai,i |−�b∗�1/|ai,i |−�2(|bi |/(1−�)), so|bi |�1/(|ai,i |(1−�2/(1−�)))�(1−�)/(|ai,i |(1−2�)) ≈
1/|ai,i |, since� is very small (with respect toA). This implies thatb∗��|bi |/(1− �) ≈ 0, since� and
�|bi | ≈ �/|ai,i | are both very small (with respect toA). Thus we have shown thatA−1 ≈ D(A)−1, soA−1
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is also strongly DD. The same proof implies that if‖I − BA‖∞ is very small (with respect toA), then
B ≈ D(A)−1. So if ‖I −BA‖∞ is very small (with respect toA), then since� is very small (with respect
toA), ‖B‖∞ ≈ ‖D(A)−1‖∞�1/mini |ai,i |�1/mindiag(A), so‖B‖∞�(1/mindiag(A))+o(1), thus
proving the third statement. �

A is a nearly identity multiple(NIM) if A ≈ �I for a scalar constant�.

Proposition 3.8. Suppose A is symmetric and NIM. Then:
1. A is strongly DD and strongly well conditioned.
2. All the matricesA� in the RF of A are NIM and thus strongly DD and strongly well conditioned, and
3. A−1 ≈ is also NIM.

Proof. A is NIM so A ≈ �I , and by definition is strongly DD. Alsocond2(A) = ‖A‖2‖A−1‖2 ≈
‖�I‖2‖�−1I‖2 = ��−1 = 1, soA is strongly well conditioned. The second statement is implied by
Proposition3.6, and the observation that ifA� is NIM then bothA�0 andA�1 are also NIM. Also, since
A−1 ≈ D(A)−1, we have thatA−1 is also NIM. �

3.5.2. Approximate inverse of DD matrices
Let A be ann × n symmetric matrix. We will letB(0) = D(A)−1 be the initial approximation to the

inverseofA in ourNewton iterations.TheNewton iterationgeneratesasequenceofmatricesB(1), B(2), . . .

whereB(k) = B(k−1)(2I −AB(k−1)) for k > 0 (see [4,5,40,41] for sequential Newton iteration and also
see [69,71] for parallel applications). SinceI −B(k)A = I −B(k−1)(2I −AB(k−1))A = (I −B(k−1)A)2,
it follows that:

Proposition 3.9. If A is �-DD then‖I − B(k)A‖∞ < �2
k
.

Thus‖I − B(k)A‖∞ = ‖(I − B(k−1)A)2‖∞ < (�2
k−1

)2 = �2
k
.

Let k+ be the integer�log(c̄�)� wherec̄ is a positive constant. Note that since� = n(� + log n), it
follows thatk+ = �log(c̄�)��O(log n), assuming that the bit precision of the entries ofAare��nO(1).

So if A is �-DD, for � < 1
2, then at mostk

+ Newton iterations suffice to compute the approximate

inverseB(k+) with error 2−c̄�.

3.5.3. Newton iterations within bounded bit precision
Fix a very small (with respect toA) � = (n‖A‖)−c′

< 1
32 for some positive constantc

′ > 2.We assume
A is NIM, and thus strongly DD, in particular is�-DD, for very small�.
For all k�0 letEk(�) = (16�)2

k

/16. By definitionE0(�) = � and observe thatEk(�) exactly satisfies
the recurrenceEk(�) = (4Ek−1(�))2 for all k > 0. Also since we assume� < 1

32, it follows Ek+(�) <

(16�)2
k+ �2−2k+ �2−c̄�.

Next we consider the case of Newton iteration where the input matrixA is not initially given with full
accuracy, and instead we are provided on-line a sequence of approximatesÃ(0), Ã(1), . . . where‖A −
Ã(k)‖∞�Ek(�), and eachÃ(k) has bit precision�O(�). Let B̃(0) = D(Ã(0))−1 = diag(1/ã11,1/ã22,
. . . ,1/ãnn) whereÃ(0) = [ãij ]. If Ã(0) is �-DD then by Proposition3.4,‖I − B̃(0)Ã(0)‖∞ < �.
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Wewill generate a sequence of matricesB̃(0), B̂(1), B̃(1), . . .whereB̂(k) = B̃(k−1)(2I −Ã(k)B̃(k−1)) is
the exact Newton iterate, and̃B(k) is an approximation tôB(k) obtained by rounding within bit precision
O(�), so that‖I − B̃(k)Ã(k)‖∞�‖I − B̂(k)Ã(k)‖∞ + Ek(�). SinceA is assumed to be NIM, then by
assumption on the close approximation ofA by theÃ(k), we have

Proposition 3.10. EachÃ(k) is also NIM, and thus strongly DD and strongly well conditioned.

Finally, we give an inductive proof of quadratic convergence of the entire iteration sequence:

Proposition 3.11. If ‖A‖∞�1, A andÃ(0) are �-DD, and alsomindiag(A)�1− o(1), then we have
‖I − B̃(k)Ã(k)‖∞ < Ek(�).

Proof. We use a proof by induction onk. Note that the basis of the induction holds by assumption, since
� = E0(�). Now for k > 1, assume the induction hypothesis:‖I − B̃(k−1)Ã(k−1)‖∞ < Ek−1(�). By
definition of the Newton iterations,

I − B̂(k)Ã(k) = I − B̃(k−1)(2I − Ã(k)B̃(k−1))Ã(k) = (I − B̃(k−1)Ã(k))2.

By assumption on the approximations to theÃ(k),

‖Ã(k) − Ã(k−1)‖∞�‖A − Ã(k)‖∞ + ‖A − Ã(k−1)‖∞�Ek(�) + Ek−1(�).

By Proposition3.10,Ã(k−1) is strongly DD. By the induction hypothesis,‖I − B̃(k−1)Ã(k−1)‖∞ <

Ek−1(�). Since we have assumedmindiag(A)�1−o(1), Proposition 3.7 implies‖B̃(k−1)‖∞�2 for any
sufficiently largen. Also, I − B̃(k−1)Ã(k) = (I − B̃(k−1)Ã(k−1)) + B̃(k−1)(Ã(k−1) − Ã(k)), so we have:
‖I − B̃(k−1)Ã(k)‖∞�‖I − B̃(k−1)Ã(k−1)‖∞ + ‖B̃(k−1)‖∞ · ‖Ã(k−1) − Ã(k)‖∞�Ek−1(�) + 2(Ek(�) +
Ek−1(�))�4Ek−1(�) − 2Ek(�) since 4Ek(�)�Ek−1(�).
Thus we have:‖I − B̃(k)Ã(k)‖∞�‖I − B̂(k)Ã(k)‖∞ +Ek(�)�‖(I − B̃(k−1)Ã(k))2‖∞ +Ek(�)�‖(I −

B̃(k−1)Ã(k))‖2∞ + Ek(�)�(4Ek−1(�) − 2Ek(�))2�Ek(�), by definition ofEk(�). �

By definition of Ã(k) and B̃(k), these approximate Newton iterations require log(Ek(�))�O(�) bit
precision.

Lemma 3.3. If A is NIM and thus strongly DD, then even with the above approximations to A, k+ =
�log(c̄�)��O(log n) Newton iterations suffice to compute, using bit precision�O(�), the approximate
inverseB̃(k) with error 2−c̄�, for a positive constant̄c.

Note: We can also show that Lemma3.3 holds even with more moderate conditions onA (for example
whereA is well conditioned rather that strongly well conditioned), but the Lemma will suffice for the RF
algorithm.

3.5.4. Nonpipelined Newton iterations for RF
Here we assume that we are given a matrixA which is NIM and withmindiag(A)�1. We shall

compute an approximation to the RF ofAwithin error 2−�(�), using bit precision�O(�). Recall again
that the RF ofA is a full binary tree of depth logn. Each internal node is ann/2d × n/2d matrixA�.
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The RF ofA� is defined in terms of the RF of twon/2d+1 × n/2d+1 matrices, namelyA�1 andA�0,
and furthermoreA�1 is defined in terms of submatrices ofA� and the inverse ofA�0. Note that the
simplest and most obvious way we might compute the RF ofAwithin error 2−�(�) is by proceeding up
the recursion tree in logn stages. We first sketch this simple algorithm (we will give full details of a
more efficient algorithm below). At each staged = 0,1, . . . , log n, we compute for all nodes of depthd
an approximationÃ� of A� within error 2−�(�). Then we computeB(k)

� , which is akth Newton iteration
matrix approximating the inverse of matrixA� up to error�2

k
, where� = (n‖A‖)−c′

, for some sufficiently

large positive constantc′. Recalling thatk+ = �log(c̄�)��O(log n), we useB(k+)
� to approximateA−1

�
within error 2−�(�). Since there are only logn levels in the RF, and sinceA is NIM and thus strongly DD
and stronglywell conditioned, the normbounds given in Proposition2.2 ensure that the error of the overall
approximate computation is at most 2−�(�). At each stage we need to compute approximations to two
recursive inverses. Each such stage requiresO(log2 n) time andO(M(n))�2dO(M(n/2d)) processors
for the requiredk repeatedn/2d × n/2d matrix products for each of the 2d nodes of depthd. The logn
stages requires total parallel timeO(k log2 n) = O(log3 n) using

∑log n

d=0 2dO(M(n/2d))�O(M(n))

processors. However, this simple algorithm can be sped up using pipelining.

3.5.5. Pipelined Newton iterations for RF
Next, we will improve on thisO(log3 n) algorithm for the approximate RF, decreasing the time to

O(log2 n) without an increase in processor bounds. As in Lemma 3.3, we consider the case of Newton
iteration where the recursively defined matricesA� are not initially given with full accuracy, and instead
we are provided a sequence of improving approximationsÃ

(0)
� , Ã

(1)
� , . . . where‖A− Ã(k)‖∞�Ek(�). In

the special cased = 0, the approximation is exact,̃A〈〉 = A, where〈〉 is the empty string. Given these
approximants toA, we will generate a sequence of matricesB̃

(0)
� , B̃

(1)
� , . . . whereB̃(k)

� = B̃
(k−1)
� (2I −

Ã
(k)
� B̃

(k−1)
� ). Thus,B̃(k)

� will approximate the inverse of̃A(k)
� . We will then use Lemma 3.3 to show

quadratic convergence.

3.5.6. Newton iteration algorithm for an RF

INPUT: A �-DD symmetric matrixA of sizen × n with mindiag(A)�1.
For eachd, � for 0�d� log n and� ∈ {0,1}d, do in parallel:

1. INITIALIZATION: Let Ã(0)
〈〉 = A, where〈〉 is the empty string.

2. Letk+ = log(c̄�) for a positive constant̄c.
3. Let B̃(0)

� = diag(1/ã11,1/ã22, . . . ,1/ãnn), whereÃ
(0)
� = [ãij ].

4. For eachi = 1, . . . , k+ do
Loop Invariant: We have just computed̃A(i−1)

� which approximatesA� with error‖Ã(i−1)
� − A�‖∞ <

Ei−1(�) for � = (n‖A‖)−c′
with c′ > 2. Also, we have just computed̃B(i−1)

� which approximatesA−1
�

with error specified by‖I − B̃
(i−1)
� A�‖∞ < Ei−1(�).

(i) Let B̃(i)
� = B̃

(i−1)
� (2I − Ã

(i)
� B̃

(i−1)
� ).

(ii) For d < log n, let

Ã(i)
� =

[
Ã
(i)
�0 X̃

(i)
�

Ỹ
(i)
� Z̃

(i)
�

]
,
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whereÃ(i)
�0 , X̃

(i)
� , Ỹ

(i)
� , Z̃

(i)
� arematrices each of sizen/2d+1×n/2d+1 andÃ(i)

�1 = Z̃
(i)
� − Ỹ

(i)
� B̃

(i)
�0 X̃

(i)
� .

OUTPUT: The approximate RF{Ã(k+)
� },which approximates the RF ofAwithin 2-norm error 2−�(�).

3.5.7. Bounding error accumulation in recursions
We now show that in the initial approximation{Ã(0)

� } to the RF ofA, the errors do not accumulate much
on the recursions. AssumingA is NIM and thus strongly well conditioned, by Proposition3.7, all the
matricesA� in the RF ofA are NIM and thus strongly well conditioned. Since our initial approximations
to the inverses of matrices occurring in the RF are themselves NIM and thus strongly well conditioned,
it follows by Proposition 3.7, that our initial approximations to its inverse give an approximation to the
RF, with very small (with respect toA) relative error.

Lemma 3.4. Fix a very small(with respect to A) � = (n‖A‖)−c′
for some large enough positive constant

c′. In theNewton iteration algorithm for theRF,at each depthd = 1, . . . , log n,and for each� ∈ {0,1}d,
on the first stage of Newton iteration, the initial approximation of the RF matrices at depth d have very
small(with respect to A)∞-norm error�. In particular, ‖A(0)

� − A�‖∞�� and‖I − B
(0)
� A�‖∞��.

Lemma 3.5. For eachd = 1, . . . , log n, and each� ∈ {0,1}d, the∞-norm error for the ith iteration is
‖A(i)

� − A�‖∞�Ei(�) and‖I − B
(i)
� A�‖∞�Ei(�).

Proof. Lemma3.5 is proved by induction. We use Lemma 3.4 as a basis for the induction. The inductive
step follows directly from Lemma 3.3 applied to{A(i)

� } and{B̃(i)
� }, which provides the required bounds

on the errors of theith approximate RF{A(i)
� }. �

Note again that these approximate Newton iterations requireO(�) bit precision.

3.5.8. Applying stream contraction to the RF Newton iterations
As in Section 3.4, we use the technique ofstream contractionto decrease the time toO(log2 n) time

without a processor penalty. To simplify notation, let us defineCOMP i
� to be the computation of̃A

(i)
�

and B̃(i)
� , where this approximate computation is within error specified by Lemma 3.5. Note that for

eachd,0�d < log n, and each� ∈ {0,1}d defining an internal nodẽA� at depthd, the computation
COMP i

� depends only on the computationsCOMP i−1
�1 andCOMP i−1

�0 . Furthermore, the computation

COMP i−1
�1 is defined in terms of submatrices ofÃ(i−1)

� and ofÃ(i−1)
�0 . In particular, we need only to

apply Newton iteration one more time to these approximated matrices. This implies that we can pipeline
the computation ofCOMP i

�, using stream contraction, just as we did in Section 3.4 forS
(i)
� , to reduce

the parallel time from�(log3 n) toO(log2 n) without a processor increase.
Wepipeline the computation as follows: as our basis stept = 0wehavedone the computationCOMP 0�

for all d = 0, . . . log nandeach� ∈ {0,1}d .Weassume for our induction hypothesis that at timet,0� t <

k + log n we have done the computationCOMP i
� for all i, d, � where 0�d� log n,0�i� t − d, and

� ∈ {0,1}d . Then we apply the approximation RF formula and perform one more product at each node
of the recursion tree to do computationCOMP i+1

� by time t + 1 for all i, d, � where 0�d� log n and
i = t + 1− d and� ∈ {0,1}d .
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Summarizing, using a small constant factor slowdown to reduce the processor bounds fromO(M(n))

toM(n), we have

Lemma 3.6. Given ann × nmatrix A,which is NIM and withmindiag(A)�1, we can compute, using
bit precision�O(�), an approximation to the RF of A with error2−�(�) in parallel timeO(log2 n) using
M(n) processors.

3.6. Analysis of the RF algorithm

Theorem 3.1.Our algorithm for computing the exact RF with high likelihood�1 − 1/n�(1), takes
parallel timeO(log2 n) usingM(n) randomized processors, and bit precisionO(�), for � = O(n(� +
log n)), using a constant number of random variables ranging over a domain of size(n‖A‖)O(1).

Proof. Fix as input ann × n integer nonsingular SPD matrixA, with integer entries of magnitude�2�,

where��nO(1). We can assume w.l.o.g. thatn is a power of 2. Since Proposition2.1 and Lemma 3.1
bound|det (A)|�2� and|m�|�2ĉ�, all rational quantities in the RF ofA can be expressed as a quotient
of two integers of magnitude�2O(�), and thus in bit precisionO(�). Hence all rational quantities in the
RF ofA are P-rational as defined in the introductory Section 1.1. We will show that all our computations
will use bit precision at mostO(�).
In step 1, we choose a random primep from the interval 2(n‖A‖∞)c0/n < p < 2(n‖A‖∞)c0, for

somec0 > 2. By Proposition 3.1, sincedet (A) �= 0 then 0 �≡ det (A) (modp) with high likelihood
�1− 1/n�(1).
In step2,weconstruct̄A = A+�I,where� = p(n‖A‖∞)c1 is an integer for a sufficiently largepositive

constantc1.SinceA is an integermatrix, so is̄A.For somepositive constantc̄ > 1,Proposition 2.1 bounds
|det (Ā)|�2c̄� so all rational quantities in the RF of̄A are P-rational; they can be expressed as a quotient
of two integers of magnitude�2O(�), and thus in bit precisionO(�). Ā is NIM and so strongly DD and
strongly well conditioned. Let̄A−1 (modp) andA−1 (modp) denote the matrices derived from rational
matricesĀ−1, A−1 by applying the standard homomorphism from the rationalsQ to the finite fieldZp

(we will use this notation below, as well). SincēA − A = �I is divisible byp, Ā (modp) ≡ A (modp),
and thus(Ā)−1 (modp) ≡ A−1 (modp).
In step 3, we apply the Newton iteration of Section 3.5 using bit precisionO(�), to get an approximate

RF of Ā within accuracy 2−c�, for a sufficiently large positive constantc. Clearlymindiag(Ā)�1, so
by Lemma 3.6, step 3 costs parallel timeO(log2 n) usingM(n) processors. This approximate RF gives
a rational matrixĀ�, for eachd = 0, . . . , log n and� ∈ {0,1}d, a rational approximation of(Ā�)

−1 and
a rational approximation of theLU factorization ofĀ� to accuracy 2−c� (using bit precisionO(�)).
Applying Proposition 2.5, which states DETERMINANT has an efficientO(log n) time parallel re-

duction to RF using the recursive formulae, we can compute a rational approximation todet (Ā�) up to
accuracy within 2−c� (using bit precisionO(�)) from the approximateLU factorization ofĀ�. Thus step
4 is executed in timeO(log n) usingn processors.
Recursive computation of the integer multipliers in step 5 and the multiplication and round off oper-

ations in step 6 clearly cost at most parallel timeO(log2 n) usingM(n) processors. The correctness of
step 5 follows from the formulae derived in Section 3.2.
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In step 6 we compute the integer matrixm̄�Ā� exactly, rounding to the nearest integer the product
of m̄� times the rational approximation tōA�. This requires bit precisionO(�). By Proposition2.1 and
Lemma 3.1,|det (Ā�)|�2ĉc̄�, and|m̄�|�2ĉc̄�. Each entry in the approximateLU factorization can be in
error by a factor of at most 2−c�n2, so the error of approximation of eachA� is at most a factorO(n)

more, namelyO(2−c�n3). Sincem̄� is computed from the product of at most logn determinants, the
error of approximation of each̄m� is at most a factorO(log n) more than of the error of approximation
of the determinants, namelyO(2−c�n3 log n). Note that by Proposition 2.4,‖Ā�‖∞�n2c̄�, so the total
error in the approximation tōm�Ā� is atmost 22ĉc̄�O(2−c�n3 log n)‖Ā�‖∞�22ĉc̄�O(2(c̄−c)�n4 log n)�
2(2ĉc̄+c̄−c)�+4 log n+log log n+O(1) < 1

2, with choice of a sufficiently large constantc > 2ĉc̄ + c̄ + O(1).
We now have the exact RF of̄A.
In step 7, as in previous efficient parallel algorithms [62,63] for the exact inversion of integer ma-

trices, we apply the standard homomorphism to make a conversion from rational numbers to integers
(modp), and we have assumed an arithmetic model where finite field arithmetic has unit cost. Re-
call Ā (modp) ≡ A (modp), so the RF(modp) of A is identical to the RF(modp) of Ā. Hence for
each�, Ā� = A� (modp), and we can apply Propositions 2.5 and 2.6 to computedet (A�) (modp)
and(A�)

−1 (modp) in parallel for each� ∈ {0,1}d for d = log n, log n − 1, . . . ,0. This requires bit
precisionO(�).
In step 8, we go to step 1 and choose anotherp if det (A�) ≡ 0 (modp) for any d, �. Note since

Ā is strongly DD, then by Proposition 3.6, eachĀ� is also strongly DD and so nonsingular, so always
det (Ā�) �= 0. By Proposition 3.1, sincedet (Ā�) �= 0, then 0 /≡ det (Ā�) (modp) with high likeli-
hood�1− 1/n�(1). RecallĀ� (modp) = A� (modp). So with low likelihood�1/n�(1), det (Ā�) ≡
0 (modp), and hence with the same low likelihood,det (A�) ≡ 0 (modp) and wemust repeat our choice
of p in step 1.
The Newton–Hensel lifting of step 9 is described in detail in Section 3.4. Lemma 3.2 implies the cost to

do this Newton–Hensel lifting by pipelining is timeO(log2 n) usingM(n) processors. Sincep2
k∗ �2c�,

the Newton–Hensel lifting requires bit precision at mostO(�).We have RF(modp2
k∗
) of A.

The recursive computation in step 10 of the determinants of the RF matrices(modp2
k∗
) is justified

by the recursive formulae for determinants of the RF matrices given in Proposition 2.5. The recursive

computation in steps 10 and 11 of the determinants of the RF matrices(modp2
k∗
) and of the integer

multipliers in step 12, and of the exact RF in steps 13 costs at most parallel timeO(log n) usingM(n)

processors. The use of the RF(modp2
k∗
) ofAandmultipliersm� (modp2

k∗
) in step 13 gives us the exact

values of the RF ofA sincep2
k∗ �2c� > |m̄�|‖A�‖∞ for a choice of a large enough constantc.

Note that by Lemmas 3.6, 6.2, and 3.2, each major stage of the above RF algorithm takes at most time
O(log2 n) usingM(n) processors, using bit precisionO(�). Since there are onlyO(1) suchmajor stages,
we have by constant slowdown that the total time isO(log2 n) usingM(n) processors. �

If the input matrixA is not SPD, then we apply the RF algorithm instead to the SPDAAT , as described
in Section 2.2 by use of the normal form reduction.

4. Parallel RF computation for matrices of bounded displacement rank

The techniques for computing an RF described in Section 3 can be applied to structured matrices with
some refinements that exploit their structure. We first define Toeplitz matrices, as well as their finite
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generation and compact representation, and we give generalizations of these properties to matrices of
bounded displacement rank. We next describe a known sequential algorithm for the RF of a matrix of
bounded displacement rank. Finally, we present a specialization of our parallel algorithm for the RF of a
matrix of bounded displacement rank, including modifications and extensions required to efficiently do
Newton–Hensel lifting and Newton iteration in this case.

4.1. Toeplitz matrices and their computations

Toeplitz matrices are quite simple to define, but bounded displacement matrices are not as simple.
Therefore, we first discuss Toeplitz matrices and their computations, then we extend the discussion to
other more general classes of structured matrices. Ann × n matrix A with row and column indices
beginning at 1 is said to beToeplitzif ai,j = a(i−j+1),1 for i�j , andai,j = a1,(j−i+1) otherwise. From
this definition, Toeplitz matrices have the structure:

A =




a1,1 a1,2 a1,3 . . . a1,n
a2,1 a1,1 a1,2 . . . a1,n−1
a3,1 a2,1 a1,1 . . . a1,n−2
...

. . .
. . .

. . .
...

an,1 an−1,1 an−2,1 . . . a1,1


 .

Note that the columnu = (a1,1, a2,1, . . . , an,1) and rowv = (a1,1, a1,2, . . . , a1,n), suffice to uniquely
define the Toeplitz matrixA (the matrix can also be uniquely be defined by the first and last rows or
columns). Thus, we cancompactly storethe Toeplitz matrix in space 2n − 1 using 2n − 1 indices of
the matrix. The transposeAT of a Toeplitz matrixA is Toeplitz, and every block of a Toeplitz matrix is
Toeplitz.
Toeplitz matrices arise naturally in many polynomial computations. For example, for polynomials of

degreen − 1:
1. The product of such univariate polynomials can be computed by multiplying a banded Toeplitz

matrix by a lengthn vector. Also, the reciprocal and division of univariate polynomials can be computed
using the solution of triangular Toeplitz systems[17].
2. The GCD and resultant of two such univariate polynomials can be determined by the solution of a

linear system defined by aSylvestermatrix consisting of twon × n Toeplitz submatrices [16,19].
As mentioned above, we will compactly represent ann× n Toeplitz matrix by specifying the first row

and column.
Recall thatP(n)denotes thenumber of arithmetic processors used tomultiply twodegreenpolynomials

in O(log n) parallel time.

Lemma 4.1(see Bitmead and Anderson[14] , Brent et al.[18] , Pan[64] and Pan and Reif[70] ).
(a) The product of ann × n Toeplitz matrix with an n-vector can be computed in sequential time

O(P (n) log n) and spaceO(n), and also in parallel timeO(log n) usingP(n) processors.
(b)The product of twon×nToeplitz matrices can be computed(i.e., compactly represented as a sum of

products of upper and lower compactly represented Toeplitz matrices) in sequential timeO(P (n) log n)

and spaceO(n), and also in parallel timeO(log n) usingP(n) processors.
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Lemma 4.2(Gohberg and Semencul[34] ). Let T −1 be the inverse of ann × n Toeplitz matrix T, and
let u = [u1, . . . , un]T andv = [v1, . . . , vn]T be the two vectors representing the first and last columns,
respectively, of T −1. LetL(u) denote the lower triangular Toeplitz matrix whose first column is u, and
letU(v) be the upper triangular Toeplitz matrix whose first row isv. Then

u1T
−1 = L(u)U(v(r)) − L(v(s))U(u(t)),

wherev(r) = [vn, vn−1, . . . , v1]T , v(s) = [0, v1, . . . , vn−1]T , andu(t) = [0, un, . . . , u2]T .
The pair of the vectorsu, v will be called thegeneratorsof T −1. (All of the above results are known

to extend to the bounded displacement matrices which will be defined below.)

4.1.1. Generation and compression of structured matrices by matrix operators
There is a large body of work (e.g.[45,46]) concerned with the definition of structured matrices by the

use of matrix operators as defined below. LetRn,m denote the class ofn×mmatrices, which are vectors
if n = 1 orm = 1. Let� : Rn,m → Rn,m. Consider a matrixA ∈ Rn,m. A �-generatorof A of length�
consists of two matricesG ∈ Rn,� andH ∈ Rm,� such that�(A) = GHT . The�-rankof A is defined to
be the rankr = r(�(A)) of the matrix�(A). Assuming� is 1-1, the�-generatorof Awill be stored in
space(n + m)� and provide unique information aboutA, whereasA hasnmentries to store. As a trivial
example of a matrix operator, consider the identity operatorI. Then a generator ofA is anI-generator of
A and theI-rank ofA is just the rank ofA.

4.1.2. Displacement operators for generalizations of Toeplitz matrices
LetZ be ann× n square matrix, zero everywhere, except for its first lower subdiagonal which is filled

with ones. Note that premultiplications and postmultiplications byZ and byZT displace or shift the
entries of ann × n matrixA = [aij ] as follows:

ZA = [ai−1,j ] giving a shift down, ZT A = [ai+1,j ] giving a shift up,
AZ = [ai,j+1] giving a shift left, AZT = [ai,j−1] giving a shift right,

whereai,j = 0 for i or j out of range.
Refs.[45,46] generate Toeplitz matrices and their generalizations using the followingdisplacement

operators:
1. Operator�+(A) = A−ZAZT zeros all the entries of a Toeplitz matrixA, except for its first row and
column.

2. Operator�−(A) = A−ZTAZ zeros all the entries of a Toeplitz matrixA, except for its last row and
column.
For notational consistency with the rest of the paper, Let�-rank(A) denote rank(�(A)) for each of the

� operators.

4.1.3. Finite generation of Toeplitz-type matrices
We let L(x) denote the lower triangular Toeplitz matrix with first columnx. [29,43,45,46] (for a

summary of these results see [14,66]) show the following relationships between the Toeplitz displacement
operators and the finite generation of these structured matrices.
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Lemma 4.3. For all matrices A, G = [g1, . . . , g�]T andH = [h1, . . . , h�]T where thegi andhi are
column vectors, we have:
1. �+(A) = A − ZAZT = GHT = ∑�

i=1 gihiT iff A = ∑�
i=1L(gi)LT (hi), and

2. �−(A) = A − ZTAZ = GHT = ∑�
i=1 girT hir iff A = ∑�

i=1LT (gi
r )L(hi

r ), where superscript r
denotes the reverse of a vector.

This lemma implies that theG,H matrices suffice to specify and generate the corresponding matrix
classes.

4.2. Bounded displacement rank matrices

Hereafter, we define for Toeplitz operators thedisplacement rankanddisplacement generatorof a
matrix to be its�-rank and�-generator, for� ∈ {�+,�−}. Slightly simplifying the above definitions, we
will define here (in the context of Toeplitz operators) ann × n matrix to havedisplacement rank� if it
can be written as the sum of� terms, where either
1. each term is the product of a lower triangular Toeplitz matrix and an upper triangular Toeplitz matrix,
or

2. each term is the product of an upper triangular Toeplitz matrix and a lower triangular Toeplitz matrix.
This is sometimes known as thecompact or dyadic representationof bounded displacement rank

matrices, where these triangular Toeplitz matrices are themselves compactly represented by specifying
the first or last rows. Note that anyn× nmatrix has displacement rank at mostn. The results of Gohberg
and Semencul[34] imply that for our above simplified definition of displacement rank, the inverse of
matrix of displacement rank� has displacement rank�. Summarizing the above known results (see also
[14,18,29,34,43,45,46,66] and the summary of Pan [66, p. 8]):

Lemma 4.4. Let� = �(C) be the displacement rank of a given classC of matrices.
1. ��2 for Toeplitz matrices and their inverses,
2. the inverse of a matrix of displacement rank� has displacement rank�,
3. ��4 for the product of two Toeplitz matrices,
4. ��b + b′ for n × m matrices built by expandingb × b′ block matrices whose elements are Toeplitz
blocks,

5. ��3 for Sylvester(resultant) and subresultant matrices(since these are block Toeplitz matrices with
b + b′ = 3).

4.3. Constructing displacement generators

We now describe how to construct the displacement generators of a matrix with known minimal dis-
placement rank�. It is known (see[14,18]) that the displacement generator of rank� is simply constructed
from the first� columns and first� rows of a generic matrix with displacement rank�. It is also known
(see [14]) that given a fixed operator� and a generic matrixA, a�-generator ofA of minimum length
can be efficiently computed from an appropriate size submatrix of�(A). We will now briefly describe
this construction. Recall that Lemma 4.3 implies that theG,H matrices suffice to specify elements of
the corresponding matrix classes. In the following, let[�] denote the sequence(1, . . . , �). Given an× n
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matrixS, let S([�]) denote the� × n matrix consisting of the first� rows ofS, let S(−, [�]) denote the
n × �matrix consisting of the first� columns ofS, and letS([�], [�]) denote the� × � leading principal
submatrix ofS. The following is well known in linear algebra:

Proposition 4.1. If S is of rank�, andS([�], [�]) is nonsingular, thenS = S(−, [�])S([�], [�])−1S([�]).
Using this,[14] show in their Lemmas 2 and 6:

Lemma 4.5. Suppose A has minimum displacement rank�, and S = �+(A) = A − ZAZT has a
nonsingular� × � leading principal submatrixS([�], [�]). Define�+-displacement generator n-vectors
{gi}, {hi}, i = 1, . . . , �, where(g1, . . . , g�) = S(−, [�]) are the first� columns ofS, and hiT is the
ith row of the productS([�], [�])−1S([�]), and S([�]) are the first� rows ofS. ThenS = �+(A) =
S(−, [�])S([�], [�])−1S([�]) = ∑�

i=1 gihiT andA = ∑�
i=1L(gi)LT (hi).

(A similar lemma holds for�−, and in fact all the other displacement operations.) IfA has minimum
displacement rank�, thenS = �+(A) always has rank�. (Note that in general, we may have only an
upper bound on the displacement rank of the matrixA. In that case, we must apply a known rank test[47]
to find the minimum displacement rank� whereS = �+(A) has rank�.) Section 8 gives a randomized
algorithm for general problem of constructing displacement generators, when the� × � leading principal
submatrix is singular. But for our purposes the above construction will suffice, since we will need to
construct displacement generators only for matrices with anS that has a nonsingular� × � leading
principal submatrix.
SinceS([�], [�]) is of size� × �, the rank and matrix inverse computationS([�], [�])−1 can be done

in sequential timeO(��∗
) for �∗ = 2.376, and also in parallel timeO(log2 �) using�� processors

by known dense matrix algorithms. The other inner products can be broken inton/� inner products of
(general) matrices of size� × � (each costing sequential timeO(��∗

) and spaceO(�2), or parallel time
O(log �) using�� processors), followed by a sum ofn/� of these resulting matrices (costing sequential
timeO(n�), or parallel timeO(log n�) usingn�/ log n� processors); this costs sequential timeO(n� +
(n/�)��∗

) = O(��∗−1n) and spaceO(n�), or parallel timeO(log n�) using��−1n/ log n� processors.
Note that the total time bound isO((log2 �) + (log n�)) = O((log �) log n�) and the processor bound
is �� + ��−1n/ log n� = O(��−1n/ log n�). Summarizing the above, we have by constant slowdown:

Lemma 4.6. Given as input a matrix A of sizen × n,GENERATOR�(A) can be efficiently com-
puted in sequential timeO(��∗−1n) and spaceO(�n), and also in parallel timeO((log �) log n�) using
��−1n/ log n� processors.GENERATOR�(A) yields displacement generator n-vectors{gi}, {hi}, i =
1, . . . , � where

∑�
i=1L(gi)LT (hi) has displacement rank�.

In general, our Newton iteration algorithm for bounded displacement rank will be given, as input to
GENERATOR�, ann× nmatrix which is a close approximation to a matrix of displacement rank� (but
which itself may not be of displacement rank�). ThenGENERATOR� with this input yields displacement
generatorn-vectors{gi}, {hi}, i = 1, . . . , �. We will later show (see Proposition4.7) that the resulting
matrix

∑�
i=1L(gi)LT (hi) of displacement rank� approximates the matrix input to GENERATOR� with

small error.
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4.4. Computations on bounded displacement rank matrices

As a consequence of Lemma4.6, we can assume throughout the rest of this paper that for a given
matrix with displacement rank�, a displacement generator of length� is also available.
The next lemma summarizes results onmatrices with displacement rank� that will be of use. The proof

is by reduction of the computations to convolution and FFTs [1,14,18,59,64,70].

Lemma 4.7. (a)Given a displacement rank� matrix A, any fixed column or row of A can be computed
in O(log(�n)) time using�P(n) processors.
(b) The product of ann × n displacement rank� matrix and ann × n displacement rank�′ matrix is

a displacement rank��′ +O(1)matrix computable(in compact form as a sum of products of upper and
lower Toeplitz matrices) in sequential timeO(��′P(n) log n) and spaceO(��′n), and also in parallel
time O(log n) using ��′P(n) processors. Furthermore, if �′��, the minimum displacement rank of
the product is computable, by additional use of Lemma4.6 (costing sequential timeO((��′)�

∗−1
n +

��′P(n) log n)�O(��′P(n) log n) or parallel timeO((log��′) log n��′) using(��′)�−1
n/(log n��′)+

��′P(n)�O(��′P(n)) processors) in no further asymptotic cost.
(c)The inverse of ann×n displacement rank� lower triangular matrix is a displacement rank�matrix

computable(in compact form as a sum of� products of upper and lower Toeplitz matrices) in sequential
timeO(�2P(n) log n) and spaceO(�n), and also in parallel timeO(log n) using�2P(n) processors.
(d)The inverse of ann×n displacement rank�matrix is a displacement rank�matrix computable(by

use of Lemmas4.6and4.8;also see[14,18,59]for the explicit compact formulas as a sum of� products
of upper and lower Toeplitz matrices) in sequential timeO(�2P(n) log n).

Recall the best previously known parallel algorithms [64,67,68,70] for the problems of inverse, deter-
minant, linear system solution,LU factorization, and finding rank of ann × n Toeplitz matrix required
parallel time�(log2 n) usingO(nP (n)) work. Also recall the best previously known parallel algorithms
[64,67,68,70] for the inverse of ann × n displacement rank� = O(1) matrix required parallel time
�(log2 n) usingO(nP (n)) processors, or polylog time using�(n2/ logO(1) n) processors. We will drop
these processor bounds to linear, without significant time slowdown.

4.5. The normal form reduction for bounded displacement rank

This section computes the inverse and solves linear systems for the class of rationalmatrices of bounded
displacement rank. We give an efficient parallel algorithm for the RF of such matrices with the additional
restriction that the input be SPD. To solve the associated matrix inverse and linear systems problems,
where the nonsingular input matrixA is not SPD, we apply the RF algorithm to the SPD normal form
AAT as described in Section 2.2, soAAT is factored asAAT = LU whereL,U are triangular and
of bounded displacement rank. There are known highly efficient parallel algorithms (see [42,66]) for
triangular inverseL−1 andU−1 of displacement rank�. After we get the inverse(AAT )−1 = (LU)−1 =
U−1L−1, then we immediately get the inverseA−1 = AT (AAT )−1 in one further product of a matrix of
bounded displacement rank (via FFT). Also, given ann-vectorb, the linear systemAx = b can be solved,
as in Section 2.2, by two back-solving stages for triangular linear systems overL andU of bounded
displacement rank. By Lemma 4.7, these further computations (including the matrix productAAT and
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backsolving) costO(log2 n) time usingO(�2P(n)) processors, since the operations are on triangular
matrices of displacement rank�.

4.6. Sequential computation of an RF of a matrix of bounded displacement rank

Let A� be the matrices of the RF tree of matrixA. The sequential algorithm of Bitmead and An-
derson[14] (also see [59]) for Toeplitz matrix inverse, takes as input a symmetric DD matrixA and
constructs an RF sequence of depth logn. That RF sequence consists of RF matrices of formA1d , for
d = 0, . . . , log n (these are denotedAd in Section 2.4). They show (using the results on displacement
ranks of products and inverse summarized in Lemma 4.4) that the displacement rank of the induced sub-
matrices at each recursion level is increased only by an additive factor of 2. This holds also for the RF tree
of A.

Proposition 4.2(Bitmead and Anderson[14] ). Let A be ann × n integer matrix of displacement rank
�. For 0�d < log n, for each matrixA� at depth d in the RF tree, the displacement rank of the children
A�1 andA�0 is not more than that ofA�. Hence the displacement rank ofA� is at most�.

This proposition allows them to bound the sequential work for the RF sequence for Toeplitz matrices,
and their algorithm generalizes to compute the RF sequence of a matrixAof displacement rank�. By the
obvious recursion, their algorithm can be immediately extended to construct the RF tree.

Lemma 4.8. Given ann × n input matrix of displacement rank�, the sequential algorithm of Bit-
mead and Anderson[14] can be applied recursively to compute the complete RF tree in sequential time
T (n)�O(�2P(n) log2 n).

An understanding of a sequential time analysis for computing the RF tree will aid us in the design and
analysis of our parallel algorithms. Their recursive calls have depth at most logn. Thus the displacement
rank of the submatrices is at most� at any level of recursion, and no more than the number of rows of
the submatrix. Letnd = n/2d . The inverse of each submatrix is computed by Proposition 2.6 in a re-
cursive (bottom-up) fashion. The matrix computations involved are only recursive inverse, multiplication
and addition. Each procedure call for the RF tree results in two recursive calls: one call for a matrix
inverse (which can be computed by a recursive for the RF tree) and also a further recursive call for the
RF tree.
For the matrix at each node of the RF tree at depthd, we must compute the inverse of a matrix of

sizend × nd with displacement rank��, and construct a�-generator of minimum length. This can be
done by the techniques given in Section 4.3; Lemma 4.6 implies the sequential time cost isO(��∗−1nd).
By Lemma 4.7, the further matrix operations have sequential time costO(��∗−1nd + �2P(nd) log nd).

Hence the total sequential cost per node, istd = O(��∗−1nd + �2P(nd) log nd).

The total sequential time complexityT (n) of the sequential algorithm of Bitmead and Anderson [14]
(also see [59]) for the RF tree is bounded byT (n) = O(1) for n = 1 and byT (n)�

∑log n

d=0 2d td for
n > 1. Since 2d td � tlog n = O(��∗−1nd + �2P(nd) log nd)�O(�2P(n) log n), these bounds imply
T (n)�O(�2P(n) log n) log n = O(�2P(n) log2 n).
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4.7. Our parallel algorithm for computing an RF of a matrix of bounded displacement rank

An RF Tree of depthd ′ of A is an RF Tree defined only to depthd ′. Here we apply the stages of the
RF Algorithm of Section3.3 which we modify (i) to be specialized to matrices of displacement rank�
and (ii) to only compute the RF tree to depthd∗ = log n− �(log log n) by parallel algorithms, and (iii)
to extend the RF tree to depth logn by the parallel use of sequential algorithms in subtrees.

4.7.1. Algorithm RF for bounded displacement rank
INPUT: An n × n integer nonsingular matrixA, of constant displacement rank�, and with integer

entries of magnitude�2�, where��nO(1). w.l.o.g., we assumen is a power of 2.
If the inputA is not SPD,thenwe apply the RF algorithm instead to the SPDAAT , as described above.
Apply all the same steps as the RF algorithm of Section 3.3, except that we redefine steps 2–4, and 9

as follows:
2. LetD be ann×n diagonal integermatrix, such that the value of theith diagonal element iŝ�!/j where

j ∈ {1,2, . . . , �̂} andj = imod�̂, where�̂ = 2�log ���2�−1. Let Ā = A+�D,where� = p(n‖A‖∞)c1

is an integer andc1 is a sufficiently large positive constant.
3. Letd∗ = log n− log log n. Apply to Ā the approximate Newton iteration of bounded displacement

rank of Section 4.9, using bit precisionO(�), to compute a rational approximate RF tree forĀ within
accuracy 2−c�, for a sufficiently large positive constantc.
4. Using theRF tree of depthd∗ for Ā, within accuracy 2−c�, compute an approximateLU factorization

of Ā� and from this computea rational approximation todet (Ā�). Also, byparallel useof knownsequential
algorithms for RF sequences applied at all the subtrees rooted at depthd∗, extend the computation of the
rational approximation ofRF sequences to a rational approximation ofLU factorizations and determinants
of all matrices from depthd∗ to depth logn of this approximate RF tree.
Again we can apply the homomorphism fromQ toZp, since we have assumed amodel of computation

with unit cost division over a finite field.
5. Apply Newton–Hensel lifting of Section 4.8 to computefor i = 0, . . . , k∗ = �log(c�/ log p)� the

RF(modp2
i
) of A. By parallel use of known sequential algorithms for Newton–Hensel lifting applied

at all the subtrees rooted at depthd∗, extend the computation of the RF(modpk∗
) of all matrices from

depthd∗ to depth logn.

4.7.2. Matrices that are nearly diagonal with bounded diagonal elements
Recall that we defined a matrix to be NIM if it is≈ the product of a scalar and an identity matrix.

Now, we generalize the definition of NIM to matrices that are nearly diagonal with bounded diago-
nal elements. For a scalar	, let A be NIM(	) if A ≈ D(A) whereD(A) is a diagonal matrix with
	� maxi(D(A)i,i)maxj ((D(A)−1)j,j ).

Proposition 4.3. If A isNIM(	) then A is strongly DD andcond∞(A)�	(1+ o(1)).

Proof. SinceA is NIM(	), A ≈ D(A), soA is strongly DD. Furthermore,cond∞(A) = ‖A‖∞·
‖A−1‖∞�‖D(A)‖∞ · ‖D(A)−1‖∞(1+ o(1))maxi(D(A)i,i)maxj ((D(A)−1)j,j )(1+ o(1)) = 	(1+
o(1)). �
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Proposition 4.4. EachĀ� of the RF ofĀ isNIM(�̂), so eachĀ� is strongly DD and well conditioned
with cond∞(Ā�)� �̂(1 + o(1)) = O(1). Also, the � × � leading principal submatrix of�+(Ā−1

� ) =
Ā−1

� − ZĀ−1
� ZT is NIM, so is strongly well conditioned.

Proof. By definition,Ā = A + �D, where� = p(n‖A‖∞)c1. Also by definition,D ann × n diagonal
integer matrix, such that the value of theith diagonal element iŝ�!/j wherej ∈ {1,2, . . . , �̂} andj =
imod�̂. Note that maxi(Di,i) = �̂! andmaxj (D−1

j,j ) = ((�̂−1)!)−1. These definitions immediately imply
thatĀ ≈ �D and thatĀ is NIM(	)where	 = maxi(�Di,i)maxj (�−1D−1

j,j ) = maxi(Di,i)maxj (D
−1
j,j ) =

(�̂!)((�̂ − 1)!)−1 = �̂. SinceĀ ≈ �D, andD is diagonal, it follows thatĀ−1 ≈ �−1D−1, soĀ−1 is also
NIM (�̂). SinceZD−1ZT shifts eachentry ofD−1 byoneentry to the right anddown, it follows that the first
�̂diagonal elements of�+(D−1) = D−1−ZD−1ZT are each1/�̂!. LetS = �+(Ā−1) = Ā−1−ZĀ−1ZT

and letS([�], [�]) be the�×� leading principal submatrix ofS. ThusS ≈ (�−1D−1)−Z(�−1D−1)ZT ≈
�−1(D−1−ZD−1ZT ) and so the diagonal elements ofS([�], [�]) are each≈ �−1/�̂!. HenceS([�], [�]) ≈
(��̂!)−1I and soS([�], [�]) is NIM.
Note that the diagonal elements ofD repeat everŷ� elements, wherê� is a power of 2. Using this fact,

an easy induction shows that eachĀ� ≈ �D�, whereD� is ann/2|�| × n/2|�| diagonal integer matrix
defined so again the value of theith diagonal element iŝ�!/j wherej ∈ {1,2, . . . , �̂} andj = imod�̂.
Hence by the same proof,̄A� is again NIM(�̂), and again the� × � leading principal submatrix of
�+(Ā−1

� ) = Ā−1
� − ZĀ−1

� ZT is NIM. �

After we first specialize and analyze the Newton–Hensel lifting (Section4.8) and Newton iterations
(Section 4.9) for bounded displacement rank matrices, we complete the proof and analysis of the RF
algorithm for bounded displacement rank in Section 4.10.

4.8. Newton–Hensel lifting for RF of bounded displacement rank

4.8.1. Displacement rank bounds for Newton–Hensel lifting
We provide a known bound (see [64,67,68,70]) on displacement rank for Newton–Hensel lifting which

will be useful to our new parallel algorithms. LetA be ann × n integer matrix of displacement rank�.
Then by Lemma 4.4,A−1 has displacement rank�.
Let us introduce a scalar indeterminate
. Since the modular operation is scalar, andA−1 has displace-

ment rank�, it follows (see [42]):

Proposition 4.5. For each integerj�0, if A has displacement rank�, then

(I − 
A)−1 =
j−1∑
i=0

(
A)i (mod
j )

has displacement rank�.

4.8.2. Newton–Hensel lifting for matrices of bounded displacement rank
Recall thatMoenck andCarter[57] show thatS(k)(A) = A−1 (modp2k ). Letting
 = p, byProposition

4.5, we have,
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Lemma 4.9. For all k�0, if A has displacement rank�, thenS(k)(A) = A−1 (modp2k ) has displacement
rank �� in Z

p2
k .

4.8.3. Newton–Hensel lifting for RF of bounded displacement rank
Let an RF(modp) of ann × n matrixA be an RF of matrixAwhere each matrix in the factorization

is taken(modp). This will also be called amodular RF. In this section we assume we are given an RF
(modp) of matrixA. We shall compute an RF(modp2

k
) of A.

Fix againd∗ = log n − �(log log n). Given an RF(modp) of depthd∗ for n × n matrix A of
displacement rank�, we wish to compute the RF(modp2

k
) of depthd∗. In each stage of Newton–Hensel

lifting, Lemma4.9 implies that the matrices resulting from Hensel lifting do not increase in displacement
rank. Proposition 4.2 implies that all nodes of the tree of depthd are matrices of displacement rank�.
The obvious way to compute the RF(modp2

k
) ofAof depthd∗ is by proceeding level by level through

the RF in 1+ d∗ stages, ford = 0,1, . . . , d∗. This gives

Lemma 4.10.Given anRF (modp) of depthd∗ = log n − �(log log n) for an n × n matrix A of
displacement rank�, we can compute anRF(modp2

k
) of A in parallel timeO(k log2 n) using�2P(n)

processors.

Proof. Letnd = n/2d . Let us consider the cost for each of thekNewton–Hensel lifting iterations at each
nodeat depthd in theRF. This requiresmultiplication ofmatrices of sizend×nd with displacement rank�,
andsobyLemma4.7 costsO((log �) log nd�) timeusing�2P(nd)processors.Wealso require theparallel
complexity stated in Lemma 4.6 to construct the displacement rank� generators after each iteration. By
Lemma 4.6, at each node of the RF tree at depthdwe can compute the� displacement rank generator of
the correspondingnd × nd matrix at that node, inO(log �) log nd� parallel time and��−1nd/(log nd�)
processors. Thus the total cost per node at depthd on each iteration isTd = O(log �) log nd� parallel
time andPd ���−1nd/(log nd�)+ �2P(nd) processors. Note thatTd �O(log n) for all d. The total time
for all 1+ log n levels and allk iterations at each of these levels is thusO(k log2 n). Since there are
2d nodes at depthd, the total processor bound is max0�d�d∗ 2dPd �O(Pd∗) = O(��−1n/ log n� +
�2P(n))�O(�2P(n)). Thus, with a constant further slowdown, the 1+ log n levels require total parallel
timeO(k log2 n) using�2P(n) processors. �

We can further improve on Lemma 4.10 by use of the pipelining (stream contraction) techniques
described in Section 3.4.

Lemma 4.11.Given an RF(modp) of ann × n matrix A of displacement rank�, we can compute an
RF(modp2

k
) of A in parallel timeO(k log n) using�2P(n) processors.

Proof. The pipelined algorithm for the RF(modp2
k
) ofAdescribed in Section3.4 for a denseA requires

O(k) iterationsof simultaneousNewton–Hensel lifting iterationsat everynodeof the tree.Wenowanalyze
this pipelined algorithm for the RF(modp2

k
), as specialized to an input matrixA of displacement rank

�. By the proof of Lemma 4.10, the cost for each of thekNewton–Hensel lifting iterations at each node
at depthd in the RF is:Td = O(log n) parallel time using��−1nd/(log nd�) + �2P(nd) processors,
where againnd = n/2d . Thus the total time fork Newton–Hensel lifting iterations isO(k log n).
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Since there are 2d nodes at depthd, the total processor bound for all 1+ d∗ levels of the RF tree
is

∑d∗
d=0 2dPd �O(Pd∗) = O(��−1n/ log n� + �2P(n))�O(�2P(n)) processors. A further constant

slowdown completes the Lemma.�

4.9. Approximate Newton iterations with bounded displacement rank

Fix a very small (with respect toA) � = (n‖A‖)−c′
< 1/(32s) for some sufficiently large positive

constantc′ andanswhere1�s�(n‖A‖)∞)O(�) and� = O(1).Forallk�0 letEk(�, s) = (16s�)2
k

/(16s).
Note that by definitionE0(�, s) = � and observe thatEk(�, s) exactly satisfies the recurrenceEk(�, s) =
s(4Ek−1(�, s))2 for all k > 0. Also, since we assume� < 1/(32s), it follows that

Ek+(�, s) < (16s�)2
k+

�2−2k+ �2−c̄�,

for k+ = �log(c̄�)� wherec̄ is a positive constant. Observe thatk+�O(log n), assuming��nO(1).We
use GENERATOR, as described in Section4.3, to reduce the displacement rank of the iterates. To take
into consideration the errors due to application of GENERATOR, we will use the error boundEk(�, s) in
place ofEk(�,1) = Ek−1(�) defined in Section 3.5.
LetA be ann × n symmetric matrix. We consider the case of Newton iteration where

1. A has constant displacement rank�,
2. ‖A‖∞�1,
3. A is NIM(�̂), in particularA is �-DD for a very small� = (n‖A‖)−c′

wherec′ = c′′�, for a large
enough positive constant, sayc′′ > 8,

4. the� × � leading principal submatrix of�+(A−1) = A−1 − ZA−1ZT is NIM,
5. A is not initially given with full accuracy, and instead we are provided a sequence of approximates

Ã(0), Ã(1), . . . where‖A − Ã(k)‖∞�Ek(�,1), and eachÃ(k) is NIM(�̂) and hence strongly DD, and
has bit precision�O(�),

6. theB(k) are NIM(�̂) and hence strongly DD and are approximated within displacement rank� by use
of the�+-displacement generator GENERATOR�(k) defined just before Lemma4.6 in Section 4.3.
(In our applications, we apply the iterations tomatrixĀ, and the above assumptions 3 and 4 are justified

by Proposition 4.4.)
Let B̃(0) = D(Ã(0))−1 = diag(1/ã11,1/ã22, . . . ,1/ãnn) whereÃ(0) = [ãij ].
By Proposition 3.4, ifÃ(0) is �-DD then‖I − B̃(0)Ã(0)‖∞ < �.
Wewill generate a sequence of matricesB̃(0), B̂(0), B̃(1), B̂(1), . . . (which are clearly also NIM(�̂) and

so strongly DD) where
1. B̂(k) is derived by applying a single exact Newton iteration, just as described in Section3.5, for
approximate inverse of̃A(k), with initial inverse approximatioñB(k−1). That isB̂(k) = B̃(k−1)(2I −
Ã(k)B̃(k−1)). SinceB̃(k−1) is NIM(�̂), so isB̂(k).

2. Apply GENERATOR�(k)(B̂
(k)), as defined in Section4.3, where�(k) = � if �+(B̂(k)) has rank��

and otherwise�(k) is the rank of�+(B̂(k)). Then defineB̆(k) = ∑�(k)

i=1L(gi)LT (hi) to be then × n

matrix with displacement rank�(k)��, with generatorsgi, hi, i = 1, . . . , �(k).
3. Let B̃(k) be the displacement rank�(k) matrix derived fromB̆(k) by rounding (i.e., each of the terms

L(gi), L
T (hi) in the �(k) term matrix sum are so rounded) to within bit precisionO(�), so that
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‖I − B̃(k)Ã(k)‖∞�‖I − B̆(k)Ã(k)‖∞ + Ek(�, s). By the close approximation of̆B(k) by NIM(�̂)
matrix B̃(k), is follows thatB̆(k) is also NIM(�̂) and hence also strongly DD.

4.9.1. Bounding error due to application of GENERATOR
In step 2 of the above Newton iteration algorithm for bounded displacement rank, we apply

GENERATOR�(k) to then × n matrix B̂(k) which is a close approximation to the matrixA−1 of dis-
placement rank� (but which itself may not be of displacement rank�). Then GENERATOR�(k)(B̂

(k))

yields displacement generatorn-vectors{gi}, {hi}, i = 1, . . . , �. We will now show that the resulting
matrix B̃(k), which is of displacement rank�, approximates the matrix̂B(k) with small error. SinceA is
assumed to be NIM(�̂), then by assumption on the close approximation ofA by theÃ(k), we have:

Proposition 4.6. EachÃ(k) is alsoNIM(�̂) and so strongly DD.

Proposition 4.7. ‖I−B̃(k)Ã(k)‖∞�s�k+Ek(�, s),wheres = (n‖A‖∞)O(�) and�k = ‖I−B̂(k)Ã(k)‖∞.

Proof. We have assumed that the� × � leading principal submatrix of�+(A−1) = A−1 − ZA−1ZT

is NIM. (In our applications, we apply the iterations to matrixĀ, and this assumption is justified by
Proposition4.4.) Since each̃B(k) differs fromA−1 by at most�, it follows that the�× � leading principal
submatrix of�+(B̃(k)) = B̃(k) −ZB̃(k)ZT is also NIM, so is strongly DD and strongly well conditioned,
with condition number�1+1/(n‖A‖)�(1). The construction ofGENERATOR involves the inverseof this
strongly well conditioned� × � leading principal submatrix of�+(B̃(k)), which induces a multiplicative
error factor of atmost(n‖A‖∞)O(�). The construction ofGENERATORalso involves products by the first
� rows and columns of�+(B̃(k)). Since these products induce an additional multiplicative error factor of
nO(1)‖A‖∞, the error due to this approximation ofB̂(k) by B̆(k) is‖I − B̆(k)Ã(k)‖∞�s�k.Hence the total
error due to the approximation of̂B(k) by B̃(k) is ‖I − B̃(k)Ã(k)‖∞�‖I − B̆(k)Ã(k)‖∞ + Ek(�, s)�s�k
+ Ek(�, s). �

Thus,wehave that̃B(k) is adisplacement rank�(k)��approximation toB̂(k)witherror�s�k+Ek(�, s).

4.9.2. Inductive proof of quadratic convergence
Next, we give an inductive proof of quadratic convergence of the entire iteration sequence, which is

very similar to, but somewhat more involved than, Proposition 3.11. Note that at certain places we must
use the error boundEk(�, s) in place ofEk(�,1) = Ek−1(�) to take into consideration the errors due to
application of GENERATOR.

Proposition 4.8. If ‖A‖∞�1, and A isNIM(�̂) and �-DD, then if ‖(I − B̃(0)Ã(0)‖∞ < �, we have
‖I − B̃(k)Ã(k)‖∞ < Ek(�, s).

Proof. Again, we use a proof by induction onk. The basisk = 0 holds by assumption, since� = E0(�, s).
Suppose Proposition4.8 holds fork − 1, so‖I − B̃(k−1)Ã(k−1)‖∞ < Ek−1(�, s).
Since we use one step of exact Newton iteration per stage, by the quadratic convergence bounds

of Section 3.5, we have (as in the proof of Proposition 3.11),I − B̂(k)Ã(k) = (I − B̃(k−1)Ã(k))2,



John H. Reif / Journal of Computer and System Sciences 71 (2005) 86–143 121

and hence again�k�‖(I − B̃(k−1)Ã(k))‖2∞. Again, by assumption on the approximation ofA by the
Ã(k), ‖Ã(k) − Ã(k−1)‖∞�‖A − Ã(k)‖∞ + ‖A − Ã(k−1)‖∞�Ek(�,1) + Ek−1(�,1).
By the induction hypothesis,‖I − B̃(k−1)Ã(k−1)‖∞ < Ek−1(�, s), and by Proposition4.6, Ã(k−1) is

strongly DD. So by Proposition 3.7,‖B̃(k−1)‖∞�2. Also,

I − B̃(k−1)Ã(k) = (I − B̃(k−1)Ã(k−1)) + B̃(k−1)(Ã(k−1) − Ã(k)),

so we have the bound:‖I − B̃(k−1)Ã(k)‖∞
�‖I − B̃(k−1)Ã(k−1)‖∞ + ‖B̃(k−1)‖∞ · ‖Ã(k−1) − Ã(k)‖∞
�Ek−1(�, s) + 2(Ek(�,1) + Ek−1(�,1))�4Ek−1(�, s) − 2Ek(�, s)

since 4Ek(�, s)�Ek−1(�, s). Also by the error bounds of Proposition4.7, ‖I − B̃(k)Ã(k)‖∞�s�k. =
1− 1/n�(1). Thus, by the above bounds we get:

‖I − B̃(k)Ã(k)‖∞ � s�k + Ek(�, s)�s‖(I − B̃(k−1)Ã(k))‖2∞ + Ek(�, s)

� s(4Ek−1(�, s) − 2Ek(�, s))
2�Ek(�, s)

by definition ofEk(�, s). �

Note that bydefinitionof̃A(k) andB̃(k), theseapproximateNewton iterations requireO(�)bit precision.
Thus we have

Lemma 4.12. If A is NIM(�̂), then even with the above approximations to A and theB̃(k), at most
k+ = �log(c̄�)��O(log n) stages suffice to compute, using bit precision�O(�), the approximate
inverseB̃(k) with error 2−c̄�.

Note: we can also show that Lemma4.12 holds even for moremoderate conditions onA, but the lemma
will suffice for our RF algorithm.

4.9.3. Non-pipelined Newton iterations for RFs of bounded displacement rank
Suppose we are given a NIM(�̂)n × n matrix A of displacement rank�, with mindiag(A)�1. We

now provide a generalization of the nonpipelined Newton iteration algorithm of Section 3.5 to the case
of bounded displacement rank. Fixd∗ = log n − �(log log n). We will compute the RF of depthd∗
for A within error 2−�(�), using bit precision�O(�), by proceeding down the recursion tree in logn
stages,without pipelining. For simplicitywewill first describe a simpleO(log3 n) time,�2P(n)processor
algorithm for approximate RF without pipelining, specialized to the case of bounded displacement rank.
At each staged = 0, . . . , d∗, for all � of lengthd, we compute for all nodes of depthdan approximation

of A� within error 2−�(�) and useB(k)(A�) to approximateA−1
� within error 2−�(�) (using bit precision

�O(�)). We use the algorithm given in the proof of Lemma 4.6 to construct displacement generators of
the matrices at each stage. The stage at depthd in the RF involvesO(log n) iterations of multiplication
of matrices of displacement rank�, so requiresO(log2 n) time for the required parallel matrix products
for the 2d nodes of depthd as well as the parallel bounds stated in Lemma 4.6 for construction of
the displacement generators of the matrices at each stage. The processor bounds are exactly the same
as those described in the proof of Lemma 4.10 withk = O(log n), resulting in a total time bound of
O(log3 n)using��−1n/(log n�)+�2P(n)�O(�2P(n))processors. Thus,with an appropriate slowdown
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as described in the proof of Lemma4.10, the logn stages require total parallel timeO(log3 n) using
�2P(n) processors. Summarizing, we have shown that given a NIM(�̂)n × n matrixA of displacement
rank�, withmindiag(A)�1, we can compute, using bit precision�O(�), an approximation to the RF
of depthd∗ for Awithin error 2−�(�) in timeO(log3 n) using�2P(n) processors.

4.9.4. Bounding error accumulation in recursions of RFs of bounded displacement rank
We now show that error analysis and quadratic convergence of the approximate RF computation of

Section 3.5 extends to the case whereA and the approximate inverse matrices of the RF are specialized
to be of constant displacement rank. We prove a generalization of Lemma 3.5:

Lemma 4.13. For eachd = 1, . . . , log n, and each� ∈ {0,1}d, the∞-norm error for the ith iteration
is ‖A(i)

� − A�‖∞�Ei(�, s) and‖I − B
(i)
� A�‖∞�Ei(�, s).

Proof. Lemma4.13 is proved by induction. As in Lemma 3.4, in the Newton iteration algorithm for the
RF of bounded displacement rank, at each depthd = 1, . . . , log n, and for each� ∈ {0,1}d, on the first
stage of Newton iteration, the initial approximation of the RF matrices at depthd have very small (with
respect toA) ∞-norm error�. In particular,‖A(0)

� − A�‖∞�� and‖I − B
(0)
� A�‖∞��.We use this as a

basis for the induction. The inductive step follows directly from Lemma 4.12 applied to{A(i)
� } and{B̃(i)

� },
which provides the required bounds on the errors of theith approximate RF{A(i)

� }. �

4.9.5. Pipelined Newton iterations for RFs of bounded displacement rank
Wewill again apply stream contraction to do pipelined Newton iterations for RFs of bounded displace-

ment rank, as previously described in Section 3.5.

Lemma 4.14.Given aNIM(�̂) n×nmatrix A of displacement rank� and withmindiag(A)�1we can
compute, using bit precision�O(�), an approximation to the RF of depthd∗ for A within error2−�(�)

in parallel timeO(log2 n) using�2P(n) processors.

Proof. Thepipelined algorithm for the approximateRFofAdescribed inSection3.5 for a denseA requires
O(log n) iterations of simultaneous Newton iterations at every node of the tree. We can analyze the time
and processor bounds of this pipelined algorithm for the approximate RF as we just did in Lemma 4.11
for the RF(modp2

k
), as specialized toA of displacement rank�. In particular, the approximate inverse

matrices of the RF are also specialized to be of constant displacement rank. The asymptotic time and
processor bounds are exactly as in Lemma 4.11 fork = O(log n), that is, in parallel timeO(log2 n)

using�2P(n) processors. The error bounds follow from Lemma 4.13.�

4.10. Analysis of the RF algorithm for bounded displacement rank

Theorem 4.1.Givenann×nSPD integermatrixAof displacement rank�,our algorithm for the exactRF
takes,with high likelihood�1−1/n�(1), parallel timeO(log2 n) using�2P(n) randomized processors,
and bit precisionO(�), using at most a linear number of random variables each ranging over a domain
of size(n‖A‖)O(1).
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Proof. Fix as input ann × n integer nonsingular matrixA, of constant displacement rank�, and with
integer entries of magnitude�2�, where��nO(1). Our proof follows in large part from the proof of
Theorem3.1, except that here we have decreased processor bounds due to the bounded displacement
rank ofA. Therefore, we will only mention the modifications of the proof of Theorem 3.1 required to
complete the proof of Theorem 4.1 (note in particular, again we need only bit precisionO(�)).
Steps 1 and 2 clearly takeO(1) time usingn processors.
In step 3, we apply the approximate Newton iteration of bounded displacement rank of Section 4.9,

using bit precisionO(�), to compute a rational approximate RF tree of depthd∗ = log n − log log n,
for Ā within accuracy 2−c�, for a sufficiently large positive constantc. Clearlymindiag(Ā)�1, so by
Lemma 4.14, step 3 costs parallel timeO(log2 n) using�2P(n) processors.
Step 4 is executed as follows: applying Proposition 2.5 (which states DETERMINANT has an efficient

O(log n) time parallel reduction to RF using the recursive formulae), in timeO(log n) using�2P(n)

processors, we can compute a rational approximation todet (Ā�) up to accuracy within 2−c� (using bit
precisionO(�)) from the approximateLU factorization ofĀ�. Next, using�2P(n) processors, for each
subtree rooted at depthd∗, we use known sequentialO(log n) time algorithms to extend the computation
of the rational approximation of RF sequences to a rational approximation ofLU factorizations and
determinants of all matrices from depthd∗ to depth logn of this approximate RF tree.
Recursive computation of the integer multipliers in step 5 and the multiplication and round off op-

erations in steps 6–8 clearly each cost at most parallel timeO(log n) using �2P(n) processors. The
correctness of steps 5–8 again follows from the proof of Theorem 3.1.
The Newton–Hensel lifting of step 9 is done as described in Section 4.8. We do the Newton–Hensel

lifting first as follows:for i = 0, . . . , k∗ = �log(c�/ log p)� compute the RF(modp2i ) of A. Lemmas
4.10 and 4.11 imply that the cost to do this Newton–Hensel lifting by pipelining is timeO(log2 n) using
�2P(n) processors. By parallel use (for all the subtrees rooted at depthd∗) of known sequential algorithms
for Newton–Hensel lifting, extend the computation of the RF(modp2

k∗
) of all matrices from depthd∗

to depth logn.

The recursive computation in steps 10 and 11 of determinants of the RF matrices(modp2
k∗
) and of

the integer multipliers in step 12, and the exact RF in steps 13 costs at most parallel timeO(log n) using
�2P(n) processors. The correctness of these steps 10–13 again follows from the proof of Theorem 3.1.
Thus, by Lemmas 4.11 and 4.14, each major stage of the RF algorithm on the RF tree of depthd∗ takes
at most timeO(log2 n) using�2P(n) processors, with bit precisionO(�). Each matrix at depthd∗ of
the exact RF tree forA is of sizend∗ × nd∗ wherend∗ = n/2d

∗ = n/2log n−log log n = log n and has
displacement rank at most�. The known parallel algorithms [64,67,68,70]) for the problems of inverse,
determinant, andLU factorization, for matrices of sizend∗ × nd∗ with displacement rank�, cost parallel
timeO(logO(1) nd∗) = O(logO(1) log n) using at mostO(�2nd∗P(nd∗))�O(�2 log2 n) log log log n
processors, sinceP(nd∗)�O(nd∗ log log nd∗).By slow down by a factor ofO(log n) log log log n, this
can be done in timeO(log2 n) with reduced processor boundO(�2 log n). There are 2d

∗ = n/ log n

nodes at depthd∗ of the RF tree forA. Thus the total cost of computing the exact RF sequences,LU
factorizations, and determinants of all matrices at depthd∗ of this exact RF tree forA is at mostO(log2 n)

parallel time and(n/ log n)O(�2 log n)�O(�2n)�O(�2P(n)) processors. Since there are onlyO(1)
such major stages, by slowing the time by a further constant factor, we require timeO(log2 n) using
�2P(n) processors. �
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If the input matrixA is not SPD, then we again apply the RF algorithm instead to the SPDAAT , as
described in Section2.2 by use of the normal form reduction, which only atmost squares the displacement
rank.

5. Parallel RF computation for matrices with separable sparsity graphs

LetA be ann× n SPDmatrixAwith ans(n)-separable sparsity graph (as defined in the introduction).
Lipton et al. [53] and Pan and Reif [69,73] define a ND orderingV0, . . . , VD which is used to guide the
Gaussian elimination process of the sparse matrix so as to minimize fill-in. The separation of the sparsity
graphGand recursive separation of its subgraphs defines a binary tree, known as theseparator treewhose
nodes are labeled with the induced separators. In particular,G has ans(n)-separatorSwhose deletion
results in two disconnected subgraphsG1,G2 of size at most 2n/3, so then the root of the separator tree
is labeled withSand each of the children of the root are labeled with the recursively defined separators
of the subgraphsG1,G2, etc. The separator tree has depthD� log3/2 n. Ford = 1, . . . , D letVd be the
union of all the separator nodes at depthD − d in the separator tree. (Note in particular thatV0 is the
union of all the separators at the leaves of the tree andVD is the separatorSof G.) We assume that the
matrix has already been pre and post multiplied by a permutation matrix so that the resulting matrixA
has the rows and columns in this order.
Using this orderingV0, . . . , VD for sequential Gaussian elimination,

Lemma 5.1(Lipton et al.[53] ). Given ann × n SPD matrix A with ans(n)-separable sparsity graph,
a recursive LU factorization can be computed in sequential timeO(s(n)3), exactly solving in the same
time bound the problems DETERMINANT and LINEAR SYSTEM SOLVE.

In the Parallel ND algorithm of Pan and Reif[69,73], this ND ordering is specified by a vertex partition
sequenceV0, V1, . . . , VD, for D� log3/2 n which is used to guide the parallel elimination process. Let

n0 = n and letnd+1 = nd − |Vd | for d = 0, . . . , D. Let kD = n and ford < D, kd �!(23)kd+1". (Note
that kd is an upper bound on the number of vertices of the induced subgraph ofG whose associated
separator is at depthD − d in the separator tree.) Assuming ans(n)-separable sparsity graph (see [53]),
we define
TheND sequence problem: If possible, construct a sequence of matricesA = A0, A1, A2, . . . , AD,

whereD� log3/2 n and ford = 0,1, . . . , D − 1, Ad is annd × nd matrix which is partitioned as

Ad =
[
Wd Xd

Yd Zd

]
,

wherend+1 = nd − |Vd |Wd,Xd, Yd, Zd are matrices,Wd is a block diagonal matrix of size|Vd | × |Vd |
where each block is of sizes(kd) × s(kd), Xd is of size|Vd | × nd+1, Yd is of sizend+1 × |Vd | (if A is
symmetric, thenYd = (Xd)

T ), Zd is of sizend+1 × nd+1, andAd+1 = Zd − YdW
−1
d Xd is theSchur

complement.
Note that Pan and Reif[69,73] show that the norm and condition bounds of Proposition 2.2 hold for

any ND RF sequence. Pan and Reif [69,73] also show that an ND RF sequence can be computed in
parallel timeO(log3 n) usingn + M(s(n)) processors, also giving in the same time bounds solutions
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to the problems DETERMINANT and LINEAR SYSTEM SOLVE. The proofs in Pan and Reif[69,73]
show that the work for ND RF sequence is dominated by the computation ofO(|Vd |/s(kd)) products
and inverses of a sequence of dense submatrices of sizes(kd)× s(kd) each requiringO(log2 n) time and
O((kd + M(s(kd)))|Vd |/s(kd)) processors ford = 0, . . . , D, whereD� log3/2 n. Thus the total time

isO(log3 n) and the processor bound is

D∑
d=0

O((kd + M(s(kd)))|Vd |/s(kd))�O(n + M(s(n))),

wheres(n) is of the formn� for � > 0.
Wenowderiveaparallel algorithm in this case,and reduce theparallel time from�(log3 n) toO(log2 n)

while still usingn+M(s(n)) processors. We use a modified form of our (balanced) RF algorithm on the
appropriately permuted input matrix.
The partitioning of blocks is again altered depending on the separator structure, following the usual

techniques used in the above ND RF sequence. Again the ND ordering is specified by the vertex partition
sequenceV0, V2, . . . , VD, for D� log3/2 n which is used to guide the parallel elimination process. Let
nd be as defined above.
ND RF: If possible, compute a binary tree of depthD = O(log n) whose nodes are matrices. Each

node at depthd,0�d�D is an� × n� matrixA� where� ∈ {0,1}d is a binary string of lengthd, andn�

is defined recursively below. The node is a leaf ifn� = 1.
For eachd,0�d�D, we specify the string 1d to bespecial. For each� ∈ {0,1}d , if � is special and

n� > 1, then we recursively decompose the matrix (using the ND RF sequence), settingn�0 = |Vd |
andn�1 = nd+1 = nd − |Vd |. Otherwise, if� ∈ {0,1}d is not special butn� > 1, then we recursively
decompose the matrix evenly (using the RF defined at the start of this paper). Letn�1 = !n�/2", n�0 =
�n�/2�. If d = 0 thenA� = A is the root of the tree and� is the empty string. For 0�d < D, each matrix
A� at depthdwith n� > 1 has exactly two children in the tree,A�1 andA�0 at depthd + 1 which will be
defined by recursion. In particular, ford = 0,1, . . . , D − 1,A� is ann� × n� matrix which is partitioned
as

A� =
[
A�0 X�

Y� Z�

]
,

whereA�0, X�, Y�, Z� are matrices,A�0 = Wd is of sizen�0 × n�0, (where if� = 1d thenn�0 = |Vd |
andA�0 is a block diagonal matrix of size|Vd | × |Vd | with each block of sizes(kd) × s(kd)), X� is of
sizen�0× n�1, Y� is of sizen�1× n�0 (if A is symmetric, thenY� = (X�)

T ), Z� is of sizen�1× n�1, and
A�1 = Z� − Y�A

−1
�0 X� is theSchur complement.

Note: The aboveNDRFofA is defined to be very similar to theNDsequenceA = A0, A1, A2, . . . , AD.
In particular,Ad = A1d for d = 1, . . . , D. The only difference is that the ND RF also recursively factors
theWd = A1d0 matrices appearing in the NDRF sequence. This takesO(log2 n) time usingn+M(s(n))

processors. Since this is ans(kd)-block diagonal matrix of size|Vd | × |Vd | with each block of size
s(kd) × s(kd)), the processor bound isO((kd + M(s(kd)))|Vd |/s(kd))�O(n + M(s(n))). These are
recursively factored evenly (rather than use the separator structure), using the (balanced) RF defined at
the start of this paper. The results of Pan and Reif[69,73] imply that the norm and condition bounds of
proposition 2.4 hold also for any ND RF.
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We now apply our RF algorithm as previously described in Section3, only modified to execute on the
A� of the ND RF. Note that the depth of the ND RF tree is at most log3/2 n, which is at most a factor of

1/ log(32)more than the depth of the previously defined RF tree, so in the modified algorithm the iterator
dmust range up to log3/2 n. Also note that the integer multipliersm� are computed in 1+2 (depth of the
ND RF tree) stages, which is 1+ 2 log3/2 n in this case. The error analysis of the modified RF algorithm
is similar, except that again we need to replace logn with log3/2 n in a number of places due to the
constant factor increase in the depth of the ND RF tree.
We again use the exact same pipelining technique used in Section 3.4 to decrease the parallel time

bounds fromO(log3 n) toO(log2 n). We use both the analysis of (balanced) RF defined at the start of
this paper as well as the analysis of ND RF sequence defined in Pan and Reif [69,73]. In particular, the
proof of ourn + M(s(n)) processor bounds follows exactly from the results of Pan and Reif [69,73].
Again in this sparses(n)-separable case the work for NDRF is dominated by the computation of products
and inverses of a sequence of dense submatrices of sizes(kd) × s(kd) each requiringO(log2 n) time
andO(kd + M(s(kd))) processors ford = 0, . . . , D, whereD� log3/2 n. However, due to our use

of pipelining, all these inverses are computed simultaneously, so the total time isO(log2 n) while the
processor bound remains

∑D
d=0O(kd + M(s(kd))). This sum isO(n + M(s(n))) if s(n) is of the form

n� for 0 < � < 1. Note that if the sparsity graph ofA has constant degree or is planar, then the sparsity
graph of SPDATA still has separator boundO(s(n)).

Theorem 5.1. Let A be ann× n SPDmatrix with ans(n)-separable sparsity graph,wheres(n) is of the
formn� for 0 < � < 1. If A is nonsingular, then an ND RF can be computed in parallel timeO(log2 n)

usingn+M(s(n)) processors, and bit precisionO(�),where� = O(n(�+ log n)),with high likelihood
�1−1/n�(1) (using a constant number of random variables ranging over a domain of size(n‖A‖)O(1)).

6. Applications of the RF

6.1. Reduction of matrix problems to RF computation

Wewill consider a reduction to be anefficient parallel reductionif it can be done inO(log2 n) parallel
time usingM(n) processors. In this subsection, we define various matrix problems and their efficient
parallel reduction to RF computation (also, see[63, p. 69]).
1. LU FACTORIZATION: If possible, factorA = LU whereL is nonsingular lower triangular, andU is
nonsingular upper triangular, otherwise output NOLU FACTORIZATION. (If A is symmetric, then
U = LT and this problem is known asCHOLESKY FACTORIZATION.)
If A is SPD, thenA always has aLU factorization.
Given a RF tree ofA, then theLU factorization can be computed byO(log n) stages of matrix multi-

plication using the above recursive formula.

Lemma 6.1. There is an efficient parallel reduction from LU FACTORIZATION to the RF problem.

2.DETERMINANT: Computedet (A).
If Ahas a factorizationA = LU , thendet (A) = det (L)det (U). The determinant of a triangularmatrix

is obtained by multiplying all the elements on its principal diagonal. (This can be computed inO(log n)
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time andn/ log n processors by using a balanced binary multiplication tree of sizeO(n/ log n) whose
leaves have logn elements each.) Sodet (L) = ∏n

i=1Lii anddet (U) = ∏n
i=1Uii.

3. |DETERMINANT |: Compute the magnitude|det (A)| of det (A).
Otherwise,ATA is SPD, and so has a factorizationATA = LU . Then sincedet (A) = det (AT ), we

havedet (A)2 = det (AT A) = det (L)det (U), so|det (A)| = √
det (L)det (U).

Lemma 6.2. There is an efficient parallel reduction from|DETERMINANT | (or from DETERMI-
NANT if A is SPD) to the RF problem costingO(log n) time and n processors.

4. INVERSE: If A is nonsingular, then computeA−1 = adj (A)
det (A)

, whereadj (A) is the adjoint matrix of
A, otherwise output SINGULAR.
If Ahas an RF, thenA−1 can be computed by the above RF sequence or tree formula. Otherwise,ATA

is SPD, so ifA is nonsingular thenA has an RF. Then(AT A)−1 = (A)−1(AT )−1, can be computed by
the above RF tree formula, and we can computeA−1 = A((A)−1(AT )−1) = A(AT A)−1 by one more
matrix product.

Lemma 6.3. INVERSE has an efficient parallel reduction to the RF problem.

5.LINEAR SYSTEM SOLVE: If A is nonsingular, then computeA−1v, otherwise output SINGULAR.
Here, we can apply the efficient parallel reduction given in our Section1.2 toLU factorization of

AAT (which we can compute by Lemma 6.1 by efficient parallel reduction to the RF), and to solution of
triangular linear systems, for which there are known efficient parallel algorithms (see [42]).

Lemma 6.4. There is an efficient parallel reduction from LINEAR SYSTEM SOLVE to the RF problem.

6.QR FACTORIZATION: If possible, factorm × n matrixA = QR whereR is a nonsingular upper
triangular matrix andQ is an orthogonal matrix (soQTQ = I ) of sizem × n, for m�n. If the QR
factorization is not possible, then output NO QR FACTORIZATION (Rank deficient).
TheQR-factors ofA can be computed from theLU-factors ofATA, whereR = U andQ = AR−1.

Lemma 6.5. There is an efficient parallel reduction from QR FACTORIZATION to the RF problem.

7. HESSENBERG REDUCTION: Compute a matrixH = QTAQ having upper Hessenberg form
Hij = 0 if i > j + 1, and computeQ, which is an orthogonal matrix. IfA is symmetric, thenH is
tridiagonal.
TheKrylovmatrixof ann×nmatrixAandn-vectorv, is ann×mmatrixK(A, v) = (v, Av,A2v, . . . ,

Am−1v). Borodin and Munro[17, p. 128] describe a well-known algorithm for the Krylov matrix which
can be used in the generic case where the minimal polynomial is the characteristic polynomial. Their
algorithm requires 2 logmmultiplications ofmatrices of size atmostn×max(n,m). Their reduction is a
Las Vegas randomized type of reduction. Using a random, independent choice of the elements ofn-vector
v over a fixed set of polynomial size, the Schwartz–Zippel lemma [80,84] insures a failure probability
�1/n�(1). They observe that the matrix powersA,A2, . . . , A2

!log m"
can be computed in!log m" stages

ofmatrix products, and thatK(A, v) can be computed in logm further stages, where using the identity for
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i = 1, . . . , !log m", (A2i v, Av,A2v, . . . , A2i+1v) = A2
i
(v, Av,A2v, . . . , A2

i
v). SinceAkv in general

converges to the eigenvector ofA with the largest magnitude eigenvalue, the Krylov matrixK(A, v) is
in general nearly singular. Thus this reduction to Hessenberg form, also used by Pan[63], must be used
with care.
Further note: Borodin and Munro’s reduction fails [27] wheneverA is a matrix whose minimal poly-

nomial is a proper divisor of its characteristic polynomial, since the Krylov matrixK(A, v) will be
singular, for every choice of the vectorv, in this case. IfK(A, v) is nonsingular withQR factorization,
K(A, v) = QR, thenH = QTAQ is in upper Hessenberg form.

Lemma 6.6. There is an efficient Las Vegas randomized parallel reduction(using n random numbers
chosen from a fixed set of polynomial size),with success probability�1− 1/n�(1) from HESSENBERG
REDUCTION to the RF problem in the generic case where the minimal polynomial is the characteristic
polynomial.

6.2. A randomized reduction from RANK to RF

In this section, we give an efficient parallel algorithm for RANK via the RF computation and a known
randomized preconditioning method, but avoiding the usual computation of characteristic polynomials.
Borodin et al.[16] give a processor-efficient randomized parallel algorithm for the rank problem and

the more general problem of the solution of singular linear systems. They give a randomized reduction
from the solution of singular linear systems to the problems of (i) inverting a nonsingular matrix and (ii)
determining the rank of a matrix that has the added property that all its leading principal sub-matrices,
of dimension no larger than its rank, are nonsingular.
Consider ann × n singular matrixA. To avoid the problem where principal sub-matrices ofA have

determinant 0, the results of Kaltofen and Saunders [49] can be used to construct a matrix fromA
which is expected to act like a generic matrix. Define a product matrixA′ = UAL with randomn × n

nonsingular preconditioning multipliersL,U. The matricesL andUT are unit lower triangularn × n

Toeplitz matrices, with unit diagonal elements and with the strictly lower elements of the first column
randomly and independently chosen over the values{i/nc| wherei is an integer on the range from−nc

to nc} for a constantc�5. For example, matrixL is defined as follows:

L =


Li,j = L1+(i−j),1 if i > j,

Li,j = 1 if i = j,

Li,j = 0 otherwise,

whereL2,1, L3,1, . . . , Ln,1 are(n−1) randomnumbers from this range. ThenbyLemma7.1,Prob(cond2
(L)�nc)�O(1/nc−4) andProb(cond2(U

T )�nc)�O(1/nc−4), somatricesL,U arewell conditioned,
with condition number�nc with likelihood �1− �(1/nc−4).
Let A′([r], [r]) be the leading principalr × r submatrix ofA′, (i.e., the submatrix ofA′ indexed by

rows 1, . . . , r and by columns 1, . . . , r).

Proposition 6.1. Assuming A has rank r, then with probability�1− 1/n�(1), the rank ofA′ is r and
moreover, A′([r], [r]) is positive definite and nonsingular.
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This Proposition follows from Theorem 2 of Kaltofen and Saunders[49], noting that the random
elements ofU,L are chosen over a fixed set of polynomial size, so the Schwartz–Zippel lemma [84,80]
insures a failure probability�1/n�(1).
This randomized method is known to beLas Vegas(that is, the output can always be verified to be

correct). The determined rank and the solvability ofAx = b can be certified, as follows. Let superscripts
to 0,1 indicate the size of matrices filled with 0,1 respectively. We have

A′ =
[
A′([r], [r]) B

B ′ B ′′
]
,

whereB is r × (n − r), B ′ is (n − r) × r, andB ′′ is (n − r) × (n − r). Let

E =
[

Ir −A′([r], [r])−1B
0(n−r)×r In−r

]
.

If A has rankr then (see also[48,49, p. 720])

A′E =
[
A′([r], [r]) 0r×(n−r)

B ′ 0(n−r)×(n−r)

]

and the right null space ofA is spanned by the columns of

LE

[
0r×(n−r)

In−r

]
.

If b is a vector such thatAx = b holds, andb′ is the vector formed by the firstr entries ofUb, then

ALE

[
A′([r], [r])−1b′

0n−r

]
= b,

thus certifying the determined rank and the solvability ofAx = b. The RANK problem requires that we
actually find the rankr, not just verify that the rank isr. The RANK problem can be solved by using
O(log n) stages of binary search forr, increasing the time bound by a logarithmic factor. This proves the
known result:

Lemma 6.7. The RANK problem on a given matrix A and the solvability ofAx = b can be determined
by a randomized parallel algorithm, using2n random numbers over{1, . . . , nO(1)}, and with success
probability �1 − 1/n�(1), usingO(log n) calls to DETERMINANT of matrices derived from A by
multiplying A by two triangular Toeplitz matrices.

However we can do better. We now give a method that avoids this slow-down without utilizing asymp-
totically more processors (note[48] get similar results, but require the computation of characteristic
polynomials). Suppose we are given ann × n matrixA of rank r < n. LetA′ = UAL be the product
matrix derived by multiplyingA with randomn × n nonsingular preconditioning multipliersU,L, as
defined above. By Proposition 6.1,A′([r], [r]), the leading principal nonsingularr × r submatrix ofA′,
is nonsingular with probability�1− 1/n�(1). Let us assume that this event holds, andA′([r], [r]) is
positive definite. Note thatA′ as defined above may not be symmetric. In Section 3 (RF Algorithm of
Theorem 3.1), we note that the RF will still be constructed for inputs which are nonSPD matrices, so
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symmetry of the input matrix is not essential. Alternatively, it is easy to show that Proposition6.1 holds
also ifU = LT where againL is a random unit lower triangularn × n Toeplitz matrix, soA′ = UAL is
symmetric.
A more significant difficulty is that the RF algorithm on input matrix which is singular will not result

in a complete RF. SinceA′ is singular, if we attempt to construct the RF{A′
�} ofA′, then the RF ofA′ will

not be complete, and instead the RF will be defined only on a submatrix ofA′, in particular the leading
principal nonsingularr × r submatrixA′([r], [r]).
Thus the rankr of A′ can be found by examining the incomplete RF, and determining the completed

portion of the RF corresponding toA′([r], [r]). Note that the leaves of the RF are 1× 1 matricesA′
�

where� ∈ {0,1}log n, and soA′
� is nonsingular iffA

′
� �= 0. Let NUMBER(�) be the binary number

corresponding to the binary string�. Note that the leaves are indexed by binary numbers� of length
log n, and that the completed portion of the RF corresponding toA′([r], [r])will have the nonzero leaves
A′

� for all indices� ∈ {0,1}log n, such that NUMBER(�) ∈ {0,1, . . . , r − 1}. These nonzero leaves are
1× 1 nonsingular matrices which are derived from the factored submatrices of the matrixA′([r], [r]). If
r < n, then the next larger leading principal submatrixA′([r + 1], [r + 1]) is singular. Thus it follows
that there is a zero leafA′

�∗ = 0, for �∗ such that NUMBER(�∗) = r (since otherwise ifA′
�∗ �= 0, then

the next larger leading principal submatrixA′([r + 1], [r + 1]) would be nonsingular, soAwould have
rankr + 1, a contradiction). Thus we have

Lemma 6.8. Let�∗ ∈ {0,1}log n be the lexically smallest binary string of lengthlog n such thatA′
� = 0.

Thenr = NUMBER(�∗).

Summarizing the discussion above, given a matrixA′ which is singular, the RF Algorithm of Theorem
3.1 extends to allow us to construct the maximal partial RF of the matrix corresponding to the leading
principal nonsingular submatrixA′([r], [r]) of the matrixA′. Thus by Lemma 6.8, and Theorem 3.1, we
have

Theorem 6.1. There is an efficient randomized parallel reduction from RANK to the RF problem. The
RANK problem can be exactly solved in randomized parallel time, O(log2 n) usingM(n) processes,
using2n random numbers over{1, . . . , nO(1)},andwith success probability�1−1/n�(1) and a constant
number of random variables ranging over a domain of size(n‖A‖)O(1).

6.3. Applications of the matrix reductions to dense matrices

By Theorem3.1 and the efficient parallel reductions of Section 6.1, we have the following further
results:

Corollary 6.1. The problems(defined in Section6.1) |DETERMINANT |, INVERSE, LINEAR SYS-
TEM SOLVE, RANK, QR FACTORIZATION and HESSENBERG REDUCTION can be exactly solved,
with high likelihood�1− 1/n�(1), in parallel timeO(log2 n) usingM(n) randomized processors, and
bit precisionO(�),where� = O(n(�+ log n)). If the input matrix is SPD,we can also compute DETER-
MINANT and LU FACTORIZATION, within these same parallel bounds. All of these problems require
only a constant number of random variables ranging over a domain of size(n‖A‖)O(1), except RANK
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and HESSENBERG REDUCTION which require a further linear number of random variables ranging
over a domain of sizenO(1).

Note: An input matrix which is nonsingular may not have a complete RF factorization. However, the
RF will still be constructed for inputs which are nonsymmetric positive definite matrices, so symmetry
of the input matrix is not essential (it just simplifies the proof in Lemma3.6 of the pipelined Newton
iterations described in Section 3.5).
Note that our parallel timebounds for the problemsLUFACTORIZATION,QRFACTORIZATIONand

HESSENBERG REDUCTION are the best known. Previously Pan [63] had proved the same processor
bounds for these listed problems with a time bound of�(log3 n).
The additional problems|DETERMINANT |, INVERSE, LINEAR SYSTEM SOLVE, and RANK

were previously known to be exactly solvable (see [42,47,48,62,63]) in timeO(log2 n) usingM(n) pro-
cessors, requiring reduction to the computation of the characteristic polynomial. Our techniques achieve
the same bounds, with high likelihood�1−1/n�(1) (using again a constant number of random variables
ranging over a domain of size(n‖A‖)O(1), except the rank computation which requires a further linear
number of random variables ranging over a domain of sizenO(1)), without the need to compute the
characteristic polynomial.

6.4. Applications of the matrix reductions to sparse matrices

Applying Theorem 5.1 and the above matrix reductions on sparse matrices, we have

Corollary 6.2. Let A be ann × n SPD matrix with ans(n)-separable sparsity graph, wheres(n) is of
the formn� for 0 < � < 1.We can exactly solve the problems DETERMINANT and LINEAR SYSTEM
SOLVE for a nonsingular A in parallel timeO(log2 n) usingn + M(s(n)) processors, and bit precision
O(�), where� = O(n(� + log n)), with high likelihood�1− 1/n�(1).

6.5. Applications of the matrix reductions to bounded displacement rank matrices

By the reductions of Section6.1, specialized to the case of bounded displacement rank, and the efficient
algorithms for bounded displacement rank of Section 2, we have

Corollary 6.3. Given ann × n integer matrix A of displacement rank�, let �′ = � if A is SPD, and
else let�′ = �2. Then the problems|DETERMINANT |, INVERSE, LINEAR SYSTEM SOLVE,RANK
can be exactly solved, with high likelihood�1− 1/n�(1), in randomized parallel timeO(log2 n) using
�2P(n) processors, and bit precisionO(�), where� = O(n(� + log n)), using at most a linear number
of random variables each ranging over a domain of size(n‖A‖)O(1). If the input matrix is also SPD,we
can compute DETERMINANT and LU FACTORIZATION, within these same parallel bounds.

6.5.1. The RANK problem for bounded displacement rank matrices
Suppose we are given ann × n symmetric matrixA of displacement rank� which is singular and of

rankr < n. Following the methods of Section6.2, we choose randomn×n nonsingular lower triangular
Toeplitz matricesL,UT with unit diagonal elements and with the strictly lower elements of the first
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column randomly chosen uniformly over the values{i/nc|wherei is an integer on the range from−nc to
nc} for a constantc�5. By Lemma7.1, matricesL,U are well conditioned, with condition number�nc

with likelihood �1− �(1/nc−4). By Proposition 6.1, with likelihood�1− 1/n�(1), A′ = UAL has a
nonsingularr × r leading principal submatrix. Since multiplication of a matrixA of displacement rank
� by these two triangular Toeplitz matrices results in a matrix of displacement rank at most�, it follows
thatA′ = UAL has this same displacement rank. Given a matrixA′ which is not positive definite, the RF
Bounded Displacement Rank Algorithm of Theorem 4.1 easily extends, by the techniques of Section 6.2,
to allow us to construct, in parallel timeO(log2 n) using�2P(n) processors, the maximal partial RF of
depthd∗ for the matrix corresponding to the leading principal nonsingular submatrix of the matrixA′.

Corollary 6.4. The RANK problem forn × n symmetric matrices of displacement rank� can be solved,
with success probability�1−1/n�(1), in randomized parallel timeO(log2 n) using�2P(n) processors.

6.6. Applications to polynomial problems

The problems of computing the resultant and the GCD of two polynomials is an important application
of Toeplitz matrices.

6.6.1. Parallel computation of polynomial resultant
Fix polynomialsA(x) = ∑n

i=0 aixi andB(x) = ∑m
i=0 bixi. A Sylvesteror resultant matrixS(A,B)

of polynomialsA(x) andB(x) is a size(m + n) × (m + n) matrix which is a block Toeplitz matrix,
consisting of two block submatrices, of size(m + n) × m and(m + n) × n each of which is Toeplitz. It
is defined as follows:

S(A,B) =




an bm

an−1
. . . bm−1

. . .
...

. . .
...

. . .

an bm
an−1 bm−1
...

...

a1 b1

a0
. . . b0

. . .

. . .
. . .

a1 b1
a0 b0




.

Theunivariate resultant(see[16,19]) ofA(x) andB(x) is the determinant ofS(A,B). It is well known
that the resultant is equal to 0 iffA(x) andB(x) have a common root. The resultant hasmany applications
in computational algebra.
Though the Sylvester matrixS(A,B) as a whole will not be Toeplitz, it consists of two block subma-

trices, each of which is Toeplitz (see [42]). So by Lemma 4.4, the Sylvester matrix will have constant
displacement rank 3. Hence, the processor requirements and parallel time for computing the resultant is
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the same bounds as constructing the RF of a matrix bounded by displacement rank 3. Thus, by Theorem
4.1 and Corollary 6.3 and the partial RF computation of rank of Corollary 6.4, this implies:

Corollary 6.5. The resultant problem for univariate polynomials with P-rational coefficients can be
solved in randomized parallel timeO(log2 n) usingP(n) processors, with success probability�1−
1/n�(1).

6.6.2. Parallel computation of polynomial GCD
Another application of Toeplitz block matrices occurs in theGCD computation problem: Again fix

A(x) = ∑n
i=0 aixi andB(x) = ∑m

i=0 bixi, where w.l.o.g.,m�n. For uniqueness we define the GCD
of A(x) andB(x) to be a monic (the coefficient of the highest degree term ofGCD(x) is 1) polynomial
GCD(A(x), B(x)) = GCD(x)which is the uniquemaximum-degree polynomial that divides bothA(x)

andB(x). Let r be the degree ofGCD(x). The GCD satisfies the equationGCD(x) = U(x)A(x) +
V (x)B(x), for unique polynomialsU(x), V (x),whereU has degreem−r−1 andVhas degreen−r−1.
TheextendedGCDcomputation problemis to computeU(x), V (x) in addition toGCD(x). The extended
GCD computation can be done sequentially by the Extended Euclidean Algorithm[1] in O(P (n) log2 n)

time, but there were no previous similarly efficient parallel algorithms.
We now develop our parallel algorithms for GCD or extended GCD. We observe that the processor

requirements and parallel time for computing polynomial GCD’s of output degreer is the same as that for
finding the rankr and the basis of a matrix of displacement rank 3 (see [22]). The extended polynomial
GCD defines a submatrix of the Sylvester matrix. Let ther-subresultant matrix(see also [19,42]) be a
matrix of size(n + m − 2r) × (n + m − 2r), consisting of the firstn + m − 2r rows of the Sylvester
matrix defined for the resultant ofA(x) andB(x). Consider ther-subresultant system defined for the
r-subresultant matrix:




an bm
an−1 bm−1
...

...
. . .

. . .
...

. . .
. . .

...
. . .

. . .

a0 an bm
an−1 b0 bm−1
...

...

a0 . . . ar b0 . . . br







um−r−1
...
...

u1
u0

vn−r−1
...
...

v1
v0




=




0
...

.

.

.

.

.

...

0
1




.

Again, by Lemma4.4, the subresultant matrix will have constant displacement rank 3. The abover-
subresultant system corresponds to the linear system derived from the equation:GCD(x) = U(x)A(x)+
V (x)B(x). The r-subresultant system has a solution ifr�deg(GCD(x)). Thus we can use divide and
conquer, inO(log n) stages, to find the degreer of the GCD. Hence, the processor requirements and
parallel time for computing polynomial GCD’s of output degreer is bounded byO(log n) stages of
testing the singularity ofn × n matrices of displacement rank 3 and a final stage of finding the basis
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of such a matrix. For bounded displacement rank matrices, we apply Lemma4.4, Corollary 6.3 and the
partial RF computation of rank used in Corollary 6.4. This implies:

Corollary 6.6. The GCD problem for univariate polynomials with P-rational coefficients can be solved
in randomized parallel timeO(log3 n) usingP(n) processors, with success probability�1− 1/n�(1).

6.6.3. Padé approximants
We next observe our parallel algorithms for extended GCD (Corollary6.6) can be applied to derive

an efficient parallel algorithm for finding Padé approximants. Consider a (formal) power seriesA(x) =
a0+a1x+a2x

2+· · ·with a0 �= 0.APadé approximant is a rational function approximation to the power
seriesA(x). The(m, n) Padé approximanttoA is defined (see [36]) to be the rational functionPmn(x) =
U(x)/V (x), whereU andVare polynomials withdeg(U)�m anddeg(V )�n andA(x)V (x)−U(x) =
O(xm+n+1). Padé approximants are widely used in applications for rational function approximation.
Frobenius [30] first defined Padé approximants and proved:

Lemma 6.9. The(m, n) Padé approximantPmn(x) = U(x)/V (x) to A is unique.

Padé[61] popularized the use of Padé approximants. Gragg [36] gave quadratic time algorithms for
Padé approximants. Brent et al. [18] developed an efficient sequentialO(P (n+m) log2(n+m)) algorithm
for Padé approximants, using a reduction to the solution of Toeplitz systems. ThePadé table[36] is a
two-dimensional array where the(m, n) Padé approximantPmn(x) is in the position indexed by(m, n).

Brent et al. [18] show that the entries of the Padé table can be computed by the extended Euclidean
algorithm [1].
Let A(x) be a power series witha0 �= 0. Rational formU(x)/V (x) is an(m, n) Padé approximant

toA(x) if A(x)V (x) − U(x) = O(xm+n+1). Note that this equationA(x)V (x) − U(x) = O(xm+n+1)
defines a linear system ofm + n + 1 equations (each corresponding to a power ofx) with m + n + 2
unknownsvi, i = 0, . . . , n, corresponding toV (x) = ∑n

i=0 vixi andui, i = 0, . . . , m, corresponding
toU(x) = ∑m

i=0 uixi whereav = 0 if v < 0. These equations have the form




a0
a1 a0
...

am am−n

...
. . .

...

am+n am






v0
...

vn


 =




u0
...

um
0
.

0



.

Observe that a rearrangement of this linear system gives the linear system
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


am am+n−2 am+n−1 0 0
...

...
...

...
...

am−n+1 am−1 am 0 0
am−n am−2 am−1 −1

a0
...

. . .

0 a0
. . .

0 0 −1







vn
...

v1
um
...

.

u0




= −




am+n

...

am+1
am
...

.

a0



v0.

By Lemma6.9, there always exist solutions to this linear system, which is Block Toeplitz.
Hence, our parallel algorithms for extended GCD of Corollary 6.6 provides an efficient parallel algo-

rithm for finding Padé approximants

Corollary 6.7. The(m, n) Padé approximantPmn(x) = U(x)/V (x) to a power series can be computed
in randomized parallel timeO(log2 n) usingP(n) processors, with success probability�1− 1/n�(1).

6.6.4. Applications to Sturm sequences and finding real roots
A Sturm sequence(see[20]) of polynomialsf0(x), f1(x) is the sequence of polynomialsf0(x),

f1(x), . . . , fk(x)where fori = 1,2, . . . k−1, fi+1(x) = qi(x)fi(x)−fi−1(x), theqi(x) are linear, and
fk(x) is constant. The Sturm sequence off0(x), f1(x) is similar to the remainder sequence generated by
the Euclidean algorithm for theGCD(f0(x), f1(x)) except thatfi+1(x) is the negative of the remainder
of the division offi−1(x) byfi(x). Therefore, the Sturm sequence can be computed in timeO(n log2 n)

by simple modification (see [7]) of the usual HGCD algorithms (see [1]).Note: The precision required
can be reduced by use of additional indeterminants as linear factors; see [6,7,24] for details. Pan [65] and
others have observed that the linear system defining the Sturm sequence is block Toeplitz, with bounded
displacement rank. Applying our results for bounded displacement rank matrices, by Lemma 4.4, and
Corollaries 6.3 and 6.4 we have

Corollary 6.8. The Sturm sequence can be computed in parallel timeO(log2 n) usingP(n) processors,
with success probability�1− 1/n�(1).

6.7. Real root isolation

The (standard)Sturm sequenceof a single polynomialf (x) of degreenwith derivativef ′(x) is defined
to be the lengthk�n Sturm sequence off0(x) = f (x), f1(x) = f ′(x). In the following, we assume that
f (x) has real coefficients and all roots are real. The applications of Sturm sequences use the following
lemma, attributed to Rolle; see[56],

Lemma 6.10. If f (x) has real coefficients and all roots are real, then the roots off ′(x) are all real and
they strictly interleave the roots off (x).

For a reala, let Va be the number of sign variations of the Sturm sequencef0(a), f1(a), . . . , fk(a),

that is, the number of timesfi(a) · fi+1(a) < 0. It follows from the result of Rolle that
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Lemma 6.11. For any interval[a, b] of the real line, the number of real roots in this interval isVa −Vb.

Order the zeros of the linear termsqi(x) of the Sturm sequenceyi1�yi2� . . . �yik and order the roots
of f (x)r1 < r2 < · · · < rn. For any fixed�,0 < � < 1

2, a pointson the real line is an�-splitting point
for the roots off (x) if ri < s < ri+1 for some�n�i�(1− �)n. Ben-Or et al.[6] prove the remarkable
result that:

Lemma 6.12. There is a j such thatyij is a
1
4-splitting point for the roots off (x)

Now we give parallel algorithm for finding a14-splitting point for the roots off (x). The sign sequence
of the Sturm sequence is computable by multipoint evaluation, which costs parallel timeO(log2 n) using
P(n) processors (see[42]). Using a binary search ofO(log n) stages on the sequenceyi1�yi2� . . . �yik
and applying Lemma 6.11 to count the number of roots off (x) in the appropriate interval considered at
each stage of this binary search, we get

Corollary 6.9. A 1
4-splitting point for the roots of a polynomialf (x)with all real roots can be computed

in parallel timeO(log2 n) usingP(n) processors, with success probability�1− 1/n�(1).

6.7.1. Parallel solution of the real roots problem
Given a univariate complex polynomialf (x) of degreenwith rational coefficients expressed as a ratio

of two integers< 2m, theroot problemis to find all the roots off (x) up to specified precision 2−�. The
real root problemis the root problem where all the roots of the polynomial are real. Reif[76] gave a
real root algorithm which has sequential arithmetic time cost ofO(P (n) log2 n(log n + log b)), where
b = m + �. In the following, we assume for simplicity the case of high precisionb = m + ��nc, for a
constantc > 1. In that case, the sequential algorithm of Reif has time boundO(P (n) log3 n). The real
root algorithm of Reif [76] proceeds by splitting with very high accuracy, the degreen polynomial into
a product of two polynomials each with degree at leastn/12. This splitting algorithm can be viewed as
a reduction to the problems (for polynomials of degreen or inputs of sizen): (i) polynomial convolution
and multiplication, (ii) polynomial division, (iii)n point polynomial evaluation and interpolation, and
(iv) Sturm computation. By Corollaries 6.6, 6.8, 6.9 all these computations can be done in parallel time
O(log2 n) usingP(n) processors. ThusO(log n) stages of root splitting allow us to extract all the root
with high accuracy 2b = 2n

−�(1)
, implying:

Corollary 6.10. Given a polynomial of degree n with only real roots and coefficient bit-precisionb =
nO(1), we can approximate all the real roots within bit-precisionb = nO(1), in parallel timeO(log3 n)
usingP(n) processors, with success probability�1− 1/n�(1).

6.7.2. The symmetric tridiagonal eigenvalue problem
Thesymmetric tridiagonal matrix eigenvalue problemis the problem of finding all the eigenvalues of

ann × n symmetric tridiagonal matrix
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A =




b1 a2 0 0 . . . 0 0 0
a2 b2 a3 0 . . . 0 0 0
0 a3 b3 a4 . . . 0 0 0
...

. . .
. . .

. . .
. . .

0 an−1 bn−1 an
0 . . . 0 an bn



.

The real roots problem has an efficient reduction to and from the symmetric tridiagonal matrix eigenvalue
problem, which has been attributed to Hald[38] and described in [10–12,52] and also by JáJá [42], p. 428,
homework 8.37 (this relationship is well known and is also occurs in many other computational prob-
lems as inverse eigenvalue problems, orthogonal polynomials, Sturm sequences, three-term recurrences,
Euclidean scheme, and Lanczos algorithm). This reduction from the symmetric tridiagonal matrix eigen-
value problem for the above matrixA to the real roots problem requires us to compute the characteristic
polynomialdet (
I − A). We sketch here this efficient reduction, with arithmetic costO(n log2 n). For
eachi = 1, . . . , n letpi(
) = det (
I−A(i)), whereA(i) is thei×i submatrix consisting of the firsti rows
and the firsti columns. Note thatp0(
) = 1, p1(
) = 
 − b1, andpi(
) = (
 − bi)pi−1(
)− a2i pi−2(
).
This recurrence equation (see [42]) can be solved forpn(
) = det (
I − A) within arithmetic work
O(P (n) log2 n), or in parallel timeO(log2 n) usingO(P (n) log n) processors. The reverse reduction of
the polynomial root-finding problem for a polynomialf (x) to the symmetric tridiagonal matrix eigen-
value problem, by the Euclidean remainder scheme, is described in Hald [38]. This reverse reduction is
used also in [10–12], and shown to have Boolean costO(M(n)M(nm) log n). The arithmetic cost for
this reduction isO(n log2 n). The Euclidean scheme can be applied tof (x) andf ′(x) or equivalently,
to f (x) andg(x) wheref ′(xi)g(xi) > 0, f (xi) = 0. The computation of this reduction can be done by
the quotient-tree procedure of Ben-Or and Tiwari [7] (Section 8.1). The quotient-tree procedure yields
all the quotients and the leading coefficients of the remainders, which are the entries of the tridiagonal.
Recovery of the coefficients of the polynomial from the entries of the matrix is described in [10–12] and
can also done by the technique of Krishnakumar andMorf [52]. Thus the arithmetic cost for these forward
and reverse reductions is easily be seen to beO(P (n) log2 n) sequential steps. Bini and Pan [9,11,12]
have noted that this also gives a parallel reduction to and from the real root problem and the eigenvalue
problem for symmetric tridiagonal matrices. These reductions require the computation of a Euclidean
polynomial remainder sequence similar to polynomial GCD, which we can compute by Corollary 6.6 in
parallel timeO(log2 n) usingP(n) processors. Bini and Pan [9,11,12] requiredO(log2 n) time using
nP (n) processors for their parallel reductions. We can improve their reduction by applying our results
for bounded displacement rank matrices. Using Lemma 4.4, and Corollaries 6.3 and 6.4, we can compute
these reductions in parallel timeO(log2 n) usingP(n) processors. By Corollary 6.10,

Corollary 6.11. Given a symmetric tridiagonal matrix of sizen × n and coefficient bit-precisionb =
nO(1), we can approximate all the eigenvalues(which are all real in this case) within bit-precision
b = nO(1), in parallel timeO(log3 n) usingP(n) processors, with success probability�1− 1/n�(1).
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7. Condition bounds for random matrices

Proposition 7.1(Demmel[26, Eq. 4.20]). Let S be a real, homogeneous hypersurface over a given di-
mension N defined by a single polynomial of degree d. Let p be a random point chosen over a uniform
distribution on the unit sphere of dimension d. Letdist (p, S) the shortest Euclidean distance from p to
S. Then for any� > 0,

Prob(dist (p, S)��)�2
N∑
j=1

(
N

j

)
(2d�)j.

Let Sn be the set of realn × n matrices which are singular. Note thatSn is a real, homogeneous
hypersurface over dimensionN = n2 defined by a single polynomial of degreed = n (that is, the
determinant polynomial set to 0). Eckart and Young[28] (also see [26, Theorem 3.1]) proved:

Proposition 7.2. The distancedist (A, Sn) from a matrix A to the nearest singular matrix is‖A−1‖−1.

Since by definitioncond2(A) = ‖A‖ ‖A−1‖, this distance isdist (A, Sn) = ‖A‖/cond2(A). This
implies thatcond2(A) can be upper bounded by a lower bound ondist (A, Sn) as given by Proposition
7.1.
The Frobenius normof matrix A is ‖A‖F = (

∑
i |aij |)1/2. Let A be a randomn × n matrix with

elements chosen so that‖A‖/‖A‖F uniformly distributed over the unit sphere. Propositions 7.2 and 7.1
can be immediately applied to bound the condition ofA by (see [26, Theorem 5.1]):

Prob(cond2(A)�x)�2
n2∑
j=1

(
n2

j

) (
2n

x

)j

.

HenceProb(cond2(A)�x)�O(n3/x) for x > 4n3.
Similarly, let LT Sn be the set of real, singularn × n lower triangular Toeplitz matrices with unit

diagonal elements. Note that each such matrix is defined from only then − 1 strictly lower elements of
the first column. ThusLT Sn is a real, homogeneous hypersurface over dimensionN = n − 1 defined
by a single polynomial of degreed = n − 1 (again, this is the determinant polynomial set to 0). LetL
be a randomn × n lower triangular Toeplitz matrix with unit diagonal elements and with strictly lower
elements of the first column randomly chosen with a uniform distribution over the unit sphere. LetL′ be
the lower triangular Toeplitz matrix derived fromL, where then − 1 strictly lower elements of the first
column are normalized to unit Frobenius norm. Propositions7.2 and 7.1 immediately imply that

Prob(cond2(L
′)�x)�2

n−1∑
j=1

(
n − 1
j

) (
2(n − 1)

x

)j

and soProb(cond2(L
′)�x)�O(n2/x) for x > 4n2. Since the renormalization to unit Frobenius norm

can only decrease the condition by a factor of�1/n2, the bound

Prob(cond2(L)�xn2)�O(n2/x)
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holds for the (un-normalized) the matrixL. Since by Proposition7.2,dist (L,LT Sn) = ‖L‖/cond2(L),
this is equivalent to the bound:

Prob(dist (L,LT Sn)�‖L‖/(xn2))�O(n2/x).

This immediately also implies a similar bound on the condition for a lower triangular Toeplitz matrixL
whose elements are randomly chosen over a discrete uniform distribution, where the distance between
discretization points is 1/nc = o(‖L‖/(xn2)) for c > 4. Letx = nc−2. In this case, with atmost this same
probabilityO(n2/x) = O(1/nc−4), we havedist (L,LT Sn)�‖L‖/(xn2)−1/nc�(‖L‖/nc)(1−o(1)),
and so with at most this same probabilityO(1/nc−4), we havecond2(L)�xn2(1+o(1)) = nc(1+o(1)).
Absorbing theo(1) additive factor into theO(−) notation, with at most probabilityO(1/nc−4), we have
cond2(L)�nc.

Lemma 7.1. Let L be a randomn × n lower triangular Toeplitz matrix L with unit diagonal ele-
ments and with the strictly lower elements of the first column randomly chosen uniformly over the
values{i/nc| where i is an integer on the range from−nc to nc}, for a constantc > 4. Then with
high likelihood, matrices L,U are well conditioned, and in particular, Prob(cond2(L)�nc)�
O(1/nc−4).

8. Randomized construction of displacement generators

SupposeA is an n × n matrix with minimum displacement rank�, and letS = �+(A) = A −
ZAZT . If A is a generic matrix then the resultingShas a nonsingular� × � leading principal submatrix
S([�], [�]), sowe can then apply Lemma4.5 as given in Section 4.3 to construct� displacement generators
for A.
However, in generalSmay have a singular� × � leading principal submatrix. Here we extend these

techniques of Section 4.3 to specific rather than just generic matrices. To remedy this, we choose random
n × n nonsingular lower triangular Toeplitz matricesL,UT (see [47]) with unit diagonal elements and
with the strictly lower elements of the first column randomly chosen uniformly over the values{i/nc|
wherei is an integer on the range from−nc tonc} for a constantc�5. Then by Lemma 7.1, the condition
of matricesL,U is �nc with likelihood �1− �(1/nc−4).
These preconditioning multipliersU,L, can be used to construct a matrix which is expected to act

like a generic matrix; in particular, by Proposition 6.1S′ = USL has a nonsingular� × � leading prin-
cipal submatrixS′([�], [�]) with likelihood �1− 1/n�(1). (In the caseS′([�], [�]) orU,L are singular,
we repeat the random choice ofU,L.) Now, we consider the case where the leading principal subma-
trix S′([�], [�]) of S′ is nonsingular and alsoU,L are nonsingular. SinceS has rank�, andU,L are
nonsingular, andS′ = USL, it follows thatS′ has rank�. By Proposition 4.1,S′ = S′(−, [�])S′([�],
[�])−1S′([�]) so it follows that S = U−1S′L−1 = U−1S′(−, [�])S′([�], [�])−1S′([�])L−1.
Therefore we redefineg1, . . . , g� to be the first� columns of the productU−1S′(−, [�]). We also
redefinehiT to be theith row of the productS′([�], [�])−1S′([�])L−1 for i = 1, . . . , �. (Note that
this naturally generalizes the definition of thehTi in Lemma 4.5, where previously these were de-
fined to be ith row of the productM−1S([�]).) For this redefinition of thegi and hi
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we have
�∑

i=1
gihi

T = (U−1S′(−, [�]))(S′([�], [�])−1S′([�])L−1)

=U−1S′(−, [�])S′([�], [�])−1S′([�])L−1 = S.

Thus we have the following extension of Lemma4.5 to the general case.

Lemma 8.1. Let A be ann× nmatrix and letGENERATOR�(A) be the�+-displacement generator
n-vectors{gi}, {hi}, i = 1, . . . , �where thegi andhi are as just redefined with a nonsingularS′([�], [�]).
If A has minimum displacement rank� then S = �+(A) = ∑�

i=1 gihiT and by Lemma4.4, A =∑�
i=1L(gi)LT (hi).

9. Conclusion

9.1. Open problems

There are a number of further open problems remaining:
• Our RF algorithm includes the random selection of a prime whose binary representation’s length is
linear in the size of the input matrix. So there remains the open problem of finding similarly efficient
parallel algorithms that do not use randomization.

• Also, our RF algorithm requires us to apply a homomorphism fromQ toZp. To apply this homomor-
phism, we have assumed a model of computation with unit cost division over a finite field (whereas
prior works do not generally require this). Recall that NC is the class of Boolean circuits of polylog
depth and polynomial size. Division over a finite field is NC reducible to extended integer GCD. How-
ever, no NC algorithm has yet been found for extended integer GCD, and we can not directly derive an
efficient algorithm in the Boolean circuit model. We conclude that there remains the challenging open
problem of finding similarly efficient parallel algorithms that use significantly smaller prime moduli
or that work in the Boolean circuit model of parallel computation.
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