Available online at www.sciencedirect.com

reer @emeer CompuTeR
o ““; SYSTEM
ELSEVIER Journal of Computer and System Sciences 71 (2005) 86—143 CIENCES

www.elsevier.com/locate/jcss

Efficient parallel factorization and solution of structured and
unstructured linear systefis

John H. Reif
Department of Computer Science, P.O. Box 90129, Duke University, Durham, NC 27708-0129, USA
Received 14 June 1999; received in revised form 16 December 2004

Available online 2 March 2005

Abstract

This paper gives improved parallel methods for several exact factorizations of some classes of symmetric positive
definite (SPD) matrices. Our factorizations also provide us similarly efficient algorithms for exact computation of
the solution of the corresponding linear systems (which need not be SPD), and for finding rank and determinant
magnitude. We assume the input matrices have entries that are rational numbers expressed as a ratio of integer
with at most a polynomial number of bifs We assume a parallel random access machine (PRAM) model of
parallel computation, with unit cost arithmetic operations, including division, over a finiteZiglavherep is a
prime number whose binary representation is linear in the size of the input matrix and is randomly chosen by the
algorithm. We require only bit precisio@ (n(f + log n)), which is the asymptotically optimal bit precision for
B> log n. Our algorithms are randomized, giving the outputs with high likelihgah— 1/n%Y. We compute
LU and QR factorizations for dense matrices, alod factorizations of sparse matrices which a(e)-separable,
reducing the known parallel time bounds for these factorizationsﬂdug3 n)to O(Iog2 n), without an increase in
processors (matching the best known work bounds of known parallel algorithms with polylog time bounds). Using
the same parallel algorithm specialized to structured matrices, we colrgudéetorizations for Toeplitz matrices
and matrices of bounded displacement rank in tithéog?) with n log log n processors, reducing by a nearly
linear factor the best previous processor bounds for polylog times (however, these prior works did not generally

* Supported in part by Grants NSF/DARPA CCR-9725021, CCR-96-33567, NSF IRI-9619647, ARO contract DAAH-
04-96-1-0448, and ONR Contract N00014-99-1-0406. A preliminary version of a section of this document appeared as
“0(|ngn) Time Efficient Parallel Factorization of Dense, Sparse Separable, and Banded Matrices” in Proceedings of the
Sixth Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA94), NJ, July 1994, and also a section
appeared as “Work Efficient Parallel Solution of Toeplitz Systems and Polynomial GCD”, Proceedings of the 27th Annual
ACM Symposium of Theory of Computing (STOC’95), Las Vegas, Nevada, May 1995. A PDF version of this paper is at
http://www.cs.duke.edu/reif/paper/newton/Toeplitz.Newton.pdf.

E-mail addressreif@cs.duke.edu

0022-0000/$ - see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcss.2004.12.010

http://www.elsevier.com/locate/jcss
http://www.cs.duke.edu/reif/paper/newton/Toeplitz.Newton.pdf
mailto:reif@cs.duke.edu

John H. Reif / Journal of Computer and System Sciences 71 (2005) 86—143 87

require unit cost division over a finite field). We use this result to solve in the same bounds: polynomial resultant;
and Padé approximants of rational functions; and in a fadtdog ») more time: polynomial greatest common
divisors (GCD) and extended GCD; again reducing the best processor bounds by a nearly linear factor.

© 2005 Elsevier Inc. All rights reserved.

Keywords:Parallel algorithms; Linear systenid; factorization; Dense matrices; Sparse matrices; Newton iteration; Structured
matrices; Toeplitz matrices; Displacement rank; Polynomial greatest common divisors; GCD; Resultant; Padé approximation

1. Introduction

1.1. Assumptions and machine model

For our model of computation, we assume the algebraic parallel random access machine (PRAM)
where each arithmetic or logical operation such as addition, subtraction, multiplication, division, and
comparison over the domain of rational numbers, and over the finitefjetdr any primep, can be done
in one step by a given processor. We also assume the floor function, which gives the largeskirteger
given rational number. Processors can execute such operations in parallel. Our time complexity bounds
are based on arithmetic complexity, that is the number of these parallel steps. We also assume the PRAM
has a sequential source of random numbers. We assumesth@ matrices input to our algorithms
haveP-rational entries either integer entries of magnitude2’, where <n®®, or rational entries
expressible as ratio of integers of this magnitude.

1.2. Motivation

Many problems in engineering and science rely on the solution of linear systems. As the problem
size of a linear system grows, the resulting linear systems can grow to enormous size, and can, in turn,
require very large computational effort to solve. This motivated the search for algorithms which are
work efficient. One of the success stories in the field of computer science algorithms and numerical
analysis was the development of efficient sequential algorithms for rapid solution of linear systems.
Previous researchers have exploited sparsity and/or the structure of the linear system to improve these
computations. The use of parallel processing can potentially give a further increase in speed. However,
there remains a considerable discrepancy between the theoretical methods proposed for parallel solutior
of linear systems and the methods that are actually used. Our goals are more modest; we wish to establish
theoretically, improved time and processor bounds, keeping in mind that this is at best just a first step
toward the more practical goals just discussed.

1.3. Bounds on basic computations on matrices and polynomials

Basic computations on dense matrices, such as multiplication, inverse, etc. require a large amount of
sequential time which is theoretically’” wherew* drops significantly below 3[25,81] give the best
known bound 2376) but with significant increase in constant factors, so that in practice this sequential
time is close ta:3. Even with major breakthroughs, the sequential time must remaifi This can be
excessive for many applications. Lét(n) be the minimum number of PRAM processors necessary to
multiply two n x n matrices inO (log n) parallel steps. The best known bound [25,81]MKn) is n®,

88 John H. Reif / Journal of Computer and System Sciences 71 (2005) 86—143

wherew = 2.376 Parallel algorithms for dense matrices must also do at least this amount of work, and
this results in either excessive processor requirements or slow time bounds.

Let P(n) denote the number of arithmetic processors used to multiply two degeveé/nomials in
O (log n) parallel time. (Since we are primarily concerned only with parallel complexity bounds, we will
not define separate notation for the sequential time for this task. Instead, we obsetyéeRka}log n)
upper bounds the number of arithmetic operations used to multiply two degoeé/nomials.) It is
known thatP (n) = O(n) if the field supports an FFT of sizebut otherwise the best bound#&n) =
O(n log log n) [21].

1.4. Known techniques and results

1.4.1. Newton’s iteration

The sequential use of Newton’s iteration for the approximate inverse of well conditioned or diagonally
dominant (DD) matrices was developed by Ben-Israel [4], Ben-Israel and Cohen [5], and Hotelling
[40,41]. Later Pan and Reif [69,71] considered parallel applications; they showed that the inverse of a
well-conditioned nonsingular x n dense integer or rational matrix, and the solution of the corresponding
linear system, can be approximately computed with high accuracy by Newton iterations in parallel time
0 (log? n) with M (n) processors, without construction of the characteristic polynomial.

1.4.2. Hensel lifting and variable diagonal

Subsequently Pan [62,63] showed that the inverse of an arbitrary (not necessarily well conditioned)
nonsingulan x n dense integer or rational matmxcan be exactly computed in parallel tirgglog? »)
with M (n) processors (similar results are also known for matrix inverse over arbitrary fields [42,47,48]
using a reduction to the computation of the characteristic polynomial or a related form). Thus the linear
systemAx = b can be exactly solved within this complexity by computing: A~1b, whereA~1is the
matrix inverse.

The general technique of approximate solution via Newton'’s iteration, followed by Hensel lifting, has
a long history in numerical and algebraic computation. Pan [62,63] developed what he cadsahée
diagonal techniquewhich modifies the input matrix (which initially may have arbitrary condition, so
could be very badly conditioned), so that the resulting matrix is strongly DD and has condition nearly
1. Explicit computation of matrix inverses of badly conditioned matrices is thus avoided, and instead
inverses of DD matrices are approximated.

Given a nonsingular integer maty the variable diagonal technique constructs a matrix A+ ps/
for a random prime and for a large integes, so thatA is strongly DD andA = A (modp). SinceA
is DD, Newton'’s iteration can be effectively applied to approximate the invérse the determinant
det(A) andadj A = A~ldet(A). SinceA is an integer matrix, rounding-off turns the approximations
into exact values ofler (A) andadj A. Then applying the standard homomorphism from the rationals
Q to the finite fieldZ , to rational matricest—* and A~* gives A=! (modp) = A~1 (modp). This is
extended by Moenck and Carter's Newton—Hensel lifting proceduré; fomodulo a high power of.
From this,adj A, det(A), A~ are recovered.

1.4.3. Matrix factorizations
Numerical analysis practitioners often solve linear systems by computing a matrix factorization and
solving the resulting triangular linear systems. For example, given a nonsimgularmatrix A. If Ais

John H. Reif / Journal of Computer and System Sciences 71 (2005) 86—143 89

symmetric positive definite (SPD), théncan be factoredt = LU whereU = LT (also known in this
case as a Cholesky factorization), whéeres nonsingular lower triangular arld is nonsingular upper
triangular.

Previous results of P4A3] gave parallel time (log® n) with M (n) processors for factoring dense SPD
matrices, including.U andQRfactorizations, and also computing their reduction into upper Hessenberg
form. Also, Pan et al. [74] show the solution and determinari-b&nded matrices can be computed in
parallel timeO (log n log b) with M (b)n /b processors.

Many efficient parallel algorithms for exact computation of the determinat(fur recent examples,
see [42,47,48]) also require the computation of the characteristic polynonfialmtontrast, given the
LU decomposition as above, & = LU, thendet (A) = det(L)det(U), and otherwise iA” A = LU,
thender (A)2 = det (AT A) = det(L)det (U). The determinants of these triangular matrices are obtained
by multiplying all the elements of their principal diagonals.

Furthermore, singular value decompositions and eigenvalue computations generally bed@Rwith
factorization which is computable from théJ factorization. Eigenvalue computations generally use a
further reduction to upper Hessenberg form computed fron@Ré&ctorization (see [35]). Thus, matrix
factorizations of various types are used extensively in numerical computations and are essential in many
applications. For dense matrices, known efficient parallel algorithms for ekhahd QR factorization
and reduction to upper Hessenberg form [63] a@dbg® n) time.

1.4.4. Recursive factorization of matrices

Recursive factorization(RF) of matrices is a divide and conquer technique used in many
theoretically efficient sequential algorithms for matrix inverse. For example, the Strassen block matrix al-
gorithm computes the inverse of an x n matrix by partitioning it into four blocks
(each of sizen/2) x (n/2)), and so reduces the problem to computing matrix inverses and products
on the block submatrices. A similar technique can be used bfactorization of SPD matrices (see
[1]) by RF of the Schur complement submatrices induced by block Gaussian elimination, and Trench
[83] also used this technique for the inversion of Toeplitz matrices. The requirement that the matrix
be SPD presents no difficulties, as we can use the normal form reduction given in
Section 2.2.

1.4.5. Symmetric matrices with separable graphs
A family of graphs iss(n)-separabldf, given a graptG in the family ofn > O (1) nodes, we can delete
a set ofs(n) nodes, separating into subgraphs in the family of size¢ %n nodes. Clearlyg-dimensional

grids or dissection graphs arén) = O(nd771) separable, and Lipton and Tarjan [54] showed planar
graphs are0 (/n)-separable. A sparsity graph of a symmetric matrix has a vertex for every row (col-
umn) of the matrix and an edge wherever there is a nonzero entry of the adjacency matrix. Matrices with
separable sparsity graphs arise naturally from VLSI circuit problems, structure problems, and discretiza-
tion of 2- or 3- dimensional PDEs. For examptedimensional PDEs result in matrices whose sparsity

graphs are@-dimensional grids or related dissection graphs whiclyarg= O(n%) separable. Lipton

et al. [53] developed sequential algorithms for RF of sparse matrices with separable sparsity graphs.
Pan and Reif [69,73] later developed parallel algorithms for RF (buLhbbr QR factorizations) of
nonsingular SPD matrices. For this, Pan and Reif [69,73] gave bounds of paralledtiog? n) with

n + M(s(n)) processors. Gazit and Miller [31] gave bounds of parallel tifréog? n log log n) with

90 John H. Reif / Journal of Computer and System Sciences 71 (2005) 86—143

n + M(s(n)) processors and Armon and RE3] decreased this parallel time t()(log2 n) with n +
M (s(n))** processors, for > 0.

1.4.6. Stream contraction

Is a technique developed by Pan and Reif [72] to decrease the time to solve combinatorial matrix
problems over semirings; the stream contraction method decreased the parallel time by a logarithmic
factor without a processor penalty.

1.5. Dense structured matrices

There is a large body of work on sequential algorithms which reduce the amount of work in the case
where the dense matrices possess certain regular structures. Throughout this paper, we refer to such me
trices asstructured Examples of structured matrices include: Toeplitz matrices and their generalizations,
Vandermonde matrices and their generalizations, Hilbert matrices and their generalizations, Hankel ma-
trices and their generalizations; the generalizations include block matrices with a constant number of
submatrix blocks of a single above type (for example Hankel block matrices).

1.5.1. Displacement operators for compact generation and compression of structured matrices

Kailath and his collaborators [45,46] generalized Toeplitz and Hankel matrices by defining various
classes of matrices with bounddiplacement rankThese matrices can be stored compactly by repre-
senting them by thedtisplacement generatards an additional benefit, the use of displacement generators
gave fast sequential algorithms for the inversion and factorization of such matrices (see [2,14,23,44,59].
These so-called Schur algorithms for matrices with constant displacement rank run efficiently on se-
guential machines. Their implementation on parallel machines has been extensively studied by Kailath
and his many coworkers and Ph.D. students. Unfortunately, it is not clear how to parallelize the Schur
algorithm to getprovable small parallel time with small processor bounifee known [67,68] polylog
time algorithms have quadratic processor bounds.

Amatrix A = [a;;] is Toeplitzif a; ; = a; 1« j+« for eachk where the matrix elements are defined. We
define (this is a slight simplification of standard definitionsyax n matrix to havedisplacement rank
o if it can be written as the sum éfterms, where each term is either (i) the product of a lower triangular
Toeplitz matrix and an upper triangular Toeplitz matrix or (ii) the product of an upper triangular Toeplitz
matrix and a lower triangular Toeplitz matrix.

Note that any matrix has displacement rank at mpstnd a Toeplitz matrix and its inverse has
displacement rank 2 (see [34]). Also, for this definition of displacement rank, the inverse of a matrix
of displacement rank has displacement rartk We will also consider block matrices, with a constant
number of submatrix blocks of a single above type (for example block Toeplitz matrices), which have
bounded displacement rank.

It happens (and we will discuss this in detail in later sections) that the above structured matrices,
particularly generalized Toeplitz and their generalizations, appear naturally and are used in many appli-
cations. Thus, computations on structured matrices are interesting in their own right. Perhaps the most
prevalent class of structured matrices are Toeplitz matrices and Toeplitz block matrices, which arise in
many computations on polynomials. Examples of Toeplitz block matrices are Sylvester and their sub-
matrices known as subresultant matrices (see [19]), which arise in polynomial greatest common divisors
(GCD), LCD and univariate resultant computations. It is well known (see [15,19]) that Toeplitz matrices

John H. Reif / Journal of Computer and System Sciences 71 (2005) 86—143 91

and matrices of bounded displacement rank also arise naturally in many other algebraic computation
and signal processing applications, such as: linear predictiofigSPedecoding error correcting codes

and linear feedback shift-register synthesis (see [37]), Padé approximants least-squares estimation (se:
[36,43]), and data compression applications.

1.5.2. Previous results for structured matrices

There are known efficient sequential algorithms [14,18,59] for inverse, determinant, linear system
solution, factorization, and finding the rank for the case of Toeplitz matrices and matrices of bounded
displacement rank with sequential time cBsk) Iog2 n (see Section 1.3 for definition &f(n)), but there
are no such results for efficient parallel algorithms. Previously, the best parallel algorithms [64,67,68,70]
forthese problems requir€tlog? n) time using: P (n)/ log n processors, and all polylo@(log®® n))
time parallel algorithms used at le@xt:2/ log®® n) processors.

1.6. Our results

This paper provides efficient parallel algorithms for factoring matrices in tirfleg? n) with a near
optimal number of processors. We show our algorithms are nearly optimal in terms of time, processors,
and bit precision. Our parallel algorithms are randomized, giving the outputs within the stated bounds with
high likelihood>1— 1/ using constant number of random variables each ranging over a domain of
size(n||A|)°D. The only exceptions are the rank and Hessenberg computations, which require a further
linear number of such random variables.

All our computations require bit precisio@ (n(f + log n)), which is the asymptotically optimal
bit precision forg > log n since the determinant, exaddt) factorization, and matrix inverse require bit
precision at leagR(nf3).

Note that we assume a PRAM model of parallel computation, with unit cost arithmetic operations,
including division, over a finite field, whereas prior works did not generally require unit cost division
over a finite field. See the Conclusion, Section 9 for a further discussion of the repercussions of this
assumption. Since numerical analysis practitioners would not necessarily use algorithms which need the
precision of the computation in the worst case (i.e., worst ill-conditioned matrix) as it happens in our
proposed algorithms, the most convincing motivation for our algorithms is their theoretical interest.

To solve the various matrix problems considered in this paper, we compute a RF of an SPD matrix,
using the techniques of Newton'’s iteration and Newton—Hensel lifting, as well as the Variable Diagonal
technigue. We provide improvements to these techniques by application of a generalization of the stream
contraction technique of Pan and Reif [72] to do a multilevel, pipelined Newton iteration, followed by
multilevel, pipelined Newton—Hensel lifting. Our algorithms give an exact factorization, but nevertheless
avoid computation of the characteristic polynomial or related forms.

Using reductions to the RF algorithm, we exactly compute, for SPD mattiteand QR factoriza-
tions, and in the generic case where the minimal polynomial is the characteristic polynomial, we also
compute their reduction into upper Hessenberg form via a Las Vegas randomized algorithm. Using further
reductions to th&.U factorization, for arbitrary integer or rational matrices (which need not be SPD), we
exactly compute solution of the corresponding linear systems, the determinant magnitude, the inverse,
and the rank.

Note To simplify our presentation, we presemgradual development and refinement of the RF al-
gorithm We first describe our RF algorithm and provide the analysis in the case of dense unstructured

92 John H. Reif / Journal of Computer and System Sciences 71 (2005) 86—143

matrices, and only later introduce the complexities of structured matrices; there we specialize the RF
algorithm and extend its analysis to the important case of inputs matrices with bounded displacement
rank.

Our parallel algorithms for dense and sparse matrickesthe case of dense and sparse matrices, we
reduce the known parallel time bounds for factorization of these matricestitwyg® n) to O (log? n)
without an increase in processors, matching the best known work bounds of known parallel algorithms
with polylog time bounds. For dense matrices, we show that all of these factorizations and computations
can be done in parallel tim@ (log? n) with M (n) processors. For sparse matrices, (With:) nonzero
entries) which are(n)-separable as defined above, we shdwand QR factorizations can be done in
parallel timeO (log? n) with n + M (s(n)) processors wherg(n) is of the formn? for 0 < y < 1.

Our results for structured matrice®ur results apply also to a large class of structured matrices, in
particular Toeplitz matrices and matrices of bounded displacementTaitkis where we get our most
significant improvements and results over previous Wafi.show that for this class of SPD structured
matrices, we can compute an exatl factorization efficiently in parallel with polylog time bounds,
dropping processor bounds from quadratic to linear.

We first describe our parallel algorithm for structured linear systems of bounded displacement rank
which costs time) (log® n) usingP (n) processors (wher () is defined in Sectiofh.3). This processor
reduction from:? to P (n) is the major result of this paper, and uses techniques specific to these structured
matrices. Using the generalized stream contraction technique, we decrease our time boututg ta),
using P (n) processors. We also give parallel algorithms, with the same bounds, for finding the exact
solution, determinant magnitude, inverse, and rank of these structured matrices.

We apply these results to develop efficient randomized parallel algorithms for the following problems
in the same parallel time (log? n) and P(n) processor bounds: (i) polynomial resultant, and (i) Padé
approximants of rational functions [36,61], and with a faadgtog ») more time, (iii) polynomial GCDs
and extended GCD. With a factor @f(log n) time increase and the same processor bounds, we also
solve: (v) the real root problem: finding all the roots of a polynomial with only real roots. We are the first
to give parallel algorithms for these problems that cost polylog time with a linear number of processors.
Our results drop by a nearly linear factor the best previous processor bounds for polylog time parallel
algorithms for all these problems, and our results are within a constant factor of work compared to the best
sequential work bounds @ (P (n) Iog2 n). (Also we obtain similar parallel bounds for the symmetric
tridiagonal eigenvalue problem: finding all the eigenvalues of a symmetric tridiagorat matrix.
However, Bini and Pan [11] previously gave polylog time bounds for this problem with a linear number
of deterministic processors.)

Cautionary remarksDue to the size of the constant factors in our complexity bounds, and our use the
arithmetic model (which does not take into account the Boolean cost), we feel our results are of theoretical
interest only.

1.7. Organization of the paper

In Section 1, we have motivated the problems we solve and stated our results and previous results.

Section 2 gives some preliminary definitions. In this section, we define matrix notations, and problems,
as well as introduce the RF Sequence and Tree of matrices. We also discuss a well-known reduction
involving normal forms which allows us to assume that the input matrix is SPD.

John H. Reif / Journal of Computer and System Sciences 71 (2005) 86—143 93

To simplify the presentation of RF algorithms, we first describe in Se&iour parallel algorithm to
compute the RF Tree of a matrix and provide the (much simpler) analysis in the case of dense matrices.
A statement of the RF algorithm is given Section 3.3. Details of the two components of the algorithm,
namely Newton—Hensel lifting and Newton iteration are separately dealt with in detail in Sections 3.4
and 3.5. The analysis of the RF algorithm, with the proof that it costs parallelitog)® 1) usingM ()
processors, is completed in Section 3.6.

In Section 4, we introduce the complexities of structured matrices and the important condept of
placement rankWe describe the specialization of our parallel algorithm for the RF computation required
for matrices of bounded displacement rank, and modifications and extensions required to efficiently do
Newton—Hensel Lifting and Newton iteration in this case. There we also extend the analysis of the RF
algorithm to this considerably more complicated case, which is our main result.

Section 5 specializes our RF computation to parallel nested dissection (ND), giving efficient parallel
factorizations of symmetric matrices witfin)-separable graphs i@ (log® n) time andn + M (s(n))
processors.

Section 6 gives applications of the RF computation. We provide efficient reductions of several matrix
problems (such as determinant, matrix inverse, linear system solutiprQR, and Hessenberg factor-
izations, singular value decomposition, and RANK) to RF computation, and applications to specialized
classes of matrices, including sparse and structured matrices. We also give applications to polynomial
computations, and to parallel algorithms for Sturm sequences and the real root problem.

Section 7 proves some condition bounds for random matrices. Section 8 gives a randomized algorithm
for general problem of constructing displacement generators.

Section 9 concludes the paper with mention of open problems and acknowledgements.

2. Preliminaries

This section contains some definitions, notations and previously known results that will be of use later
in this paper.

2.1. Matrix definitions

Throughout this paper all logarithms are base 2. All matrix products are inner products. Vectors and
matrices are denoted by lower and upper case characters, respectively.

Generally, we assume input mati¥s a square matrix of size x n, except where we compu@R-
factors, where the inpdt can be a rectangular matrix of sizex n, wherem >n. Many of our algorithms
assume, without loss of generality, thais a power of 2 Note that, although all our results apply to
rational matrices, we can always multiply a rational matrix by an appropriate integer to form an integer
matrix. For simplicity, we assume without loss of generality throughout this paper the matpceto
our factorization algorithms have integer entriescd®?, whereg<n?®. However, our algorithms will
in general generate and output rational matrices.

| andO denote identity and null matrices of the appropriate sizes. Supersdanigicates transposition,
so AT denotes the transpose of a matrix or of a veétoh is defined to besymmetridf A7 = A. Let
det (A) denote thaleterminanf A. A is singularif det(A) = 0, else it isnonsingular Therank of A
is the dimension of the linear space spanned by the columAsIbfA is nonsingular, then thieverse

94 John H. Reif / Journal of Computer and System Sciences 71 (2005) 86—143

A~Lis defined and thadjointis the matrix adjd) = der (A)A~L. If Ais an integer matrix, then so is the
adjoint.

Let A = [a;;] denote the elements &f Theprincipal diagonalof Aare the elements 1, azo, . . ., au,.
Letdiag(ao, ..., a,—1) be the diagonal matrix with diagonal elemeats. .., a,—1 and O at the off-
diagonal elements. A submatrix &f will be induced by a sequence of rows, sayio, ..., i, and
columns, sayj1, j2, ..., j./- A principal submatrixof A is a square submatrix induced by selecting the
same sequence of row indices, $ay= j1,i2 = j2, ..., iy = j as column indices, and it islaading
principal submatrixof A if these indices are consecutive starting asadyi; = j1 = 1,i2 = jo =
2,..., iy = j» =n'. Aispositive definitéf x” Ax > 0 for all nonzero vectors. If Ais positive definite,
every principal submatrix is also positive definiteAlfs positive definite, theA is always nonsingular.
A matrix is calledSPDif it is symmetric and positive definite. For any nonsingular mag&ixa” A is
SPD.

A hasorthonormal columng A7 A = 1. If Ais also square thefvis anorthogonalmatrix. A is lower
(uppe) triangularif a;; = Ofori < j (j < i, respectively)Aisb-bandedf a;; = 0for2|j —i|+1 > b,
so the nonzeros occur within only a band of wititaround the diagonah is b-block diagonalf A has
nonzero entries only at a sequence of disjbixt b blocks on the diagonal.

2.1.1. Matrix norms and required bit precision

Let the elements of matrid = [a;;]. Forp =1, 2, 00, let ||A]|, = SUPo Hllﬁly denote thg-norm
of matrix A, so||All1 = max; >, |aij| and||Allc = max }_; |a;;|. For each suctp = 1, co, (se€[35])
IAllp/n< max jla; ;| <||All2- Also, foreach such = 1, oo, (see[35, p. 57]) Al ,//n <[All2<|Allp
V/n. We can bounddet (A)|<n!(max, ; la;;j|)" < (n(max, ; |a;;|))". These norm bounds imply

Proposition 2.1. Assuming for each, j that |a;;| <2, then ||A|2<2Pn® and |det (A)| <27, where
n =n(f +log n).

Note that this bound on the determinant is tightfor log n since the determinant for the tridiagonal
matrix with entries of magnitudé’zas value 2% and so the exact matrix inverse ard factorization
requires bit precision at lea€t(n). Thus, although the input bit precision is ord(p) per input entry,
any algorithm for these problems will require computations involving bit preci€erB) per output
entry.

If Ais nonsingular, letond,(A) = ||A]l, - ||A*1||p for p = 1,2, 00. Note that for nonsingu-
lar A, conda(A) = ||All2 - |A7Y2>1, so|[A~Y|2>1/||All2. The above norm bounds imply that
condoo(A)n < conda(A) <condso(A)n for eachp = 1, co. A is well conditionedif cond,,(A) <n9D
forany p € {1, 2, oo}. Note that ifA is well conditioned, then so are’ A andAAT.

Note Throughout this papewe drop the subscript p when we wish to indicate the 2-neofiA| =
1 Al2.

2.2. The normal form reduction
We compute the inverse and solve linear systems for the class of rational matrices. The only restriction

is that they must have (a) input representation of a polynomial number of bits and (b) be nonsingular.
They do not have to be positive definite.

John H. Reif / Journal of Computer and System Sciences 71 (2005) 86—143 95

Our paper gives an efficient parallel algorithm for the RF of such matrices with the additional restriction
that the input be SPD. The requirement that the matriXSB® presents no difficulties. To solve the
associated matrix inverse and linear systems problems, the input matrix is not SPD, we use a well-known
reduction involving normal forms. Even if a nonsingulais not SPDthe normal formAA” always
is SPD so AAT can be factored ad AT = LU whereU, L are triangular (this squares the condition
number, which is not a problem since using the techniques of this paper we can make the condition
number nearly 1). So we can apply the RF algorithm giving factorizatiéh = LU . We now show this
factorization ofAA” allows us to solve the associated linear system and to compute the invése of

With this preprocessing, and given asvectorb, the linear systemx = b can be solved using the
same factorizatiom A7 = LU in two back-solving stages by first solving forvectory and then for
n-vectorz in the triangular linear systemsy = b, Uz = y (for which there are well-known highly
efficient parallel algorithms; s¢d2]). Then we letc = A7 z.

Note that(AAT)~1 = U~1L~1 so theinverse ohis A=l = AT (AAT)"1 = ATy -1L-1

2.3. RF sequences of matrices

RF SEQUENCE Problenif possible, compute a sequence of matrides: Ao, Az, ..., Ajog » Where

ford=0,1,...,logn —1, Ag is ann/2 x n/2¢ matrix which is partitioned as
| Wa Xa

whereW,, X4, Y, Zq are matrices each of sizg2?+1 x n/2*Y andA g1 = Zy — YaW; X4 is called
the Schur complememf Gaussian elimination of the variables of blodlg.

If, for any d, no such factorization is possible, thaimas no RF Sequence. However, any SPD matrix
has a unique RF sequence (§&4]).

Proposition 2.2(Follows from known properties of Schur complements and Pan and@Reif3]). In
the RF sequencassumingd is SPD then for alld, 0<d < log n —1and« € {0, 1}, Ay,1 andW, are
SPD [[Agsall, IWall<llAall, TAZL 1L 1W< IAZML /1A 1< min(lAgrall, I Wal), 1/l Agll<
min(IIA;illl, IWall ™), cond(Wy) <cond(A).

Proposition 2.3. The inverse of A can be recursively computed from the RF sequencasfdlows
At |1 —wiix, [w;t o I) 07
d o I O AL JL-YaW;t 1

The above formula expresses the inverse of the input matrix in terms of a constant number of products,
sums and two inverses of fouy2 x n/2 submatrices.

Note that the Schur complement of an integer mairixay not be an integer matrix. Therefore we
define a multipliesng = 1 and ford > 0, mg = [[*_3 det (W).

Lemma 2.1. Assumingdg = A is an integer matrixthen for eachi >0, my A, is an integer matrix

96 John H. Reif / Journal of Computer and System Sciences 71 (2005) 86—143

Proof. We have definedi; to be the matrix derived fromA by d stages of successive block Gaussian
elimination of the variables correspondingWa, . .., Wy_1. Note thatW, is of sizen/2¢%1 x n /2441,
The eliminated variables after stagare thus the first; = n(1 — 1/2%) = Zf;oln/z”l variables of
the original linear system @& corresponding to the upper leff x ¢; submatriXW of A. Consider the
alternative partition

W X
A= [v Z]
By well-known properties of block Gaussian elimination, we can get the same mgtrby a block
Gaussian elimination fromA, where we eliminate all thesg variables in a single stage rather thdn
stages. Thusl, is also equal to the Schur complemeht- Y W—1X derived by Gaussian elimination
of the variables of submatri¥/ from A. Hence, the recursive formulae for the RF sequence can be
applied to give a partiaLU factorization of W into a product of block triangular matrices with the

matricesWy, ..., Wy_1 on the diagonals. Since the determinants of a triangular matrix are obtained by
multiplying all the elements of their principal diagonals (see the proof of Le®2jg we have that

d—1
det(W) = [[det(W;) = mq.
i=0
SinceAis assumed to be an integer matrix, all its submatrices including, Y, Z are integer matrices
andder (W)W 1 is the integer adjoint matrix. Thus

myAg = det(W)Ag = det(W)Z — Y (det (W)W~ L)X

is an integer matrix. O

2.4. RF trees of matrices

The RF TREE Problems defined as follows: given am x n matrix A, wheren is a power of 2,
compute, if possible, a full binary tree of depth lagvhose nodes are matrices, and where all nodes at
depthd, 0<d < log n aren/2? x n/2¢ matrices with notatiom, wherex € {0, 1}¢ is a binary string of
lengthd.

Let () denote the empty string. # = 0 thena is the empty string and , = A is the root of the tree.
For 0<d < log n, each matrix4, at depthd has exactly two children in the treg,; andA,g at depth
d + 1 which will be defined by recursion. In particular, #e= 0,1, ..., log n — 1, A, is ann/2¢ x n/2¢
matrix which is partitioned as

A X
A= o OC’
=[]

whereA,o, X, Y,, Z, are matrices each of sizg2?+1 x n/2¢*1 andA 1 = Z,— Y, A ¢ X, is theSchur
complementf, for any d, no such factorization is possible (this occurs when sdids singular), then
Ahas no RF tree.

Important note The RF tree ofA is very similar to the RF sequence = Ag, A1, A2, ..., Ajogn
defined in Sectior2.3. All nodes in the RF sequence are subscripted with an integer denoting the depth,

John H. Reif / Journal of Computer and System Sciences 71 (2005) 86—143 97

whereas all nodes in the RF tree are labeled with a binary string whose length is the depth (thus in the RF
tree, the depth is implicitly defined from the length of this binary string and does not have to be explicitly
included in the subscript). In particulaty = A, for eachd = 1, ..., log n, wherex = 1¢. The only
difference is that the RF tree also recursively factors each ddthe- A,o matrices appearing in the RF
sequence. Any SPD matrix has an RF sequence and therefore an RF tree, and it is unique. Since we havi
recursively defineda,1 = Z, — Y,A 5 X,, this implies:

Proposition 2.4 (ollows from known properties of Schur complements and Proposition 2.2
Pan and Reif69,73]). Inthe RF assumingd, is SPD then for alld, 0<d < log n — 1and« € {0, 1}¢;

Au1, Ao are SPD || Axll, Aol < [1Aqll; IIA;11||, IIA;01|| <IAZH: 1/1A7HI< min(ll Azl 11 Asol);
/1Al < min(AL, 14,6 1) cond(Aq0) < cond(A).

This RF tree gives the following useful recursive formulae holding for &ll{0, 1}, where 0<d < log
n—1

Proposition 2.4. The LU factorization of A can be recursively computed from the RF tregasfallows
I 00[A40 0 1[1 A lx,
Ay = -1 20 .
Y,Ag 1| O Aa][O I

Proposition 2.5. The determinant of A can be recursively computed from the RF treead #llows
det(A,) = det(Ayo)det(Ay).

Proposition 2.6. The inverse of A can be recursively computed from the RF treead #llows
-1 -1
Ail = 4 _AacO Xy AaO 01 1 1 0)
! o 1 0 Al -Y.Ag I

Note Throughout the rest of this paper, we will deal only with RF trees. Thus we will hereafter simply
call an RF tree afRF, and we will call the RF tree problem simply the RF problem unless otherwise
indicated.

3. Our parallel algorithm for computing an RF of a matrix

In this section, we describe how to compute an RF for SPD matrices. We start with some definitions.
Fix an SPDn x n matrix A, wheren is a power of 2, with integer entries of magnituetézﬁ, where
B<nOW.

3.1. Random choice of modulus

Proposition 3.1(See Schwarti80] and Zippel[84]). Let p be a prime number selected at random from
the interval[2(n||Alloo) /1, 2(n|| Alls0)€?], for anycg > 2. If det(A) # 0, thenO £ det(A) (modp)
with probability >1 — Q(nlog(n|| Allso)/ (]| Allac)©) =1 — 1/n%D

98 John H. Reif / Journal of Computer and System Sciences 71 (2005) 86—143
3.2. Multipliers for the RF

We now define multipliers:,, for the matricesA,. Definem = 1 for () = the empty string, and for
any binary stringx, letm,o = m, and letm,1 = m, det(A,p). These multipliers are defined similarly
to the multipliers defined in Sectidh3, except that they are subscripted by binary strings rather than
integers. For example, far = 1%, m, is identical to the multipliern, defined in Section 2.3, since
A, = A,. Note that each,g is a submatrix ofd,, so the multiplierm,g for A,g is defined to be the
same as the multiplien,, for A,. We have defined,, to be the upper lefi /2% x n/21*! submatrix of the
matrix derived fromA by k stages of successive block Gaussian elimination of the variables of the blocks
Ao, fori =1,..., k. Note thatA,,q is of sizen/2/%+1 x n/21%1+1 The variables eliminated (by this
Gaussian elimination) after stagare thus the first, = Y°*_, n/2/%!+1 variables of the original linear
system ofA corresponding to the upper leff x e, submatriX\W of A.

We now show thatr, A, is an integer matrix ifA is an integer matrix. Using an inductive argument
similarto one used inthe proof of Lemma 2.1. To see thig, bt the number of onesinLetasd, .. ., o1
be the prefixes of ending with 1 in order of increasing length. Using a similar argument as Lemma 2.1
(but instead withWW being the upper left submatrix &), we consider the partition

w X

=[5
SinceAis assumed to be an integer matrix, all its submatrices including, Y, Z are integer matrices.
By well-known properties of block Gaussian elimination, we get the same mattixlagblock Gaussian
elimination fromA, where we eliminate all thegg variables in a single stage rather thestages. Hence,
A, is also equal to the upper left/2/* x n/2/*l submatrix of the Schur complemeft— Y W—1x
derived by Gaussian elimination of the variables of submatfitom A. Note thatA, depends only
on the elements of the upper lgt, + 1n/2/*) x (e, + n/2/*) submatrix ofA, and not on any other
elements ofA outside on this submatrix. Thus the recursive formulae fotthdactorization of the RF
factorization given in PropositioR.4 can be applied to give a partldll factorization oWinto a product
of block triangular matrices with the matricés, o, ..., A0 on the diagonals. Since the determinant
of a triangular matrix is obtained by multiplying all the elements of its principal diagonal, we have that
det(W) =]_[f-;1 det (Ay0) = my. Sinceder (W)W ~1is the adjoint matrix of integer matriW, it is also
an integer matrix. Thusi, A, = det (W)A, = det(W)Z — Y (det (W)W 1) X is an integer matrix.

By Proposition 2.4|| A1 ||, | Axoll < || Axll. Hence by Proposition 2.1, it follows that there is a constant
¢ such thatim,| <[], 263/2)% < 2001 1/2)en(p+log m) < gén(B+log n) \whereq is of lengthd andn =
n(B + log n). We have shown

Lemma 3.1. AssumingA, = A is an integer matrixand the entries of A have magnituetezﬂ, then
for eachd >0, and for each binary string of lengthd, m, A, is an integer matrix andim.,| <2 where
n =n(B + log n) and¢ is a constant

Now we will define an ordering to evaluate the multiplierg fast in parallel. LetG be the directed
acyclic digraph derived from the RF tree by simply (i) renaming each Agdwsy its indexx, so the nodes
of G are stringgx € {0, 1}|d < log n}, (ii) including all tree edges reverse directed from the children
to parents, and (iii) adding directed edges from each node of #drno its sibling of form«0. Note

John H. Reif / Journal of Computer and System Sciences 71 (2005) 86—143 929

that the longest directed path@has 1+ 2 log n nodes. Hence the nodes@fcan be partitioned into
1+42(depth of the RF tree} 142 log n blocksIly, . .., Iz og » SO that the evaluation ef,, is executed
in parallel for allx € IT; in 1 4 2 log n sequential stages fgr= 0, ..., 2 log ». In particular, we can
let ITp = {()} contain just the empty string corresponding to the root, and for eath= 1, ...,log n
let TToy_1 = {«O0|a € {0, 1}¢~1}, andIlyy = {«1|x € {0, 1}¢~1}. This ordering of the directed edges®f
allows for the recursive computation @f,o = m, andm,1 = m, det (A,p) (since it will be the case that
computingdet (A,p) requires the computation of,o).

3.3. RF algorithm

We now describe our algorithm:

Algorithm RF

INPUT: ann x n integer nonsingular SPD matri, with integer entries of magnitude 2#, where
p<n®® and w.l.o.g., we assumeis a power of 2.

Let = = n(p + log n). All of our computations will use bit precision at moSt(r).

1. Letp be arandom prime from the intervali2| A ||o0)°/n < p < 2(n||A|l0)°, for somecg > 2.

2. LetA = A + «I, wherex = p(n||A|l«)“! is an integer and; is a sufficiently large positive integer
constant.

3. Apply the Newton iteration of Sectid®5 using bit precisior©O (n), to compute an approximate RF
of A within accuracy 2¢", for a sufficiently large positive constant

4. Using the RF tree fod, within accuracy 27, compute by Propositio2.4 an approximat&U
factorization of the rational matrices, in the RF ofA and from these compute by Proposition 2.5 a
rational approximation tdez (A,) up to accuracy within 2°7.

5. Construct the ordered partitidiy, . . ., Iz |og , Of the strings(« € {0, 1}¢|d < log n} defined above.
For eachj =0, ..., 2 logn do (in sequence).

For each binary string < I1; doin parallel.

Recursively approximately compute, up to accuracy withiff2multiplierss,, for the matricesA,
from the approximation to their determinants, as follows:

If « = () thenletm = 1.

Else if |«| > Othen do

(i) Let« = o'b, whereb is the last bit ofx.

(ii) If b =0thendoletm, = m,.

Else if b = 1 then dolet s, = the product ofi,, and the approximation afet (A).

6. For eachd =0, ..., log n andu € {0, 1}¢, in paralleldo:

To compute the integer matrix, A, exactly, round to the nearest integer the produei pfimes this
rational approximation tel,. This gives the exact RF of.

Let A (mod p) denote the matrix derived from a rational mathiky applying the standard homomor-
phism from the rational® to the finite fieldZ ,. .

7. Applying the homomorphism fror@ to Z,, reduce(modp) the exact RF ofA, yielding the RF
(modp) of A. (Note that we can apply this homomorphism fr@o Z ,, since we have assumed a
model of computation with unit cost division over a finite field.) Also, compi#g A,) (modp) by
Proposition2.5 and computéA,)~1 (modp) by Proposition 2.6 in parallel for eaehe {0, 1}¢ for
d=logn,logn—-1,...,0.

100 John H. Reif / Journal of Computer and System Sciences 71 (2005) 86—143

8. If det(A,) = 0(modp) for anya in the previous stepshen go to step 1 and choose anotiper
9. Apply Newton—Hensel lifting of Sectio8.4 to computdor i = 0, ..., k* = [log(cn/log p)] the
RF (modp?) of A. This gives us the REmodp?") of A.
10. For eachx € {0, 1}'°97 in paralleldo

Setdet (A,) (modpzk*) to be the scalar entry iA, (modpzk*).
CommentHere we consider each leaf of the RF tree. In this CA§QmOdp2k) is a 1x 1 matrix,

whose scalar entry is its determinamodpzk*).
11. For eachd =logn —1,logn —2,...,0do (in sequence)
for all « € {0, 1}¢ in paralleldo computeder (A,) (modpzk) by the recursive formulager (A,) =
det(A,o0)det (Ay) (modpzk') implied by Propositior2.5.
12. For eachj =0, ..., 2 logn do (in sequence)
for each binary string € I1; doin parallel

Recursively compute the multipliers,, (modpzk*) for the matricesA, from their determinants

(modpzk*), as follows:

If « = () thenletm = 1.

Else if |«| > Othen do

() Leta = o'b, whereb is the last bit ofx.

(i) If b = Othen doletm, = m, (modp?).
Else if b = 1 then doletm, = m,, det(A,0) (modp?)
13. for eachd =0, ..., log n and« € {0, 14, in paralleldo:

Using the RKkmod pzk*) of Acomputed above, represetit exactly as the rational fraction of integer
matricesn, A, (modp?) divided bym, (modp2).
14. OUTPUT The exact RF ofA.

After we define Newton—Hensel lifting (Secti@m) and Newton iterations (Section 3.5), we complete
the proof and analysis of the RF algorithm in Section 3.6. There we show that if the input to our RF
algorithm is assumed (as stated in the algorithm) to be a nonsingular rathien with high likelihood
>1—1/n%D | the execution will not loop from step 8 back to step 1, so the stated time bounds thus hold
with high likelihood >1 — 1/n%® . The RF algorithm is thus always correct, but theoretically may loop
forever, with probability 0. (Alternatively, we may alter the RF algorithm to not necessarily assume the
input is nonsingular, and simply terminate after only one such loop from step 8. Then if the input matrix
A is nonsingular, this termination will occur with low likelihood1/n%®. So on termination, we can
conclude, with high likelihood>1 — 1/2%D | that the input matriX is nonsingular, noting that we may
now be in error with low likelihood< 1/n%®D)

3.4. Newton—Hensel lifting

3.4.1. Lifting of a matrix
Fix a nonsingular x n matrixAand a primep. In this section we assume that we have already computed
A~1(modp). Zassenhaus extended Hensel’s lifting to exponentially increase the modulus. The resulting

John H. Reif / Journal of Computer and System Sciences 71 (2005) 86—143 101

Newton—Hensel lifting is the following algorithm:

INPUT: a positive numbek, andn x n matricesA andA~! (modp).
1. SO = A=Y (modp) .
2.Fori=1,...,kdos® = s=D@21 — A5¢=D) (modp)?.

Moenck and Cartef57] show

Proposition 3.2. S® = A~ (mod p2").

3.4.2. Newton—Hensel lifting of modular RFs

Recall that the RF oAis a full binary tree of depth log. Each internal node is ary2? x n/2¢ matrix
A,. The RF ofA, is defined in terms of the RF of twgy2¢t1 x n/29+1 matrices, namely,; andA,o,
and furthermored 1 is defined in terms of submatrices 4f and the inverse ofl .

LetanRF (modp) of ann x n matrix A be an RF of matriA where each element is takémod p).
This will also be called anodular RF In this section we assume that we are given an(iRéd p) of
matrix A . We shall compute the Rfnod p2°) of A.

Recall thatM (n) = n® is the minimum number of PRAM processors necessary to multiply:twa
matrices inO (log n) parallel steps, where we assume- 2.

Proposition 3.3. z';gg 210(M(n/27)) < O(M(n)).

Note that the obvious way to compute the (m'odpzk) of Ais by proceeding level by level through
the RF in logn stages, each requiring (k log n) time andO (M (n))>2? 0 (M (n/2%)) processors for
the requireck matrix products for the nodes of depth This requires total parallel timé (k log? n)
using O (M (n)) processors. However, we can do better with the following:

3.4.3. Newton—Hensel lifting algorithm for an RF
INPUT: RF(modp) of Aand numbek > 1.
For each matrix4, in the RFdo in parallel:
1. INITIALIZATION:
() Let AL = A, (modp)
(i) ComputeSa((O) = A7 (modp) from the RF(modp) of A by applying Propositioi2.6.
2. Foreachi =1, ...,k do
Loop Invariant: We have just computed
AY™Y = A, (modp?) andsy Y = A1 (modp? .
Lets) = sVar — AU=Dgli=Dy,
Ford < log n, let

A — | Asg X5
o chz) Zo((l) ’

whereA), X, v\ 7" are matrices each of sing2¢ 1 xn /24t andleta’) = 7~y s x .

102 John H. Reif / Journal of Computer and System Sciences 71 (2005) 86—143

OUTPUT: RF(modp?") of A given by the{A)}.

This algorithm, as stated, requires parallel ti;é log? n) usingO (M (n)) processors. However, we
can use the technique stream contractiorfse€[72]) to decrease the time @ ((k + log n) log r) time
without a processor penalty. The idea is to note that for ea€h<d < log n, and each: € {0, 1}¢
defining an internal nodg, at depthd, the following hold:

1. The matricest,o (modp?) and A1 (modp? ") are defined in terms of submatrices Af (mod
P2 . . | .
2. The computatiors)’ = A; ! (modp?) depends on the previous computaticijs ' = A (mod

p? " andsY = a7t (modp?).

This implies that we can pipeline the computation, using stream contraction, as follows: as our basis
stepr = 0 we computeséo) foralld = 0,...logn and eachx e {0,1}¢. We assume for our in-
duction hypothesis that at time0<r < k + log n we have computed ea(ﬂ’i’) for all i, d, « where
0<d<logn,0<i<t —d anda € {0, 1}4. Then we apply the RF formula and compute one further
product at each node of the recursion tree to compute by gimel eachSo(f“) for all i, d, « where
0<d<logn,i =t+1—d anda € {0, 1}¢. Summarizing, we have (using a small constant factor
slowdown to reduce the processor bounds fr@/ (1)) to M (n)):

Lemma 3.2. Given anRF (modp) of ann x n matrix A we can compute aR F (modpzk) of Ain
parallel time O ((k + log n) log n) usingM (n) processors

3.5. Newton iterations for approximation of an RF of diagonally dominant matrices

3.5.1. e-Diagonally dominant matrices
Let A be ann x n symmetric matrix whered = [q;;]. We defineA to be¢-DD for somes > 0
if for all i, 1<i<n, ¢laji| > Z'}=1’j#l- la;j|. Ais DD if Aise-DD for0 < ¢ < 1. Let D(A) =

diag(ay1, a2, . .., ay,) denote ther x n diagonal matrix with the diagonal entriess, azo, . . ., auy.
ThenD(A)™! = diag(1/a11, 1/azo, . .., 1/auy,) is then x n diagonal matrix with the diagonal entries
Vain, 1azs, ..., Lap. SINcellI — D(A) LAl <max ==tz 10 _ it follows:

|aiil
Proposition 3.4. If Aise-DD then||I — D(A) 1A| s < .

We will useB@ = D(A)~1 as the initial approximation to the inverseffn our Newton iterations.

Letmindiag(A) = min; |a; ;|.

Note Lower bounds onnindiag(A) will later provide us with upper bounds on the norm of an
approximate inverse @&, which will be used in the proof of our RF algorithm.

Proposition 3.5. If A = (a; ;) is asymmetrie-DD matrix of sizex x n, then one stage of Gaussian elimi-
nation results in amatrix’ that is symmetric:/(1—¢)-DD and withmindiag(A") > (1—e)mindiag(A).

Proof. Let the row and column indices #fbe in{1, ..., n}. Let A" = (d’; ;) be the symmetric matrix of
sizen—1xn—1 matrix derived fronA by one stage of Gaussian elimination, say by elimination of the first

John H. Reif / Journal of Computer and System Sciences 71 (2005) 86—143 103

column and row ofA. For notational ease, we allow the row and columns indices td be in{2, ..., n}.
Foralli, 2<i <n, Gaussian elimination gives; ; = a; ; —ax, ja; 1/a1,1. SinceAis symmetric and-DD,
@i j1<lai j| +lax,j|laial/laz 1] <lai j| + lai 1] AlsO |ai | <|a'i | +lavi1/lara| <|a'ii| +&?lai], SO
lai.i|<|d'i.;|/(1 — €%). This also implies thala’; ;| > |a; ;|(1 — €%) somindiag(A")>mindiag(A)(1 —
) >mindiag(A)(1 — ¢). SinceAis &-DD we have

n n
Z la's j| = Z lai,j — ay,jai1/aral <e(laiil + lai1]) <e(laii| + éelaiil)
J=2.j#i J=2.j#i

=e(L+o)aii| <e(L+o)|a'iil/(L—?) = elai i1/ (1 — o).
It is also easy to verify thad’ is symmetric. O

It follows by induction that ifA is symmetric anc-DD, thenk Gaussian elimination stages re-
sults in a matrix that is symmetrie/(1 — k¢)-DD, and where thenindiag of that resulting matrix is
>mindiag(A)(1 — ke). Since block Gaussian elimination can be done by at meospeated Gaussian
elimination stages,

Proposition 3.6. If A is ¢-DD, then all the matrices,, in the RF of A are at least/(1 — n¢)-DD and
havemindiag(A,) >mindiag(A)(1 — ne).

In the following, we will consider am x n, DD, symmetricA = (q; ;). Define a quantity to beery

smallwith respect taA if it is of the form (n||A||)‘C/, for some constant > 1. Note that the sum of two

very small quantities with respect to the same matrix is also very small. (Note that this definition allows
e = (n||A]D~¢ ande = (n]|Al])"¢" to both be very small quantities, which may have distifict”. Also

note, this definition offery smallsimplifies our proofs of rapid convergence; we can alter this definition
of very small so that is a larger quantity, but this decreases the overall bit complexity of our algorithm
only by a constant factor.) Let a nonsingudelne strongly well conditioned cond>(A) <1+ ¢ for a very
small ¢ (with respect tad), and let a nonsingulak be strongly DDif A is e-DD for a very smalle. Let

A~ Aif |A — Al is very small with respect tA.

Proposition 3.7. Suppose A is symmetric and strongly DD. Then

1. All the matricesA, in the RF of A are strongly DD and haweindiag(A,) >mindiag(A) — o(1).
2. A=~ D(A)~! and is also strongly DD.

3. If |I — BA| is very smallwith respect to A\ then|| B|loo < (1/(mindiag(A)) + o(1).

Proof. The first statement is implied by Propositi8r6, and the observation thatAf, is strongly DD
then bothA,g and A, are also strongly DD. The second statement requires a detailed proof ASmce
strongly DD, therAis ¢-DD for a very smalk = (n||A||)_‘", for some constant’ > 2. Let b be theith
column of A~1. Let b, the maximum of anyb;|, for j # i. For eachj # i, since(Ab); = 0 andA
is symmetric and-DD, it follows that|b;| <ebs + |b;l|a; j1/laj j| <e(by + |bi]), Sincela; j|/la; j|<e.
Thus b, = max;; |bj|<e(byx + |bi]), SO by <elb;|/(1 — ¢). Also, since(Ab); = 1, it follows that
|bi| >1/|ai,i| —eby >1/a; i| —2(1bi] / (1—¢)), SOIb;| > 1/ (lai i |(1—&2 /(1)) > (1—&) /(ai.i| (1 2¢)) ~
1/la; |, sincee is very small (with respect t8). This implies thaw. <¢|b;|/(1 — ¢) ~ 0, sincee and
elb;| & ¢/|a; ;| are both very small (with respect£). Thus we have shown that! ~ D(A)~, soA~!

104 John H. Reif / Journal of Computer and System Sciences 71 (2005) 86—143

is also strongly DD. The same proof implies thal if — BA| ~ is very small (with respect t8), then
B ~ D(A)L.Soif ||I — BA|« is very small (with respect t8), then since is very small (with respect
toA), [|Blleo & | D(A) oo <1/min; |a; ;| <1/mindiag(A), S0 Blloo < (1/mindiag(A)) +o(1), thus
proving the third statement. OJ

Ais a nearly identity multipléNIM) if A =~ «I for a scalar constant

Proposition 3.8. Suppose A is symmetric and NIM. Then

1. Ais strongly DD and strongly well conditioned

2. All the matricesA,, in the RF of A are NIM and thus strongly DD and strongly well conditiqrasi
3. A~ ~is also NIM

Proof. Ais NIM so A ~ «I, and by definition is strongly DD. Alsoonds(A) = | All2]| A~ Y2 ~

Il |2l 2|2 = ket = 1, soAis strongly well conditioned. The second statement is implied by
Proposition3.6, and the observation thatAf, is NIM then bothA,g and A,1 are also NIM. Also, since
A1~ D(A)™1, we have thanlis also NIM. O

3.5.2. Approximate inverse of DD matrices

Let A be ann x n symmetric matrix. We will 1etB© = D(A)~1 be the initial approximation to the
inverse ofAin our Newton iterations. The Newton iteration generates a sequence of matites @, . ..
whereB® = Bk=D 21 — AB*=D) for k > 0 (see [4,5,40,41] for sequential Newton iteration and also
see [69,71] for parallel applications). Sinte B®¥ A = [— B D21 —AB*=DyA = (1 — B*=D 4)2,
it follows that:

Proposition 3.9. If A is &-DD then||7 — BR Al|» < &2

Thus|| — BRAlle = (I — B¢ DA)2|| o < (272 = &2

Let k™ be the integeflog(cr)] wherec is a positive constant. Note that since= n(f + log n), it
follows thatk™ = [log(¢n)] < O(log n), assuming that the bit precision of the entrieAafre <n?@.

So if Ais &-DD, for ¢ < % then at mosk™ Newton iterations suffice to compute the approximate

inverseB* ") with error 2-°.

3.5.3. Newton iterations within bounded bit precision

Fix a very small (with respect) ¢ = (n ||A||)‘C/ < 3—12 for some positive constant > 2. We assume
Ais NIM, and thus strongly DD, in particular isDD, for very smalle.

Forallk>0 let Ex(e) = (163)2k/16. By definition Eg(¢) = ¢ and observe thal; (¢) exactly satisfies
the recurrence; (¢) = (4Ex_1(¢))? for all k > 0. Also since we assume< 3i2 it follows E+(e) <

(162" <272 <2-ix,

Next we consider the case of Newton iteration where the input maigxot initially given with full
accuracy, and instead we are provided on-line a sequence of approxifi@tes®, ... where|A —
AW < Ex(e), and eacd® has bit precision< O (n). Let B©Q = D(A@)~1 = diag(1/ar1, 1/ano,
<oy Lay,) whereA© = [;;1. If A© is &-DD then by Propositiod.4,||I — BOAQ| o, <.

John H. Reif / Journal of Computer and System Sciences 71 (2005) 86—143 105

We will generate a sequence of matrid®, BV, BO .. .whereB® = p¢-D 21 — A® pk-1)js
the exact Newton iterate, arii®) is an approximation t&*) obtained by rounding within bit precision
O(n), so thatl|[l — BRA®| <|II — BOA®|, + Ei(e). SinceA is assumed to be NIM, then by
assumption on the close approximatiorAdfy the A%, we have

Proposition 3.10. EachA® is also NIM and thus strongly DD and strongly well conditioned

Finally, we give an inductive proof of quadratic convergence of the entire iteration sequence:

Proposition 3.11. If |Alloo>1, A andA© are ¢-DD, and alsomindiag(A)>1— o(1), then we have
11— BPAW | < Ex(e).

Proof. We use a proof by induction dn Note that the basis of the induction holds by assumption, since
¢ = Eg(e). Now for k > 1, assume the induction hypothesjg: — B DA*=D | < Ei_1(¢). By
definition of the Newton iterations,

[— BOAD — [_ pe-D (o — f0 =Dy F6) _ (f _ gD f4))2
By assumption on the approximations to thé,
IA® — AX D)o <llA = A9 oo + 1A — A% V)|oo <Ex(e) + Ex-1(o).

By Proposition3.10, A®~D is strongly DD. By the induction hypothesis] — B&DA*-D) <
Ex_1(¢). Since we have assumedndiag(A) >1—o(1), Proposition 3.7 implie§ 3%~ | ., <2 for any
sufficiently largen. Also, I — B&DA® = (j — k=D Ak=Dy 4 pk=D(4k-D _ A*)) 50 we have:
1 = BEDA® | <|lf = BEDAED | + | BE Do - [ASY — AW <Er_1(e) + 2(Ex(e) +
Er_1(e)) <AE_1(e) — 2Ey () since 4y (e) < Ex—1(e).

Thus we havell/ — B® A || o <[— BOAD|| o + Ex(e) <||(1 — B*=D A0)2|| o + Er(e) <11 —
B* D AR 12 4 Ep(e) <(AEx_1(e) — 2Ex(e))? < Ex(¢), by definition of Ex(e). O

By definition of A®) and B®), these approximate Newton iterations require(fage)) < O (n) bit
precision.

Lemma 3.3. If A is NIM and thus strongly DPthen even with the above approximations tokA =
[log(cm)]1< O(log n) Newton iterations suffice to computesing bit precision< O (n), the approximate
inverseB®) with error 27, for a positive constant.

Note We can also show that Lemn3a3 holds even with more moderate conditionsAdifior example
whereA is well conditioned rather that strongly well conditioned), but the Lemma will suffice for the RF
algorithm.

3.5.4. Nonpipelined Newton iterations for RF

Here we assume that we are given a mag&iwhich is NIM and withmindiag(A)>1. We shall
compute an approximation to the RFAfvithin error 272%™ | using bit precision< O (n). Recall again
that the RF ofA is a full binary tree of depth log. Each internal node is ary2? x n/2¢ matrix A,.

106 John H. Reif / Journal of Computer and System Sciences 71 (2005) 86—143

The RF of A, is defined in terms of the RF of twe/2?"1 x n/2?+1 matrices, namelyl,; and A,o,
and furthermoreA,; is defined in terms of submatrices af, and the inverse ofi,g. Note that the
simplest and most obvious way we might compute the R& within error 2-%™ s by proceeding up
the recursion tree in log stages. We first sketch this simple algorithm (we will give full details of a
more efficient algorithm below). At each stagie= 0, 1,, log n, we compute for all nodes of depth

an approximatiom , of A, within error 2% Then we computeB(k) which is akth Newton iteration
matrix approximating the inverse of mati, up to error:? , wheres = (n |AID)~¢, for some sufficiently
large positive constart. Recalling thak™ = [log(cr)] < O(log n), we useB§k+) to approximated ;!
within error 2% Since there are only log levels in the RF, and singgis NIM and thus strongly DD
and strongly well conditioned, the norm bounds given in Proposidensure that the error of the overall
approximate computation is at most¥™ . At each stage we need to compute approximations to two
recursive inverses. Each such stage requirdeg? n) time andO (M (n)) >2? O (M (n/2%)) processors
for the requireck repeated:/2¢ x n/2¢ matrix products for each of the/ odes of deptldl. The logn
stages requires total parallel tint&(k log? n) = O(log® n) using Z'Og" 210(M(n/27)) < O(M(n))
processors. However, this simple algorithm can be sped up using pipelining.

3.5.5. Pipelined Newton iterations for RF

Next, we will improve on thisO (log® ») algorithm for the approximate RF, decreasing the time to
0 (log? n) without an increase in processor bounds. As in Lemma 3.3, we consider the case of Newton
iteration where the recursively defined matriggsare not initially given with full accuracy, and instead
we are provided a sequence of improving approximatibfls A, ... where|A — A® || < Ex(2). I
the special casé = 0, the approximation is exacﬁ,o = A, where() is the empty string. Given these
approximants ta, we will generate a sequence of matri&@?, B\", ... where8® = 21 -
AP BEDY Thus, B will approximate the inverse of"’. We will then use Lemma 3.3 to show
quadratic convergence.

3.5.6. Newton iteration algorithm for an RF
INPUT: A &-DD symmetric matriXA of sizen x n with mindiag(A) > 1.
For eachd, o for 0<d < log n anda € {0, 1}¢, do in parallel:
1. INITIALIZATION: Let AY = A, where() is the empty string.
2. Letk™ = log(cn) for a posmve constarit.
3. LetBYY = diag(1/ary. 1/aza. . .., 1dn,), whereA = [a;;].
4. Foreachi =1,...,k" do
Loop Invariant: We have just computed! ~ which approximatesi, with error | A ™Y — A,[ls <

Ei_1(e) for e = (n| A)~¢ with ¢ > 2. Also, we have just computedly’ ~ which approximatesi ;.
with error specified byi7 — BY PV A,lleo < Ei_1(e).

() Let BY = BU" V21 — AP B,
(i) Ford < logn, let

John H. Reif / Journal of Computer and System Sciences 71 (2005) 86—143 107

whered), X v", Z{) are matrices each of sizg2?+1 x n/24+ 1 andA") = Z{ — vV B XY
OUTPUT: The approximate REAY "}, which approximates the RF afwithin 2-norm error 2.

3.5.7. Bounding error accumulation in recursions

We now show that in the initial approximatic{)ﬁ;o)} to the RF ofA, the errors do not accumulate much
on the recursions. Assumirgis NIM and thus strongly well conditioned, by Propositi8rv, all the
matricesA, in the RF ofA are NIM and thus strongly well conditioned. Since our initial approximations
to the inverses of matrices occurring in the RF are themselves NIM and thus strongly well conditioned,
it follows by Proposition 3.7, that our initial approximations to its inverse give an approximation to the
RF, with very small (with respect) relative error.

Lemma 3.4. Fix a very smal(with respectto Ac = (n]|A ||)*C/ for some large enough positive constant
¢’. Inthe Newton iteration algorithm for the R&t each deptld = 1, ..., log n, and for each: € {0, 14,
on the first stage of Newton iteratiptine initial approximation of the RF matrices at depth d have very

small(with respect to Aoco-norm errore. In particular, ||A§O) — Ayllc<eand||I — B§°)A1||oo <e.

Lemma 3.5. Foreachd =1, ..., ng n, and each € {0, 1}¢, the co-norm error for the ith iteration is
1A — Aulloe < Ei(e) and | T — By Ayllos < Ei(e).

Proof. Lemma3.5 is proved by induction. We use Lemma 3.4 as a basis for the induction. The inductive
step follows directly from Lemma 3.3 applied {tﬂ&’)} and{1§§’)}, which provides the required bounds
on the errors of theh approximate RF{A&’)}. O

Note again that these approximate Newton iterations redquire bit precision.

3.5.8. Applying stream contraction to the RF Newton iterations
As in Section 3.4, we use the techniquestaam contractiono decrease the time @ (log® n) time

without a processor penalty. To simplify notation, let us defir@M P! to be the computation of "

and B, where this approximate computation is within error specified by Lemma 3.5. Note that for
eachd, 0<d < log n, and each: € {0, 1)4 defining an internal nodd,, at depthd, the computation
C O M P!, depends only on the computatiofi® M P> andC 0 M P’ ;. Furthermore, the computation

coM P!t is defined in terms of submatrices 4f ~ and of A% . In particular, we need only to
apply Newton iteration one more time to these approximated matrices. This implies that we can pipeline
the computation oCOMP;, using stream contraction, just as we did in Section 3.49£8r to reduce
the parallel time fronQ(Iog3 n) to O(Iog2 n) without a processor increase.

We pipeline the computation as follows: as our basisste® we have done the computatiGrOMPg
foralld =0, ...log nand each < {0, 1}, We assume for our induction hypothesis that at tinfle<s <
k + log n we have done the computatiOIOMPé forall i, d, « where O<d < log n, 0<i<t — d, and
« € {0, 1}¢. Then we apply the approximation RF formula and perform one more product at each node
of the recursion tree to do computaticnt)Mngrl by timer + 1 for all i, d, « where 0<d < log n and
i=t+1—dando e {0, 1}4.

108 John H. Reif / Journal of Computer and System Sciences 71 (2005) 86—143

Summarizing, using a small constant factor slowdown to reduce the processor bounds(vbm))
to M (n), we have

Lemma 3.6. Given ann x n matrix A which is NIM and withmindiag(A) > 1, we can computaising
bit precision< O (), an approximation to the RF of A with err@ 2™ in parallel timeO (log? n) using
M (n) processors

3.6. Analysis of the RF algorithm

Theorem 3.1. Our algorithm for computing the exact RF with high likelihoodl — 1/n%@ | takes
parallel time O (log? n) using M (n) randomized processarand bit precisionO (r), for = = O (n(B +
log n)), using a constant number of random variables ranging over a domain ofrsizg|)°®.

Proof. Fix as input am x n integer nonsingular SPD matri, with integer entries of magnitude2”,
where<n?® . We can assume w.l.0.g. thatis a power of 2. Since Propositi¢hl and Lemma 3.1
bound|det (A)| < 2™ and|m,| < 2", all rational quantities in the RF @ can be expressed as a quotient
of two integers of magnitude 2°™ and thus in bit precisio® (z). Hence all rational quantities in the
RF of A are P-rational as defined in the introductory Section 1.1. We will show that all our computations
will use bit precision at mosp ().

In step 1, we choose a random pripdérom the interval 2n||A]o0)°/n < p < 2(n||Allso)<°, for
somecg > 2. By Proposition 3.1, sincéet(A) # 0 then 0z der(A) (modp) with high likelihood
>1—1/n9%D,

Instep 2, we construet = A+«l, wherex = p(n| All) is aninteger for a sufficiently large positive
constant;. SinceAis an integer matrix, so i§. For some positive constafit- 1, Proposition 2.1 bounds
|det (A)| <2°™ so all rational quantities in the RF df are P-rational; they can be expressed as a quotient
of two integers of magnitude 29 and thus in bit precisio® (z). A is NIM and so strongly DD and
strongly well conditioned. LeA~! (modp) andA~! (mod p) denote the matrices derived from rational
matricesA—, A=1 by applying the standard homomorphism from the ratio@ats the finite fieldz ,

(we will use this notation below, as well). Sinde— A = «I is divisible byp, A (modp) = A (modp),
and thugA)~1 (modp) = A~ (modp).

In step 3, we apply the Newton iteration of Section 3.5 using bit precigie), to get an approximate
RF of A within accuracy 2¢~, for a sufficiently large positive constant Clearly mindiag(A)>1, so
by Lemma 3.6, step 3 costs parallel tirdelog” n) usingM (n) processors. This approximate RF gives
a rational matrixA,, for eachd =0, ..., log n andx € {0, 1}¢, a rational approximation afA,)~* and
a rational approximation of thieU factorization ofA, to accuracy 2¢* (using bit precisiorO (n)).

Applying Proposition 2.5, which states DETERMINANT has an efficiértog ») time parallel re-
duction to RF using the recursive formulae, we can compute a rational approximatien #o,) up to
accuracy within 2¢* (using bit precisiorO (z)) from the approximat&U factorization ofA,,. Thus step
4 is executed in time (log n) usingn processors.

Recursive computation of the integer multipliers in step 5 and the multiplication and round off oper-
ations in step 6 clearly cost at most parallel tidéog? n) usingM (n) processors. The correctness of
step 5 follows from the formulae derived in Section 3.2.

John H. Reif / Journal of Computer and System Sciences 71 (2005) 86—143 109

In step 6 we compute the integer matrix A, exactly, rounding to the nearest integer the product
of m, times the rational approximation #,. This requires bit precisio® (z). By Proposition2.1 and
Lemma 3.1)der (A,)| < 2", and|m,| < 2°°". Each entry in the approximatdJ factorization can be in
error by a factor of at most 2712, so the error of approximation of each, is at most a factoO (n)
more, namelyO (2~<"n3). Sincen, is computed from the product of at most lagdeterminants, the
error of approximation of each,, is at most a facto© (log ») more than of the error of approximation
of the determinants, namely(2~“"n 3 log n). Note that by Proposition 2. A4 A, |l <n2°", so the total
error in the approximation @, A., |s atmost 257 0 (2753 log n) || Ayl < 2% 0 (2€~9"n* log n) <
2(2ic+e—anthlognlog logn+0M) 2 with choice of a sufficiently large constant> 26¢ + ¢ + O (1).

We now have the exact RF df.

In step 7, as in previous efficient parallel algorithms [62,63] for the exact inversion of integer ma-
trices, we apply the standard homomorphism to make a conversion from rational numbers to integers
(modp), and we have assumed an arithmetic model where finite field arithmetic has unit cost. Re-
call A (modp) = A (modp), so the RRmodp) of A is identical to the RFmodp) of A. Hence for
eachx, A, = A, (modp), and we can apply Propositions 2.5 and 2.6 to compltéA,) (mod p)
and(A,)~1 (modp) in parallel for each: € {0, 1} for d = log n,logn — 1, ..., 0. This requires bit
precisionO ().

In step 8, we go to step 1 and choose anothérdet(A,) = 0(modp) for anyd, «. Note since
Alis strongly DD, then by Proposition 3.6, eaatg is also strongly DD and so nonsingular, so always
det(A,) # 0. By Proposition 3.1, sincdet (A,) # 0, then 0= det(A,) (modp) with high likeli-
hood >1 — 1/n%®, RecallA, (modp) = A, (modp). So with low likelihood <1/n%D | det(A,) =
0(modp), and hence with the same low likelihoatkt (A,) = 0 (mod p) and we must repeat our choice
of pin step 1.

The Newton—Hensel lifting of step 9 is described in detail in Section 3.4. Lemma 3.2 implies the cost to
do this Newton—Hensel lifting by pipelining is tin@(log® n) usingM (n) processors. Sincpzk* >2°",
the Newton—Hensel lifting requires bit precision at mosi). We have RRmodek*) of A.

The recursive computation in step 10 of the determinants of the RF ma([rin'mspzk*) is justified
by the recursive formulae for determinants of the RF matrices given in Proposition 2.5. The recursive
computation in steps 10 and 11 of the determinants of the RF ma(rium}tpzk) and of the integer
multipliers in step 12, and of the exact RF in steps 13 costs at most parallebtitog n) using M (n)
processors. The use of the Rﬁodpzk) of Aand multipliersn, (modpzk) in step 13 gives us the exact
values of the RF oAsinceka >2" > |myl|| A, llco fOr a choice of a large enough constant

Note that by Lemmas 3.6, 6.2, and 3.2, each major stage of the above RF algorithm takes at most time
0 (log? n) usingM (n) processors, using bit precisi@n(z). Since there are onlg (1) such major stages,
we have by constant slowdown that the total tim@idog? n) usingM (n) processors. [

If the input matrixA is not SPD, then we apply the RF algorithm instead to the 8RD, as described
in Section 2.2 by use of the normal form reduction.
4. Parallel RF computation for matrices of bounded displacement rank

The techniques for computing an RF described in Section 3 can be applied to structured matrices with
some refinements that exploit their structure. We first define Toeplitz matrices, as well as their finite

110 John H. Reif / Journal of Computer and System Sciences 71 (2005) 86—143

generation and compact representation, and we give generalizations of these properties to matrices of
bounded displacement rank. We next describe a known sequential algorithm for the RF of a matrix of
bounded displacement rank. Finally, we present a specialization of our parallel algorithm for the RF of a
matrix of bounded displacement rank, including modifications and extensions required to efficiently do
Newton—Hensel lifting and Newton iteration in this case.

4.1. Toeplitz matrices and their computations

Toeplitz matrices are quite simple to define, but bounded displacement matrices are not as simple.
Therefore, we first discuss Toeplitz matrices and their computations, then we extend the discussion to
other more general classes of structured matricesn Ann matrix A with row and column indices
beginning at 1 is said to beoeplitzif a; ; = a;_;11),1 fori>j, anda; ; = ay (j—i+1) otherwise. From
this definition, Toeplitz matrices have the structure:

a1l adi2 di3 ... din
a1 a1l ai2 ...dinp-1
A=]431 a1 aii ...aip-2
| 9n,1 Ap—-11 dp—2,1 ... 411 |
Note that the column = (a1.1,a2.1, ..., as 1) and rowv = (a1,1, a1.2, ..., ain), suffice to uniquely

define the Toeplitz matriXA (the matrix can also be uniquely be defined by the first and last rows or
columns). Thus, we cacompactly stordhe Toeplitz matrix in spacen2— 1 using 2 — 1 indices of

the matrix. The transpos&’ of a Toeplitz matrixA is Toeplitz, and every block of a Toeplitz matrix is
Toeplitz.

Toeplitz matrices arise naturally in many polynomial computations. For example, for polynomials of
degreen — 1:

1. The product of such univariate polynomials can be computed by multiplying a banded Toeplitz
matrix by a lengtm vector. Also, the reciprocal and division of univariate polynomials can be computed
using the solution of triangular Toeplitz systefig].

2. The GCD and resultant of two such univariate polynomials can be determined by the solution of a
linear system defined byS@ylvestematrix consisting of twa: x n Toeplitz submatrices [16,19].

As mentioned above, we will compactly representann Toeplitz matrix by specifying the first row
and column.

RecallthatP (n) denotes the number of arithmetic processors used to multiply two degogomials
in O(log n) parallel time.

Lemma 4.1(see Bitmead and Anders{i¥], Brent et al[18], Pan[64] and Pan and Rejfi70]).

(a) The product of am x n Toeplitz matrix with an n-vector can be computed in sequential time
O(P(n)log n) and space0 (n), and also in parallel timeD (log n) using P (n) processors

(b) The product of twa x n Toeplitz matrices can be comput@e., compactly represented as a sum of
products of upper and lower compactly represented Toeplitz ma}iicegquential time) (P (n) log n)
and space) (n), and also in parallel timeD (log n) using P (n) processors

John H. Reif / Journal of Computer and System Sciences 71 (2005) 86—143 111

Lemma 4.2(Gohberg and Semenci84]). Let T~! be the inverse of an x n Toeplitz matrix Tand
letu = [u1,...,u,]" andv = [v1, ..., v,]7 be the two vectors representing the first and last colymns
respectivelyof 7. Let L(x) denote the lower triangular Toeplitz matrix whose first column, iand

let U (v) be the upper triangular Toeplitz matrix whose first rowis'hen

1Tt = La)U ") — LU @),
wherev® = [v,, vy_1, ..., v1]7, v =0, v1, ..., v,—117, andu® =[O, uy,, ..., us]’.
The pair of the vectors, v will be called thegeneratorsof 7—1. (All of the above results are known
to extend to the bounded displacement matrices which will be defined below.)

4.1.1. Generation and compression of structured matrices by matrix operators

There is a large body of work (e.[#5,46]) concerned with the definition of structured matrices by the
use of matrix operators as defined below. Rgt,, denote the class af x m matrices, which are vectors
ifn=21orm=1.Letd: R, ,, > R, . Consider a matrid € R, ,,. A ®-generatorof A of lengths
consists of two matrice§ € R, s andH € R, s such thatb(A) = GH”. Thed-rankof Aiis defined to
be the rank = r(®(A)) of the matrix®(A). Assuming® is 1-1, thed-generatorof A will be stored in
space(n + m)d and provide unique information abolif whereash hasnmentries to store. As a trivial
example of a matrix operator, consider the identity operatdhen a generator & is anl-generator of
A and thel-rank ofAis just the rank of.

4.1.2. Displacement operators for generalizations of Toeplitz matrices

LetZbe am x n square matrix, zero everywhere, except for its first lower subdiagonal which is filled
with ones. Note that premultiplications and postmultiplicationsZbgnd by Z” displace or shift the
entries of am x n matrix A = [q;;] as follows:

ZA = [a;—1,;] giving a shift down 7ZTA = lai+1,;] giving a shift up
AZ = a; j+1] giving a shift left Azl = [a;, j—1] giving a shift right

whereq; ; = 0 fori orj out of range.
Refs.[45,46] generate Toeplitz matrices and their generalizations using the foll@isptacement
operators
1. Operatonr, (A) = A — ZAZT zeros all the entries of a Toeplitz matix except for its first row and
column.
2. OperatoA_(A) = A — ZT AZ zeros all the entries of a Toeplitz maté except for its last row and
column.
For notational consistency with the rest of the paperA-edink(A) denote rankA(A)) for each of the
A operators.

4.1.3. Finite generation of Toeplitz-type matrices

We let L(x) denote the lower triangular Toeplitz matrix with first coluren[29,43,45,46] (for a
summary of these results see [14,66]) show the following relationships between the Toeplitz displacement
operators and the finite generation of these structured matrices.

112 John H. Reif / Journal of Computer and System Sciences 71 (2005) 86—143

Lemma 4.3. For all matrices AG = [g1,..., 851" andH = [h1, ..., hs]" where theg; and h; are

column vectorswe have

1.AYA) =A—ZAZT =GHT =0 giliTiff A=30_ L(g)L” (h;), and

2.A (A)=A—-Z"AZ =GH" =Y, g"Th"iff A=Y, L7 (g/")L(h;"), where superscript r
denotes the reverse of a vector

This lemma implies that th&, H matrices suffice to specify and generate the corresponding matrix
classes.

4.2. Bounded displacement rank matrices

Hereafter, we define for Toeplitz operators thisplacement rankand displacement generataf a
matrix to be itsA-rank andA-generator, foa € {A, A_}. Slightly simplifying the above definitions, we
will define here (in the context of Toeplitz operators)ar n matrix to havedisplacement rank if it
can be written as the sum éterms, where either
1. eachtermis the product of a lower triangular Toeplitz matrix and an upper triangular Toeplitz matrix,
or
2. eachtermis the product of an upper triangular Toeplitz matrix and a lower triangular Toeplitz matrix.
This is sometimes known as tlwmpact or dyadic representatiarf bounded displacement rank
matrices, where these triangular Toeplitz matrices are themselves compactly represented by specifying
the first or last rows. Note that amyx n matrix has displacement rank at most he results of Gohberg
and SemenculB4] imply that for our above simplified definition of displacement rank, the inverse of
matrix of displacement rankhas displacement rarsk Summarizing the above known results (see also
[14,18,29,34,43,45,46,66] and the summary of Pan [66, p. 8]):

Lemma 4.4. Let$ = 6(C) be the displacement rank of a given cl&sf matrices

1. §<2for Toeplitz matrices and their inverses

2. the inverse of a matrix of displacement rahkas displacement rank

3. 6 <4 for the product of two Toeplitz matrices

4. §<b + b’ for n x m matrices built by expanding x 5" block matrices whose elements are Toeplitz
blocks

5. 6 <3 for Sylvestefresultan) and subresultant matricgsince these are block Toeplitz matrices with
b+0b =23).

4.3. Constructing displacement generators

We now describe how to construct the displacement generators of a matrix with known minimal dis-
placementrank. Itis known (se¢14,18]) that the displacement generator of ramksimply constructed
from the firsté columns and firsd rows of a generic matrix with displacement rahlt is also known
(see [14]) that given a fixed operatarand a generic matrid, a A-generator oA of minimum length
can be efficiently computed from an appropriate size submatrix(ah. We will now briefly describe
this construction. Recall that Lemma 4.3 implies that¢hed matrices suffice to specify elements of
the corresponding matrix classes. In the following[#tdenote the sequencg, .. ., §). Givenan x n

John H. Reif / Journal of Computer and System Sciences 71 (2005) 86—143 113

matrix S, let S([6]) denote thed x n matrix consisting of the firsi rows of S, let S(—, [§]) denote the
n x 6 matrix consisting of the firsi columns ofS, and letS([4], [6]) denote the x § leading principal
submatrix ofS. The following is well known in linear algebra:

Proposition 4.1. If Sis of ranks, and S([4], [6]) is nonsingularthenS = S(—, [6])S([4],) ~Ls[6]).

Using this,[14] show in their Lemmas 2 and 6:

Lemma 4.5. Suppose A has minimum displacement rapend S = A, (A) = A — ZAZ" has a
nonsingularé x ¢ leading principal submatrix ([6], []). DefineA . -displacement generator n-vectors
{(gi}, {hi}, i = 1,...,0, where(gy, ..., g5) = S(—, [d]) are the firstd columns ofS, andi;” is the
ith row of the productS([4], [5])‘_15([5]), and S([d]) are the firsto rows of S. ThenS = A (A) =

S(—, [DS(5], [BD LS = 30_1 gihiT and A = 3°0_ 1 L(g) LT (hy).

(A similar lemma holds forr_, and in fact all the other displacement operations4 lifas minimum
displacement rank, thenS = A, (A) always has rank. (Note that in general, we may have only an
upper bound on the displacement rank of the maribn that case, we must apply a known rank {d3
to find the minimum displacement radkwhereS = A, (A) has rankd.) Section 8 gives a randomized
algorithm for general problem of constructing displacement generators, whéxthéading principal
submatrix is singular. But for our purposes the above construction will suffice, since we will need to
construct displacement generators only for matrices witlSdimat has a nonsingular x ¢ leading
principal submatrix.

SinceS([d], []) is of sized x 4, the rank and matrix inverse computatis([J], [8])~1 can be done
in sequential timeD (6”") for w* = 2.376, and also in parallel time (log?) using 5 processors
by known dense matrix algorithms. The other inner products can be broken/ififaner products of
(general) matrices of sizex § (each costing sequential tin@(s”") and space (62), or parallel time
O (log 6) usingd® processors), followed by a sumofé of these resulting matrices (costing sequential
time O (nd), or parallel timeO (log nd) usingnd/log nd processors); this costs sequential tié:6 +
(n/é)é‘”*) = 05 ~1n) and space® (n4), or parallel timeO (log nd) usings®~1n/log nd processors.
Note that the total time bound '@((Iogz d) + (log nd)) = O((log d) log nd) and the processor bound
is 62 + 6°~1n/log nd = 0(5°1n/log nd). Summarizing the above, we have by constant slowdown:

Lemma 4.6. Given as input a matrix A of size x n, GENERAT ORs(A) can be efficiently com-
puted in sequential timé& (5 ~1n) and space) (6n), and also in parallel timeD ((log §) log nd) using
5~ 1n/log no processorsGEN ERAT O Rs(A) yields displacement generator n-vectfgs}, {h;},i =
1,...,5whered ?_, L(g)L” (h;) has displacement rank

In general, our Newton iteration algorithm for bounded displacement rank will be given, as input to
GENERATOR;, ann x n matrix which is a close approximation to a matrix of displacement pa(fkit
which itself may not be of displacement rag)k Then GENERATOR with this input yields displacement
generaton-vectors{g;}, {h;},i = 1,...,J. We will later show (see Propositich7) that the resulting
matrix Zle L(g)LT (h;) of displacement rank approximates the matrix input to GENERATQ@Rith
small error.

114 John H. Reif / Journal of Computer and System Sciences 71 (2005) 86—143
4.4. Computations on bounded displacement rank matrices

As a consequence of Lemmda6, we can assume throughout the rest of this paper that for a given
matrix with displacement rank a displacement generator of lengtfs also available.

The next lemma summarizes results on matrices with displacement thaatwill be of use. The proof
is by reduction of the computations to convolution and FFTs [1,14,18,59,64,70].

Lemma 4.7. (a) Given a displacement rankmatrix A any fixed column or row of A can be computed
in O (log(dn)) time usingd P (n) processors

(b) The product of am x n displacement rank matrix and arm x n displacement rank’ matrix is
a displacement ranksy’ + O (1) matrix computabléin compact form as a sum of products of upper and
lower Toeplitz matricésin sequential timeD (56’ P (n) log n) and spaceO (65'n), and also in parallel
time O(log n) using 66’ P(n) processors. Furthermoref ¢ <5, the minimum displacement rank of
the product is computabldy additional use of Lemmé.6 (costing sequential timé)((&é/)“’*_ln +
08’ P(n)log n) <0 (68 P(n)log n) or parallel time O ((log 68') log ndéd’) using(éé/)“’_ln/(log néd’) +
38’ P(n) < O(88' P(n)) processorsin no further asymptotic cost

(c) The inverse of an x n displacement rank lower triangular matrix is a displacement rakmatrix
computabldin compact form as a sum éfproducts of upper and lower Toeplitz matrit@s sequential
time O (62P (n) log n) and space) (én), and also in parallel timeD (log n) usingd P (n) processors

(d) The inverse of an x n displacement rank matrix is a displacement rartkmatrix computablé€by
use of Lemmad.6and4.8;also sed14,18,59]for the explicit compact formulas as a sunvgiroducts
of upper and lower Toeplitz matricgim sequential time) (6°P (n) log n).

Recall the best previously known parallel algorithms [64,67,68,70] for the problems of inverse, deter-
minant, linear system solutiobJ factorization, and finding rank of anx n Toeplitz matrix required
parallel timeQ(Iog2 n) usingO (n P (n)) work. Also recall the best previously known parallel algorithms
[64,67,68,70] for the inverse of an x n displacement rank = O (1) matrix required parallel time
Q(log? n) usingO (n P (n)) processors, or polylog time usitln2/1og®® n) processors. We will drop
these processor bounds to linear, without significant time slowdown.

4.5. The normal form reduction for bounded displacement rank

This section computes the inverse and solves linear systems for the class of rational matrices of bounded
displacement rank. We give an efficient parallel algorithm for the RF of such matrices with the additional
restriction that the input be SPD. To solve the associated matrix inverse and linear systems problems,
where the nonsingular input matriis not SPD, we apply the RF algorithm to the SPD normal form
AAT as described in Section 2.2, g7 is factored asAA” = LU whereL, U are triangular and
of bounded displacement rank. There are known highly efficient parallel algorithms (see [42,66]) for
triangular inverse. 1 andU ~1 of displacement rank After we get the inverseAA”)~1 = (LU) 1 =
U~1L~1, then we immediately get the inverde? = AT (AAT)~1in one further product of a matrix of
bounded displacement rank (via FFT). Also, givemarectorb, the linear system x = b can be solved,
as in Section 2.2, by two back-solving stages for triangular linear systemd.aaed U of bounded
displacement rank. By Lemma 4.7, these further computations (including the matrix prodficaind

John H. Reif / Journal of Computer and System Sciences 71 (2005) 86—143 115

backsolving) cosO (log? n) time usingO (5P (n)) processors, since the operations are on triangular
matrices of displacement rank

4.6. Sequential computation of an RF of a matrix of bounded displacement rank

Let A, be the matrices of the RF tree of matédx The sequential algorithm of Bitmead and An-
derson[14] (also see [59]) for Toeplitz matrix inverse, takes as input a symmetric DD matard
constructs an RF sequence of depth tod hat RF sequence consists of RF matrices of farm, for
d =0,...,logn (these are denotedl; in Section 2.4). They show (using the results on displacement
ranks of products and inverse summarized in Lemma 4.4) that the displacement rank of the induced sub-
matrices at each recursion level is increased only by an additive factor of 2. This holds also for the RF tree
of A.

Proposition 4.2(Bitmead and Andersdi4]). Let A be am x n integer matrix of displacement rank
0. For 0<d < log n, for each matrix4, at depth d in the RF tre¢he displacement rank of the children
A,1 and A,g is not more than that oft,,. Hence the displacement rank &f is at most.

This proposition allows them to bound the sequential work for the RF sequence for Toeplitz matrices,
and their algorithm generalizes to compute the RF sequence of a matrtisplacement rank By the
obvious recursion, their algorithm can be immediately extended to construct the RF tree.

Lemma 4.8. Given ann x n input matrix of displacement rank the sequential algorithm of Bit-
mead and Andersdid4] can be applied recursively to compute the complete RF tree in sequential time
T(n) <O (82P(n)log? n).

An understanding of a sequential time analysis for computing the RF tree will aid us in the design and
analysis of our parallel algorithms. Their recursive calls have depth at most Tbgus the displacement
rank of the submatrices is at masat any level of recursion, and no more than the number of rows of
the submatrix. Lek; = n/2?. The inverse of each submatrix is computed by Proposition 2.6 in a re-
cursive (bottom-up) fashion. The matrix computations involved are only recursive inverse, multiplication
and addition. Each procedure call for the RF tree results in two recursive calls: one call for a matrix
inverse (which can be computed by a recursive for the RF tree) and also a further recursive call for the
RF tree.

For the matrix at each node of the RF tree at dehtlwe must compute the inverse of a matrix of
sizeny x ng with displacement rankd, and construct a-generator of minimum length. This can be
done by the techniques given in Section 4.3; Lemma 4.6 implies the sequential time@6st'isn,).

By Lemma 4.7, the further matrix operations have sequential time@6st ~1n,; + 52P (ng) log ng).
Hence the total sequential cost per nodey is 0 g + 2P (ng) log ng).

The total sequential time complexif(n) of the sequential algorithm of Bitmead and Anderson [14]
(also see [59]) for the RF tree is boundedBg) = O (1) for n = 1 and byT (n) < Z';%‘ 241, for
n > 1 Since Zty<tiogn = 0©” Ing + 5?P(nq)log ng) < O(5?P(n)log n), these bounds imply
T(n)< O(52P(n)log n)log n = O(52P(n)log? n).

116 John H. Reif / Journal of Computer and System Sciences 71 (2005) 86—143
4.7. Our parallel algorithm for computing an RF of a matrix of bounded displacement rank

An RF Tree of deptld’ of Ais an RF Tree defined only to depth Here we apply the stages of the
RF Algorithm of Sectior8.3 which we modify (i) to be specialized to matrices of displacement sank
and (ii) to only compute the RF tree to depth= log n — Q(log log n) by parallel algorithms, and (iii)
to extend the RF tree to depth lagoy the parallel use of sequential algorithms in subtrees.

4.7.1. Algorithm RF for bounded displacement rank

INPUT: An n x n integer nonsingular matriR, of constant displacement raik and with integer
entries of magnitudec2?, wherep<n?@® . w.l.o.g., we assumeis a power of 2.

If the inputAis not SPDthenwe apply the RF algorithm instead to the SRR’ , as described above.

Apply all the same steps as the RF algorithm of Section 3.3, except that we redefine steps 2—4, and 9
as follows:

2. LetD be am x n diagonal integer matrix, such that the value ofitheliagonal element i /j where
je{1,2 ...,5 andj =i mods, whered = 2/1°991<25—1. Let A = A+«xD, wherex = p(n||Alloo)“:
is an integer and; is a sufficiently large positive constant.

3. Letd* = log n —log log n. Apply to A the approximate Newton iteration of bounded displacement
rank of Section 4.9, using bit precisiai(z), to compute a rational approximate RF tree fowithin
accuracy 2<7, for a sufficiently large positive constant

4. Using the RF tree of depth for A, within accuracy 2°™, compute an approximate factorization
of A, and from this compute a rational approximatiod¢o(A,). Also, by parallel use of known sequential
algorithms for RF sequences applied at all the subtrees rooted attigptktend the computation of the
rational approximation of RF sequences to a rational approximatiod &dctorizations and determinants
of all matrices from deptld* to depth logn of this approximate RF tree.

Again we can apply the homomorphism fr@o Z ,, since we have assumed a model of computation
with unit cost division over a finite field.

5. Apply Newton—Hensel lifting of Section 4.8 to comptive i = O, ..., k* = [log(cn/log p)] the

RF(modp?) of A. By parallel use of known sequential algorithms for Newton—Hensel lifting applied
at all the subtrees rooted at depth extend the computation of the Rfod p**) of all matrices from
depthd* to depth logn.

4.7.2. Matrices that are nearly diagonal with bounded diagonal elements

Recall that we defined a matrix to be NIM if it & the product of a scalar and an identity matrix.
Now, we generalize the definition of NIM to matrices that are nearly diagonal with bounded diago-
nal elements. For a scalar let A be NIM(p) if A ~ D(A) where D(A) is a diagonal matrix with
p=max (D(A); ;) max;(D(A)™H);).

Proposition 4.3. If Ais N1 M (p) then A is strongly DD andond..(A) <p(1+ o(1)).

Proof. SinceA is NIM(p), A ~ D(A), soA is strongly DD. Furthermoresonds(A) = ||Alloco
A oo <ID(A) oo - 1D(A) " Hloo(1 + 0(1)) max (D(A); ;) max; (D(A)™1); N1+ o(1) = p(l+
o). O

John H. Reif / Journal of Computer and System Sciences 71 (2005) 86—143 117

Proposition 4.4. Each A, of the RF ofA is NIM5), so eachd, is strongly DD and well conditioned
Wlth condoo(A)<o(1 + o(1)) = O(1). Alsa the s x & leading principal submatrix oﬁ+(A L =
A7t —7A;17T is NIM, so is strongly well conditioned.

Proof. By definition,A = A + kD, wherex = p(n| Allso)°". Also by definition,D ann x n diagonal
integer matrix, such that the value of thk diagonal element is!/j wherej € {1,2,...,5} andj =

i mods. Note that max(D; ;) = &! and ma>;(D‘1) = ((6— 1)) L. These definitions immedlatelylmply
thatA ~ xD and thatA is NIM (p) wherep = max (xD; ;) max; (x~ 1D] 7)) =max (D) maxj(D;}) =
GN((6 — 1)~ = 5. SinceA ~ «D, andD is diagonal, it follows thai—* ~ x~2D~1, so A1 is also
NIM(S) Sincez D177 shifts each entry ab~1 by one entry to the rightand down, |tfoIIowsthatthefirst
sdiagonalelementsaf, (DY) = D~1—zZD 17T areeach 15!. LetS = AL (A™Y) = A~ 1—ZzA-1Z7
and letS([5], [8]) be thes x & leading principal submatrix & ThusS ~ (« 1D~1) — Z(;c—lD hzT! ~
kY (D~1—=ZD~1z") and so the diagonal elementssifs], [5]) are each x~1/5!. HenceS([d], []) ~
()71 and soS([d], []) is NIM.

Note that the diagonal elements@fepeat every elements, whereis a power of 2. Using this fact,
an easy induction shows that eagh ~ xD,, whereD, is ann/2/* x n/2l diagonal integer matrix
defined so again the value of titd diagonal element |&'/j wherej € {1, 2, . ,0) andj =i mods.
Hence by the same proo}\“ is again NIM&), and again the x o Ieadlng pr|n0|pal submatrix of
A (ATY = —ZA;1ZTisNIM. O

After we f|rst speC|aI|ze and analyze the Newton—Hensel lifting (Se@i8hand Newton iterations

(Section 4.9) for bounded displacement rank matrices, we complete the proof and analysis of the RF
algorithm for bounded displacement rank in Section 4.10.

4.8. Newton—Hensel lifting for RF of bounded displacement rank

4.8.1. Displacement rank bounds for Newton—Hensel lifting

We provide a known bound (see [64,67,68,70]) on displacement rank for Newton—Hensel lifting which
will be useful to our new parallel algorithms. Latbe ann x n integer matrix of displacement rark
Then by Lemma 4.44~1 has displacement rarik

Let us introduce a scalar indeterminatéSince the modular operation is scalar, and* has displace-
ment ranks, it follows (see [42]):

Proposition 4.5. For each integerj >0, if A has displacement rank then

j-1
(I —24)"t =" (A) (modi))

i=0
has displacement rank
4.8.2. Newton—Hensel lifting for matrices of bounded displacement rank

Recall that Moenck and Cartf7] show thats® (4) = A~1 (mod p2"). Letting/. = p, by Proposition
4.5, we have,

118 John H. Reif / Journal of Computer and System Sciences 71 (2005) 86—143

Lemma 4.9. Forall k >0, if A has displacement rank thenS® (4) = A1 (mod p?‘) has displacement
rank <o in szk.

4.8.3. Newton—Hensel lifting for RF of bounded displacement rank
Let an RKmodp) of ann x n matrix A be an RF of matriXA where each matrix in the factorization
is taken(mod p). This will also be called anodular RF In this section we assume we are given an RF

(modp) of matrix A. We shall compute an RaFnodek) of A.

Fix againd* = logn — Q(log log n). Given an RF(modp) of depthd* for n x n matrix A of
displacement ran, we wish to compute the R(Iﬁmdpzk) of depthd*. In each stage of Newton—Hensel
lifting, Lemma4.9 implies that the matrices resulting from Hensel lifting do not increase in displacement
rank. Proposition 4.2 implies that all nodes of the tree of de@ire matrices of displacement rasik

The obvious way to compute the th_‘lodpzk) of Aof depthd* is by proceeding level by level through
the RF in 14 d* stages, fod =0, 1, ..., d*. This gives

Lemma 4.10. Given anRF (modp) of depthd* = log n — Q(log log n) for ann x n matrix A of

displacement rank, we can compute aRF(modpzk) of A in parallel timeO (k log? n) usings2P (n)
processors

Proof. Letny = n/2?. Letus consider the cost for each of thhewton—Hensel lifting iterations at each
node at deptdin the RF. This requires multiplication of matrices of sizex n; with displacement rank
and so by Lemmad.7 cost®) ((log 8) log nyd) time usingy? P (ny) processors. We also require the parallel
complexity stated in Lemma 4.6 to construct the displacementd@ekerators after each iteration. By
Lemma 4.6, at each node of the RF tree at delptle can compute thé&displacement rank generator of
the corresponding, x ng matrix at that node, i (log 6) log 44 parallel time and®~1n,/(log nyd)
processors. Thus the total cost per node at ddmth each iteration i§; = O(log §) log n,6 parallel
time andP; <6” 1ng/(log ngd) + 52 P (ng) processors. Note thdl < O (log n) for all 4. The total time
for all 1+ log n levels and alk iterations at each of these levels is thdgk log? n). Since there are
2¢ nodes at depthl, the total processor bound is max < g+ 2¢ Py < O(Pg+) = 0(5“ n/log né +
82P(n)) < O(82P(n)). Thus, with a constant further slowdown, the-1og » levels require total parallel
time O (k log? n) usings2P (n) processors. O

We can further improve on Lemma 4.10 by use of the pipelining (stream contraction) techniques
described in Section 3.4.

Lemma 4.11. Given an RHKmodp) of ann x n matrix A of displacement rank we can compute an
RF(modpzk) of A in parallel timeO (k log n) usings?P (n) processors

Proof. The pipelined algorithm for the R@nodpzk) of Adescribed in Sectio8.4 for a densé requires

O (k) iterations of simultaneous Newton—Hensel lifting iterations at every node of the tree. We now analyze
this pipelined algorithm for the RE’ﬂOdek), as specialized to an input matrxof displacement rank

0. By the proof of Lemma 4.10, the cost for each of kidewton—Hensel lifting iterations at each node

at depthd in the RF is:7; = O(log n) parallel time using® ng/(log ny8) + %P (ng) processors,
where agaim,; = n/2?. Thus the total time fok Newton—Hensel lifting iterations i® (k log n).

John H. Reif / Journal of Computer and System Sciences 71 (2005) 86—143 119

Since there are®nodes at deptfd, the total processor bound for all4 d* levels of the RF tree
is ijo 21P;<O(Py+) = 0(5“ In/log nd 4+ 6°P(n)) < 0(52P(n)) processors. A further constant
slowdown completes the Lemma.J

4.9. Approximate Newton iterations with bounded displacement rank

Fix a very small (with respect t8) ¢ = ml| AN~ < 1/(32s) for some sufficiently large positive
constant’ and arswhere 1<s < (n]|A|])) °? andd = O(1). Forallk >0letEy (¢, s) = (169g)2k/(16s).
Note that by definitiorEg (e, s) = ¢ and observe thaky (e, s) exactly satisfies the recurrenég(e, s) =
s(AEx_1(e, s))? for all k > 0. Also, since we assume< 1/(32s), it follows that

+ + _
Epi (e, 5) < (16se)2 <272 <o-en,

for kt = [log(¢n)] wherec is a positive constant. Observe thdt< O (log n), assumingg<n?® . We

use GENERATOR, as described in Sect#8, to reduce the displacement rank of the iterates. To take

into consideration the errors due to application of GENERATOR, we will use the error ligund) in

place ofEy (e, 1) = E_1(¢) defined in Section 3.5.

Let Abe ann x n symmetric matrix. We consider the case of Newton iteration where

1. A has constant displacement rahk

2. | Alloo>1, ,

3. Ais NIM(9), in particularA is e-DD for a very smalle = (n||A|))~¢ wherec’ = ¢”4, for a large
enough positive constant, sa{/ > 8,

. thed x ¢ leading principal submatrix af . (A™1) = A~1 — Z4~1ZT is NIM,

. A'is not initially given with full accuracy, and instead we are provided a sequence of approximates
AO AD where||A — A®) | s < Ex(e, 1), and eachA® is NIM(5) and hence strongly DD, and
has bit precision< O (n),

6. theB® are NIM(5) and hence strongly DD and are approximated within displacementraykise

of the A -displacement generator GENERATQR defined just before Lemm&6 in Section 4.3.
(In our applications, we apply the iterations to mattixand the above assumptions 3 and 4 are justified

by Proposition 4.4.)

Let BO = D(AO)~1 = diag(1/a11, 1/, . . ., 1/an,) whereA© = [G;;].
By Proposition 3.4, ifA@ is e-DD then ||/ — BOAO) || <.
We will generate a sequence of matricg®, 3@, BV, B . (which are clearly also NIb) and

so strongly DD) where

1. B® s derived by applying a single exact Newton iteration, just as described in S&S&pior

approximate inverse of), with initial inverse approximatios*—b. Thatis8% = B*-D 2 —
A® k=1 SinceB*—D is NIM(3), so isB®.

2. Apply GENERATORw (B*®)), as defined in SectioA.3, wheres® = ¢ if A, (B®)) has rank> s
and otherwisé® is the rank ofA, (B®). Then defineB® = Zf(zk)lL(g,-)LT(hi) to be then x n
matrix with displacement ran¥® <, with generatorsg;, h;,i = 1, ..., 6%.

3. Let B® pe the displacement rami®) matrix derived fromB® by rounding (i.e., each of the terms
L(gi), LT (h;) in the 8% term matrix sum are so rounded) to within bit precisiorir), so that

[0

120 John H. Reif / Journal of Computer and System Sciences 71 (2005) 86—143

11 = BRA®| <11 — BRAD |, + Ei(e, s). By the close approximation a®) by NIM (3)
matrix B®, is follows thatB® is also NIM(d) and hence also strongly DD.

4.9.1. Bounding error due to application of GENERATOR
In step 2 of the above Newton iteration algorithm for bounded displacement rank, we apply
GENERATOR« to then x n matrix B® which is a close approximation to the matx ! of dis-

placement ranlé (but which itself may not be of displacement raf)k Then GENERATOFOQ@(B(’”)
yields displacement generatowvectors{g;}, {h;},i = 1, ..., 5. We will now show that the resulting
matrix B%®), which is of displacement rank approximates the matrig ®> with small error. Sinceé\ is
assumed to be NIK), then by assumption on the close approximatioA bf the A®), we have:

Proposition 4.6. EachA® is alsoN 1M (5) and so strongly DD

Proposition 4.7. || — B® AV || <sex+ Ex (e, s), wheres = (n]|Alloo) 0@ andeg = |1 — B AR .

Proof. We have assumed that thex ¢ leading principal submatrix of (A=) = A=t — zA-177

is NIM. (In our applications, we apply the iterations to matdx and this assumption is justified by
Propositiord.4.) Since eacB ¥ differs from A~ by at most, it follows that thes x & leading principal
submatrix ofA, (B®) = B® — zB® 7T js also NIM, so is strongly DD and strongly well conditioned,
with condition numbek 1+1/(n||A[)*D. The construction of GENERATOR involves the inverse of this
strongly well conditioned x ¢ leading principal submatrix of (B%)), which induces a multiplicative
error factor of at most || A||o0) © 9. The construction of GENERATOR also involves products by the first
s rows and columns of, (B®)). Since these products induce an additional multiplicative error factor of
n%®||A||«, the error due to this approximation B by B® is || 1 — B® A®) ||, <se. Hence the total
error due to the approximation &® by B® is |1 — B®A® || <|[I — BOAD | o + Ex(e, s) <sex

+ Ei(e,s). O

Thus, we have tha& ® is a displacement rark®) < 5 approximation ta3 ® with error < sex+ Ex (¢, 5).

4.9.2. Inductive proof of quadratic convergence

Next, we give an inductive proof of quadratic convergence of the entire iteration sequence, which is
very similar to, but somewhat more involved than, Proposition 3.11. Note that at certain places we must
use the error bound (e, s) in place of Ex (e, 1) = Ex_1(¢) to take into consideration the errors due to
application of GENERATOR.

Proposition 4.8. If ||Alls>1, and A iSNIM(3) and ¢-DD, then if |(— BOAO|, < & we have
11— BOAW | < Ex(e, s).

Proof. Again, we use a proof by induction énThe basi& = 0 holds by assumption, sinee= Eg(e, s).
Suppose Propositiof.8 holds fork — 1, so||I — B&DAK=D | < Ex_1(e, 5).

Since we use one step of exact Newton iteration per stage, by the quadratic convergence bounds
of Section 3.5, we have (as in the proof of Proposition 3.1}, BOA® = (1 — B*k-D 4(*))2,

John H. Reif / Journal of Computer and System Sciences 71 (2005) 86—143 121

and hence agair <||(I — B*~DA®)|2 . Again, by assumption on the approximation/bby the
AW JA® — AED o <]A = AW oo + A = AX Do <Er(e, 1) + Ex-1(2, D).

By the induction hypothesig,] — BV A*=D| < E;_1(e, 5), and by Propositio#.6, A*~1 is
strongly DD. So by Proposition 3.FB3* 1| ., <2. Also,

[— BED A0 — (= BE-D {61y 4 gD f-D _ Fh))
so we have the boungl7 — B&=DA®) ||

<l = BEPAC D oo + | BE Voo - AN — AW

<Er-1(e,8) +2(Ex(e, 1) + Ep—1(e, 1)) <4Er_1(e, 5) — 2Ei (e, 5)

since %y (e, s) < Ex_1(e, s). Also by the error bounds of Propositieh7, || — B®A® || <ser. =
1—1/n2D_ Thus, by the above bounds we get:

IT—B®AD | < sex + Exe, s)<s|(I — BEDAWY 12 4 By (e, s)
< S(BEr_1(e, 5) — 2Ex (e,)> < Ex (e, 5)
by definition of Ex (¢, s). O

Note that by definition ofi®) andB®), these approximate Newton iterations requie) bit precision.
Thus we have

Lemma4.12. If A is NIM(S), then even with the above approximations to A and Y8, at most
kT = [log(cm)1< O(log n) stages suffice to computesing bit precision< O(xn), the approximate
inverseB® with error 2—7.

Note we can also show that Lemmal2 holds even for more moderate conditiong\phut the lemma
will suffice for our RF algorithm.

4.9.3. Non-pipelined Newton iterations for RFs of bounded displacement rank
Suppose we are given a NiW» x n matrix A of displacement rank, with mindiag(A) >1. We
now provide a generalization of the nonpipelined Newton iteration algorithm of Section 3.5 to the case
of bounded displacement rank. RiX = log n — Q(log log n). We will compute the RF of depth*
for A within error 2™ using bit precision< O (x), by proceeding down the recursion tree in log
stages, without pipelining. For simplicity we will first describe a simplgog® ») time, 52 P (n) processor
algorithm for approximate RF without pipelining, specialized to the case of bounded displacement rank.
Ateachstagd =0, ..., d*, for all o of lengthd, we compute for all nodes of depdlan approximation
of A, within error 2™ and useB® (4,) to approximated; * within error 2-%® (using bit precision
< O(n)). We use the algorithm given in the proof of Lemma 4.6 to construct displacement generators of
the matrices at each stage. The stage at de@pttthe RF involvesO (log n) iterations of multiplication
of matrices of displacement rank so requireD (log? n) time for the required parallel matrix products
for the 2/ nodes of depthd as well as the parallel bounds stated in Lemma 4.6 for construction of
the displacement generators of the matrices at each stage. The processor bounds are exactly the sarn
as those described in the proof of Lemma 4.10 wite: O(log n), resulting in a total time bound of
0 (log® n) usings®~1n/(log nd)+82P (n) < O (52 P (n)) processors. Thus, with an appropriate slowdown

122 John H. Reif / Journal of Computer and System Sciences 71 (2005) 86—143

as described in the proof of Lemmdal0, the log: stages require total parallel tim@(log®) using
§2P(n) processors. Summarizing, we have shown that given a®x n matrix A of displacement
rank s, with mindiag(A) > 1, we can compute, using bit precisienO (=), an approximation to the RF
of depthd* for A within error 2-%™ in time O (log® n) usings? P (n) processors.

4.9.4. Bounding error accumulation in recursions of RFs of bounded displacement rank

We now show that error analysis and quadratic convergence of the approximate RF computation of
Section 3.5 extends to the case wharend the approximate inverse matrices of the RF are specialized
to be of constant displacement rank. We prove a generalization of Lemma 3.5:

Lemma 4.13. For eachd =1, ..., log n, and eachx € {0, 1}¢, the co-norm error for the ith iteration
is A — Aylloo<Ei(e,s) and |1 — B Aylloo < Ei(z,).

Proof. Lemma4.13 is proved by induction. As in Lemma 3.4, in the Newton iteration algorithm for the
RF of bounded displacement rank, at each dépth1, ..., log n, and for each € {0, 1}¢, on the first
stage of Newton iteration, the initial approximation of the RF matrices at dkpéve very small (with
respect tcA) co-norm errore. In particular,||A§°) —Ayllco<eand|I — BO(CO)AmHoogs. We use this as a
basis for the induction. The inductive step follows directly from Lemma 4.12 applim&)q and{Ea(f)},
which provides the required bounds on the errors ofttn@pproximate REA((P}. O

4.9.5. Pipelined Newton iterations for RFs of bounded displacement rank
We will again apply stream contraction to do pipelined Newton iterations for RFs of bounded displace-
ment rank, as previously described in Section 3.5.

Lemma 4.14. Given aN I M (5) n x n matrix A of displacement rankand withmindiag(A) >1we can
computeusing bit precision< O (), an approximation to the RF of depttt for A within error 2™
in parallel time O (log® n) usingdé2P (n) processors

Proof. The pipelined algorithm for the approximate RFAafescribed in SectioB.5 for a dens@requires

O (log n) iterations of simultaneous Newton iterations at every node of the tree. We can analyze the time
and processor bounds of this pipelined algorithm for the approximate RF as we just did in Lemma 4.11
for the RF(modpzk), as specialized té of displacement rank. In particular, the approximate inverse
matrices of the RF are also specialized to be of constant displacement rank. The asymptotic time and
processor bounds are exactly as in Lemma 4.1%fer O(log n), that is, in parallel time0 (log? n)
usingds? P (n) processors. The error bounds follow from Lemma 4.181

4.10. Analysis of the RF algorithm for bounded displacement rank

Theorem 4.1. Given am x n SPD integer matrix A of displacement rahlour algorithm for the exact RF
takes with high likelihood>1— 1/2% parallel time O (log? n) usings? P (n) randomized processars
and bit precisionO (x), using at most a linear number of random variables each ranging over a domain
of size(n||A|)°D.

John H. Reif / Journal of Computer and System Sciences 71 (2005) 86—143 123

Proof. Fix as input am x n integer nonsingular matriR, of constant displacement radkand with
integer entries of magnitude 2¥, where g<n?®. Our proof follows in large part from the proof of
Theorem3.1, except that here we have decreased processor bounds due to the bounded displacemen
rank of A. Therefore, we will only mention the modifications of the proof of Theorem 3.1 required to
complete the proof of Theorem 4.1 (note in particular, again we need only bit precigion

Steps 1 and 2 clearly tak@(1) time usingn processors.

In step 3, we apply the approximate Newton iteration of bounded displacement rank of Section 4.9,
using bit precisiorO (=), to compute a rational approximate RF tree of defith= log n — log log »,
for A within accuracy 2¢", for a suff|C|entIy large positive constant Clearlymindiag(A)>1, so by
Lemma 4.14, step 3 costs parallel tifdglog? 1) usingé?P (n) processors.

Step 4 is executed as follows: applying Proposition 2.5 (which states DETERMINANT has an efficient
0O (log n) time parallel reduction to RF using the recursive formulae), in g n) using 2P (n)
processors, we can compute a rational approxmatlahzzt()A“) up to accuracy within 2°" (using bit
precisionO () from the approximat&U factorization ofA,. Next, usings? P (n) processors, for each
subtree rooted at depitt, we use known sequenti@l(log n) time algorithms to extend the computation
of the rational approximation of RF sequences to a rational approximatitut) dactorizations and
determinants of all matrices from deptf to depth logn of this approximate RF tree.

Recursive computation of the integer multipliers in step 5 and the multiplication and round off op-
erations in steps 6-8 clearly each cost at most parallel tileg n) using §2P (n) processors. The
correctness of steps 5-8 again follows from the proof of Theorem 3.1.

The Newton—Hensel lifting of step 9 is done as described in Section 4.8. We do the Newton—Hensel
lifting first as follows:for i = 0, ..., k* = [log(cx/log p)] compute the REmod p?) of A. Lemmas
4.10 and 4.11 imply that the cost to do this Newton—Hensel lifting by pipelining is értleg? n) using
82 P (n) processors. By parallel use (for all the subtrees rooted at déptti known sequential algorithms

for Newton—Hensel lifting, extend the computation of the(IRE)dpzk*) of all matrices from deptld*
to depth logn.

The recursive computation in steps 10 and 11 of determinants of the RF malriod$2k*) and of
the integer multipliers in step 12, and the exact RF in steps 13 costs at most parall@l(toge:) using
82 P (n) processors. The correctness of these steps 10-13 again follows from the proof of Theorem 3.1.
Thus, by Lemmas 4.11 and 4.14, each major stage of the RF algorithm on the RF tree of'dejts
at most timeO(Iog2 n) using 32Pn) processors, with bit precisio@ (z). Each matrix at deptd™ of
the exact RF tree foA is of sizengs x ng+ wherengs = n/2¢° = py209n-10glogn — |oq » and has
displacement rank at moat The known parallel algorithms [64,67,68,70]) for the problems of inverse,
determinant, antU factorization, for matrices of sizg;+ x ng+ with displacement rank, cost parallel
time 0 (log®® ng+) = 0(og°® log n) using at mosO (6%n4+ P (ng+)) < O (82 log? n) log log logn
processors, sincR(ng+) < O (ng+ log log ng+). By slow down by a factor 0P (log n) log log log », this
can be done in tim® (log? n) with reduced processor bour@(s? log n). There are 9 = n/log n
nodes at deptd* of the RF tree forA. Thus the total cost of computing the exact RF sequeridds,
factorizations, and determinants of all matrices at depibf this exact RF tree fokis at mostO (log? n)
parallel time andn/log n) 0 (62 log n) < 0(8°n) < O (6°P(n)) processors. Since there are orly1)
such major stages, by slowing the time by a further constant factor, we requir@titog® n) using
8P (n) processors. [

124 John H. Reif / Journal of Computer and System Sciences 71 (2005) 86—143

If the input matrixA is not SPD, then we again apply the RF algorithm instead to the SRD, as
described in Sectio2.2 by use of the normal form reduction, which only at most squares the displacement
rank.

5. Parallel RF computation for matrices with separable sparsity graphs

LetAbe amm x n SPD matrixA with ans(n)-separable sparsity graph (as defined in the introduction).
Lipton et al. [53] and Pan and Reif [69,73] define a ND orderiqg. .., Vp which is used to guide the
Gaussian elimination process of the sparse matrix so as to minimize fill-in. The separation of the sparsity
graphG and recursive separation of its subgraphs defines a binary tree, knowrsapdinator treavhose
nodes are labeled with the induced separators. In particBlhgs ans(n)-separatolS whose deletion
results in two disconnected subgrafhg G2 of size at most 2/3, so then the root of the separator tree
is labeled withSand each of the children of the root are labeled with the recursively defined separators
of the subgraph&1, G2, etc. The separator tree has deptkt logs, n. Ford = 1,..., D let V; be the
union of all the separator nodes at defith- d in the separator tree. (Note in particular thatis the
union of all the separators at the leaves of the treelgnds the separato® of G.) We assume that the
matrix has already been pre and post multiplied by a permutation matrix so that the resultingAmatrix
has the rows and columns in this order.

Using this orderingd/, . .., Vp for sequential Gaussian elimination,

Lemma 5.1(Lipton et al.[53]). Given ann x n SPD matrix A with an(n)-separable sparsity graph
a recursive LU factorization can be computed in sequential tihie(n)3), exactly solving in the same
time bound the problems DETERMINANT and LINEAR SYSTEM SOLVE

In the Parallel ND algorithm of Pan and Rf8B,73], this ND ordering is specified by a vertex partition
sequencéy, Vi, ..., Vp, for D< logs,, n which is used to guide the parallel elimination process. Let
no =nand letng1 = ng — |Vglford =0,..., D. Letkp = n and ford < D, kg <|(3)ka+1]. (Note
thatk, is an upper bound on the number of vertices of the induced subgra@hndfose associated
separator is at depth — d in the separator tree.) Assuming &)-separable sparsity graph (see [53]),
we define

The ND sequence problentf possible, construct a sequence of matrides= Ag, A1, A2, ..., Ap,
whereD < Iogs/z nandford =0,1,..., D —1, A;is annyg x ng matrix which is partitioned as
| Wa Xa

wheren 11 = ng — |Va|Wy, X4, Ya, Z4 are matricesW, is a block diagonal matrix of sizé/;| x |Vy|
where each block is of sizgk;) x s(kg), X4 is of size|Vy| x ng41, Yq is of sizeng1 x |Vy4| (if Alis
symmetric, ther¥y = (X4)7), Z; is of sizengy1 x ngy1, andAgy1 = Zg — Yde*le is the Schur
complement

Note that Pan and Ref69,73] show that the norm and condition bounds of Proposition 2.2 hold for
any ND RF sequence. Pan and Reif [69,73] also show that an ND RF sequence can be computed in
parallel timeO (log® 1) usingn + M(s(n)) processors, also giving in the same time bounds solutions

John H. Reif / Journal of Computer and System Sciences 71 (2005) 86—143 125

to the problems DETERMINANT and LINEAR SYSTEM SOLVE. The proofs in Pan and [&&if73]

show that the work for ND RF sequence is dominated by the computation(|6f;|/s (k;)) products
and inverses of a sequence of dense submatrices of(&jgex s (k;) each requiringO(Iog2 n) time and
O ((kg + M(s(kg)))|Val/s(kq)) processors foid = 0, ..., D, whereD < Iog3/2 n. Thus the total time

is O (log® n) and the processor bound is

D
> 0((ka + M(s(ka))) | Val /s (ka) < O (n + M(s(n))),
d=0

wheres (n) is of the formn” for y > 0.

We now derive a parallel algorithmin this case, and reduce the parallel time!f(ﬂog? n)to O(Iog2 n)
while still usingn + M (s(n)) processors. We use a modified form of our (balanced) RF algorithm on the
appropriately permuted input matrix.

The partitioning of blocks is again altered depending on the separator structure, following the usual
techniques used in the above ND RF sequence. Again the ND ordering is specified by the vertex partition
sequencéq, Va, ..., Vp, for D< logg, n which is used to guide the parallel elimination process. Let
ng be as defined above.

ND RF: If possible, compute a binary tree of depgith= O (log n) whose nodes are matrices. Each
node at deptld, 0<d < D is an, x n, matrix A, wheres € {0, 1} isa binary string of length, andn,,
is defined recursively below. The node is a leaf jf= 1.

For eachd, 0<d < D, we specify the stringdlto bespecial For eachx € {0, 14, if o is special and
n, > 1, then we recursively decompose the matrix (using the ND RF sequence), sgiirg | V|
andnyy = ngi1 = ng — |V,4|. Otherwise, ifx € {0, 1}¢ is not special buk, > 1, then we recursively
decompose the matrix evenly (using the RF defined at the start of this papet) let|n,/2], n,0 =
[n,/2].1f d = 0thenA, = A is the root of the tree andis the empty string. ForQd < D, each matrix
A, at depthd with n, > 1 has exactly two children in the tre4,; and Ao at depthd + 1 which will be

defined by recursion. In particular, fér=0, 1, ..., D — 1, A, is ann, x n, matrix which is partitioned
as
_ Ay Xy
AO(- [Ya Zo(])

whereA,o, X,, Yy, Z, are matricesA,o = Wy is of sizen,g x n,o, (Where ifa = 1¢ thenn, = |Vy|
and A, is a block diagonal matrix of sizg/;| x |V;| with each block of size(k;) x s(kq)), X, is of
Sizenyo X n,1, Y, is of sizen,y x nyo (if Ais symmetric, thery, = (X,)7), Z, is of sizen,1 x n,1, and
At = Z, — Y, A3 X, is theSchur complement

Note The above ND RF oAis defined to be very similar to the ND sequerce- Ag, A1, Ao, ..., Ap.
In particular,A; = A« ford =1, ..., D. The only difference is that the ND RF also recursively factors
theW,; = Aq4g matrices appearing in the ND RF sequence. This takésg® n) time using: + M (s(n))
processors. Since this is aik,)-block diagonal matrix of siz¢V,| x |V;| with each block of size
s(kqg) x s(ky)), the processor bound 8 ((kgy + M (s(kg))|Vail/s(kq)) <O + M(s(n))). These are
recursively factored evenly (rather than use the separator structure), using the (balanced) RF defined at
the start of this paper. The results of Pan and F&&f73] imply that the norm and condition bounds of
proposition 2.4 hold also for any ND RF.

126 John H. Reif / Journal of Computer and System Sciences 71 (2005) 86—143

We now apply our RF algorithm as previously described in Se@janly modified to execute on the
A, of the ND RF. Note that the depth of the ND RF tree is at mos{ log, which is at most a factor of

1/log (%) more than the depth of the previously defined RF tree, so in the modified algorithm the iterator
d must range up to log, n. Also note that the integer multipliers, are computed in 3 2 (depth of the

ND RF tree) stages, which is#2log , n in this case. The error analysis of the modified RF algorithm

is similar, except that again we need to replaceogith logs,, 7 in @ number of places due to the
constant factor increase in the depth of the ND RF tree.

We again use the exact same pipelining technique used in Section 3.4 to decrease the parallel time
bounds fromo (log® n) to O (log? n). We use both the analysis of (balanced) RF defined at the start of
this paper as well as the analysis of ND RF sequence defined in Pan and Reif [69,73]. In particular, the
proof of ourn + M(s(n)) processor bounds follows exactly from the results of Pan and Reif [69,73].
Again in this sparse(n)-separable case the work for ND RF is dominated by the computation of products
and inverses of a sequence of dense submatrices of @ge x s(ky) each requiringO(Iog2 n) time
and O (kg + M(s(ky))) processors foel = 0,..., D, whereD < Iog3/2 n. However, due to our use

of pipelining, all these inverses are computed simultaneously, so the total tithngog® n) while the
processor bound remair{sjj’:o O (kg + M(s(kg))). This sumisO(n + M(s(n))) if s(n) is of the form

n’ for 0 < y < 1. Note that if the sparsity graph #fhas constant degree or is planar, then the sparsity
graph of SPDAT 4 still has separator bound (s (n)).

Theorem 5.1. Let A be am x n SPD matrix with ar (n)-separable sparsity graplwvheres(n) is of the
formn? for 0 < y < 1.1f A is nonsingularthen an ND RF can be computed in parallel titd¢log? n)
usingn + M (s(n)) processorsand bit precisionO (), wherer = O (n(f + log n)), with high likelihood
>1—1/n%D (using a constant number of random variables ranging over a domain ofisjzg|)© D).

6. Applications of the RF

6.1. Reduction of matrix problems to RF computation

We will consider a reduction to be afficient parallel reductioiif it can be done ir0 (log? n) parallel
time usingM (n) processors. In this subsection, we define various matrix problems and their efficient
parallel reduction to RF computation (also, &, p. 69]).
1. LU FACTORIZATIONIf possible, factorA = LU whereL is nonsingular lower triangular, andlis
nonsingular upper triangular, otherwise output N@ FACTORIZATION. (If A is symmetric, then
U = L" and this problem is known &8HOLESKY FACTORIZATION.
If Ais SPD, therA always has & U factorization.
Given a RF tree oA, then theL U factorization can be computed lsy(log n) stages of matrix multi-
plication using the above recursive formula.

Lemma 6.1. There is an efficient parallel reduction from LU FACTORIZATION to the RF problem

2. DETERMINANT Computedet (A).
If Ahas afactorizatiod = LU, thendet (A) = det(L)det (U). The determinant of a triangular matrix
is obtained by multiplying all the elements on its principal diagonal. (This can be computedbig »)

John H. Reif / Journal of Computer and System Sciences 71 (2005) 86—143 127

time andn/ log n processors by using a balanced binary multiplication tree of@i@e’ log n) whose
leaves have log elements each.) Ster(L) = [[;_; Li; andder (U) = []7_; Ui;.
3.|DETERMINANT]|: Compute the magnitudder (A)| of det (A).
Otherwise, AT A is SPD, and so has a factorizatidd A = LU. Then sincelet(A) = det(AT), we
havedet(A)2 =det (AT A) = det(L)det (U), so|det(A)| = /det(L)det(U).

Lemma 6.2. There is an efficient parallel reduction frotWETERMINANT| (or from DETERMI-
NANT if A is SPDto the RF problem costing (log ») time and n processors

4.INVERSEIf A is nonsingular, then compute™! = flii((j)) whereadj (A) is the adjoint matrix of
A, otherwise output SINGULAR.

If Ahas an RF, thed—1 can be computed by the above RF sequence or tree formula. Othe#Wise,
is SPD, so ifA is nonsingular ther has an RF. Thend” A)~! = (A)~1(47)~1, can be computed by
the above RF tree formula, and we can comptité = A((A)~1(AT)~1) = A(AT A)~1 by one more
matrix product.

Lemma 6.3. INVERSE has an efficient parallel reduction to the RF problem

5.LINEAR SYSTEM SOLVE Ais nonsingular, then compute™v, otherwise output SINGULAR.
Here, we can apply the efficient parallel reduction given in our Secti@no LU factorization of
AAT (which we can compute by Lemma 6.1 by efficient parallel reduction to the RF), and to solution of
triangular linear systems, for which there are known efficient parallel algorithms (see [42]).

Lemma 6.4. There is an efficient parallel reduction from LINEAR SYSTEM SOLVE to the RF problem.

6. QR FACTORIZATIONIf possible, factoin x n matrix A = Q R whereR is a nonsingular upper
triangular matrix andQ is an orthogonal matrix (s@” Q = I) of sizem x n, for m>n. If the QR
factorization is not possible, then output NO QR FACTORIZATION (Rank deficient).

The QR-factors ofA can be computed from tHeU-factors ofA” A, whereR = U andQ = AR~ 1.

Lemma 6.5. There is an efficient parallel reduction from QR FACTORIZATION to the RF problem.

7. HESSENBERG REDUCTION ompute a matrixd{ = Q7 AQ having upper Hessenberg form
H;; = 0ifi > j + 1, and comput&, which is an orthogonal matrix. i is symmetric, therH is
tridiagonal.

TheKrylov matrixof ann x n matrix A andn-vectorv, is ann x m matrixK (A, v) = (v, Av, A, ...,
A"=1p). Borodin and Munrd17, p. 128] describe a well-known algorithm for the Krylov matrix which
can be used in the generic case where the minimal polynomial is the characteristic polynomial. Their
algorithm requires 2 log: multiplications of matrices of size at mosk max(n, m). Their reductionis a
Las Vegas randomized type of reduction. Using a random, independent choice of the elemeststof
v over a fixed set of polynomial size, the Schwartz—Zippel lemma [80,84] insures a failure probability

<1/n%D They observe that the matrix powets A2, . .., A2"*®™ can be computed iflog | stages
of matrix products, and th& (A, v) can be computed in log: further stages, where using the identity for

128 John H. Reif / Journal of Computer and System Sciences 71 (2005) 86—143

i=1,..., logm], (A% v, Av, A%, ..., A2 v) = A% (v, Av, A, ..., A2 v). SinceAFv in general
converges to the eigenvector Afwith the largest magnitude eigenvalue, the Krylov makigA, v) is
in general nearly singular. Thus this reduction to Hessenberg form, also used [B8Ranust be used
with care.

Further note Borodin and Munro’s reduction fails [27] whenewgis a matrix whose minimal poly-
nomial is a proper divisor of its characteristic polynomial, since the Krylov marid, v) will be
singular, for every choice of the vecterin this case. IfK (A, v) is nonsingular withQR factorization,
K(A,v) = OR, thenH = QT AQ is in upper Hessenberg form.

Lemma 6.6. There is an efficient Las Vegas randomized parallel redudiismg n random numbers
chosen from a fixed set of polynomial 3jzeith success probabilite 1 — 1/n%® from HESSENBERG
REDUCTION to the RF problem in the generic case where the minimal polynomial is the characteristic
polynomial

6.2. A randomized reduction from RANK to RF

In this section, we give an efficient parallel algorithm for RANK via the RF computation and a known
randomized preconditioning method, but avoiding the usual computation of characteristic polynomials.

Borodin et al[16] give a processor-efficient randomized parallel algorithm for the rank problem and
the more general problem of the solution of singular linear systems. They give a randomized reduction
from the solution of singular linear systems to the problems of (i) inverting a nonsingular matrix and (ii)
determining the rank of a matrix that has the added property that all its leading principal sub-matrices,
of dimension no larger than its rank, are nonsingular.

Consider am x n singular matrixA. To avoid the problem where principal sub-matricediave
determinant 0, the results of Kaltofen and Saunders [49] can be used to construct a matrix from
which is expected to act like a generic matrix. Define a product matrit U AL with randomn x n
nonsingular preconditioning multiplieds, U. The matriced andU” are unit lower triangulan x n
Toeplitz matrices, with unit diagonal elements and with the strictly lower elements of the first column
randomly and independently chosen over the vajugs®| wherei is an integer on the range frorn®
to n¢} for a constant > 5. For example, matrik is defined as follows:

Lij=Lii—jp1 ifi>],

L = Li’jzl Ifl:J,
Lij=0 otherwise,
whereLy 1, L3 1, ..., L, 1are(n—1) random numbers from thisrange. Then by LenriaProb(cond>

(L) =n)<0@/n"* andProb(cond>(UT)>nc) < 0(1/nc~*), so matriced., U are well conditioned,
with condition number n¢ with likelihood >1 — Q(1/n~4).

Let A'([r], [r]) be the leading principal x r submatrix ofA’, (i.e., the submatrix ofA” indexed by
rows 1 ...,randbycolumnsl..,r).

Proposition 6.1. Assuming A has rank then with probability>1 — 1/n®® | the rank ofA’ is r and
moreover A'([r], [r]) is positive definite and nonsingular

John H. Reif / Journal of Computer and System Sciences 71 (2005) 86—143 129

This Proposition follows from Theorem 2 of Kaltofen and Saundé€3, noting that the random
elements ol/, L are chosen over a fixed set of polynomial size, so the Schwartz—Zippel lemma [84,80]
insures a failure probabilityc 1/n2D

This randomized method is known to bas Vegaqthat is, the output can always be verified to be
correct). The determined rank and the solvabilitydaf = b can be certified, as follows. Let superscripts
to 0, 1 indicate the size of matrices filled with Drespectively. We have

,_ [ArL ') B
A —|: B BN:|’

whereBisr x (n —r), B is(n —r) x r,andB” is(n —r) x (n — r). Let
A -1
E=|:0 I, A([r], [rD Bi|'

(n—r)xr) -
If A has rank then (see alsp18,49, p. 720])

A([r], [r]) Oxe=n)
A/E = [B’ O(nfr)x(nfr)

and the right null space @ is spanned by the columns of

Orx(n—r)
LE .
|: Ly :|

If bis a vector such thatx = b holds, and’ is the vector formed by the firstentries ofUb, then

A e
ALE [o] =b,

thus certifying the determined rank and the solvabilitydaf = b. The RANK problem requires that we
actually find the rank, not just verify that the rank is. The RANK problem can be solved by using
O (log n) stages of binary search forincreasing the time bound by a logarithmic factor. This proves the
known result:

Lemma 6.7. The RANK problem on a given matrix A and the solvabilithef= b can be determined
by a randomized parallel algorithpusing 2n random numbers ovef, ..., n°®}, and with success
probability >1 — 1/n%® | using O(log n) calls to DETERMINANT of matrices derived from A by
multiplying A by two triangular Toeplitz matrices

However we can do better. We now give a method that avoids this slow-down without utilizing asymp-
totically more processors (nofd8] get similar results, but require the computation of characteristic
polynomials). Suppose we are givensax n matrix A of rankr < n. Let A’ = UAL be the product
matrix derived by multiplyingA with randomn x n nonsingular preconditioning multiplieds, L, as
defined above. By Proposition 6.4/([r], [r]), the leading principal nonsingularx r submatrix ofA’,
is nonsingular with probability=1 — 1/n®®_ Let us assume that this event holds, atidr], [r]) is
positive definite. Note thad’ as defined above may not be symmetric. In Section 3 (RF Algorithm of
Theorem 3.1), we note that the RF will still be constructed for inputs which are nonSPD matrices, so

130 John H. Reif / Journal of Computer and System Sciences 71 (2005) 86—143

symmetry of the input matrix is not essential. Alternatively, it is easy to show that Propd3itidrolds
also ifU = LT where again is a random unit lower triangular x » Toeplitz matrix, SoA’ = UAL is
symmetric.

A more significant difficulty is that the RF algorithm on input matrix which is singular will not result
in a complete RF. Sincé’ is singular, if we attempt to construct the RE } of A’, then the RF ofA” will
not be complete, and instead the RF will be defined only on a submatak @f particular the leading
principal nonsingular x r submatrixA’([r], [r]).

Thus the rank of A’ can be found by examining the incomplete RF, and determining the completed
portion of the RF corresponding t'([r], [7]). Note that the leaves of the RF arex11 matricesA’,
wherex € {0,1}'°9”, and soA/, is nonsingular iffA;, # 0. Let NUMBER() be the binary number
corresponding to the binary string Note that the leaves are indexed by binary numbeo$ length
log n, and that the completed portion of the RF corresponding ¢p-], []) will have the nonzero leaves
A! for all indiceso € {0, 1}'°97 such that NUMBERx) € {0, 1, ..., r — 1}. These nonzero leaves are
1 x 1 nonsingular matrices which are derived from the factored submatrices of the aafrik [r]). If
r < n, then the next larger leading principal submattiX[r + 1], [+ 1]) is singular. Thus it follows
that there is a zero Ieat;* = 0, for «* such that NUMBERx*) = r (since otherwise iﬂ;* # 0, then
the next larger leading principal submatdx([r + 1], [r + 1]) would be nonsingular, s& would have
rankr + 1, a contradiction). Thus we have

Lemma 6.8. Leto* € {0, 1}'°9” be the lexically smallest binary string of lendtty » such thatd), = 0.
Thenr = NUM BER (&*).

Summarizing the discussion above, given a matfiwhich is singular, the RF Algorithm of Theorem
3.1 extends to allow us to construct the maximal partial RF of the matrix corresponding to the leading
principal nonsingular submatri&’([r], [r]) of the matrixA’. Thus by Lemma 6.8, and Theorem 3.1, we
have

Theorem 6.1. There is an efficient randomized parallel reduction from RANK to the RF problem. The
RANK problem can be exactly solved in randomized parallel,tin@og? n) using M (n) processes
using2n random numbers ovéd, . .., 9@}, and with success probability 1— 1/2%D and a constant
number of random variables ranging over a domain of sized [)©D.

6.3. Applications of the matrix reductions to dense matrices

By Theorem3.1 and the efficient parallel reductions of Section 6.1, we have the following further
results:

Corollary 6.1. The problemgdefined in Sectio6.1)|DETERMINANT|, INVERSELINEAR SYS-
TEM SOLVE RANK QR FACTORIZATION and HESSENBERG REDUCTION can be exactly solved
with high likelihood>1 — 1/n2%D | in parallel time O (log? n) usingM (n) randomized processqrand

bit precisionO (n), wherer = O (n(+1og n)). If the input matrix is SPDwe can also compute DETER-
MINANT and LU FACTORIZATIONvithin these same parallel bounds. All of these problems require
only a constant number of random variables ranging over a domain of(siz&|)°?, except RANK

John H. Reif / Journal of Computer and System Sciences 71 (2005) 86—143 131

and HESSENBERG REDUCTION which require a further linear number of random variables ranging
over a domain of size®®.

Note An input matrix which is nonsingular may not have a complete RF factorization. However, the
RF will still be constructed for inputs which are nonsymmetric positive definite matrices, so symmetry
of the input matrix is not essential (it just simplifies the proof in Lenfr& of the pipelined Newton
iterations described in Section 3.5).

Note that our parallel time bounds for the probldrhsFACTORIZATION, QRFACTORIZATION and
HESSENBERG REDUCTION are the best known. Previously Pan [63] had proved the same processor
bounds for these listed problems with a time boun@@bg® n).

The additional problem ETERMINANT|, INVERSE, LINEAR SYSTEM SOLVE, and RANK
were previously known to be exactly solvable (see [42,47,48,62,63]) inditheg? n) usingM (n) pro-
cessors, requiring reduction to the computation of the characteristic polynomial. Our techniques achieve
the same bounds, with high likelihoggl — 1/22D (using again a constant number of random variables
ranging over a domain of siza| A||)°®, except the rank computation which requires a further linear
number of random variables ranging over a domain of 8i2€"), without the need to compute the
characteristic polynomial.

6.4. Applications of the matrix reductions to sparse matrices

Applying Theorem 5.1 and the above matrix reductions on sparse matrices, we have

Corollary 6.2. Let A be am x n SPD matrix with ars (n)-separable sparsity graphvheres(n) is of

the formn” for 0 < y < 1. We can exactly solve the problems DETERMINANT and LINEAR SYSTEM
SOLVE for a nonsingular A in parallel tim@ (log? n) usingn + M (s(n)) processorsand bit precision

O (n), wherer = O (n(B + log n)), with high likelihood>1 — 1/n%®,

6.5. Applications of the matrix reductions to bounded displacement rank matrices

By the reductions of Sectidh 1, specialized to the case of bounded displacement rank, and the efficient
algorithms for bounded displacement rank of Section 2, we have

Corollary 6.3. Given ann x n integer matrix A of displacement rardk let &' = ¢ if A is SPQ and
else lety’ = 2. Then the problem ETERMINANT|, INVERSELINEAR SYSTEM SOLVRANK
can be exactly solveavith high likelihood>1 — 1/n%® | in randomized parallel time (log? n) using
82 P (n) processorsand bit precisionO (r), wherer = O (n(+ log n)), using at most a linear number
of random variables each ranging over a domain of sizied |)° . If the input matrix is also SPPwe
can compute DETERMINANT and LU FACTORIZAT|®@Ithin these same parallel bounds

6.5.1. The RANK problem for bounded displacement rank matrices

Suppose we are given anx n symmetric matrixA of displacement rank which is singular and of
rankr < n. Following the methods of Sectidh2, we choose randomx »n nonsingular lower triangular
Toeplitz matricesL, UT with unit diagonal elements and with the strictly lower elements of the first

132 John H. Reif / Journal of Computer and System Sciences 71 (2005) 86—143

column randomly chosen uniformly over the valygs:¢| wherei is an integer on the range frosm® to

n¢} for a constant >5. By Lemmar.1, matriced., U are well conditioned, with condition number:¢

with likelihood >1 — Q(1/n°~%). By Proposition 6.1, with likelihood>1 — 1/n?*® A’ = UAL has a
nonsingular x r leading principal submatrix. Since multiplication of a ma#ixf displacement rank

6 by these two triangular Toeplitz matrices results in a matrix of displacement rank af nitofetlows

thatA” = U AL has this same displacement rank. Given a matftiwhich is not positive definite, the RF
Bounded Displacement Rank Algorithm of Theorem 4.1 easily extends, by the techniques of Section 6.2,
to allow us to construct, in parallel tim@(log? n) usings?P () processors, the maximal partial RF of
depthd* for the matrix corresponding to the leading principal nonsingular submatrix of the ragtrix

Corollary 6.4. The RANK problem fat x n symmetric matrices of displacement rankan be solved
with success probabilite 1 — 1/n%D in randomized parallel tim@ (log? n) usings2 P (1) processors

6.6. Applications to polynomial problems

The problems of computing the resultant and the GCD of two polynomials is an important application
of Toeplitz matrices.

6.6.1. Parallel computation of polynomial resultant

Fix polynomialsA(x) = Y !_ga;x’ andB(x) = > 1" o bix'. A Sylvesteor resultant matrixS(A, B)
of polynomialsA(x) and B(x) is a size(m + n) x (m 4+ n) matrix which is a block Toeplitz matrix,
consisting of two block submatrices, of sige + n) x m and(m + n) x n each of which is Toeplitz. It
is defined as follows:

dp b
ap—-1 a bm-1 B
an bm
dp—1 bn-1

S(A, B) = :
aj b1
ao bo

al b1

L ao bo

Theunivariate resultan{see[16,19]) of A(x) and B(x) is the determinant a§(A, B). It is well known
that the resultant is equal to O f(x) andB(x) have a common root. The resultant has many applications
in computational algebra.

Though the Sylvester matriX(A, B) as a whole will not be Toeplitz, it consists of two block subma-
trices, each of which is Toeplitz (see [42]). So by Lemma 4.4, the Sylvester matrix will have constant
displacement rank 3. Hence, the processor requirements and parallel time for computing the resultant is

John H. Reif / Journal of Computer and System Sciences 71 (2005) 86—143 133

the same bounds as constructing the RF of a matrix bounded by displacement rank 3. Thus, by Theorem
4.1 and Corollary 6.3 and the partial RF computation of rank of Corollary 6.4, this implies:

Corollary 6.5. The resultant problem for univariate polynomials with P-rational coefficients can be
solved in randomized parallel tim@ (log? n) using P (n) processorswith success probability=1 —
1/n®®,

6.6.2. Parallel computation of polynomial GCD

Another application of Toeplitz block matrices occurs in BED computation problemAgain fix
A(x) = Y1 gaixt andB(x) = Y M o bix', where w..o.g.mn <n. For uniqueness we define the GCD
of A(x) andB(x) to be a monic (the coefficient of the highest degree teri@d @D (x) is 1) polynomial
GCD(A(x), B(x)) = GC D(x) which is the unique maximum-degree polynomial that divides Bd@#)
and B(x). Letr be the degree ofiC D(x). The GCD satisfies the equatiadhC D(x) = U (x)A(x) +
V (x) B(x), for unique polynomialé/ (x), V (x), whereU has degree: —r — 1 andV has degree —r — 1.
Theextended GCD computation problésio computd/ (x), V (x) in addition toG C D(x). The extended
GCD computation can be done sequentially by the Extended Euclidean AlggtitmO (P (n) log? n)
time, but there were no previous similarly efficient parallel algorithms.

We now develop our parallel algorithms for GCD or extended GCD. We observe that the processor
requirements and parallel time for computing polynomial GCD’s of output degsd¢he same as that for
finding the rank and the basis of a matrix of displacement rank 3 (see [22]). The extended polynomial
GCD defines a submatrix of the Sylvester matrix. Let tseibresultant matrixsee also [19,42]) be a
matrix of size(n + m — 2r) x (n + m — 2r), consisting of the first + m — 2r rows of the Sylvester
matrix defined for the resultant of(x) and B(x). Consider the-subresultant system defined for the
r-subresultant matrix:

_ — [up—r—q] o
a, bm m—r—1 0
dp—-1 bm—1
uy
uo .
Un—r—1
ag dan b,
ap—1 bo bn—1 :
: : 0

1)

i ap ... ar bo ... by | vé 1]

Again, by Lemma4.4, the subresultant matrix will have constant displacement rank 3. The above
subresultant system corresponds to the linear system derived from the eqGatibr) = U (x)A(x) +
V(x)B(x). Ther-subresultant system has a solutiom #¥deg(GC D(x)). Thus we can use divide and
conquer, inO(log n) stages, to find the degreeof the GCD. Hence, the processor requirements and
parallel time for computing polynomial GCD’s of output degreis bounded byO (log n) stages of
testing the singularity ofi x n matrices of displacement rank 3 and a final stage of finding the basis

134 John H. Reif / Journal of Computer and System Sciences 71 (2005) 86—143

of such a matrix. For bounded displacement rank matrices, we apply Lerdm@orollary 6.3 and the
partial RF computation of rank used in Corollary 6.4. This implies:

Corollary 6.6. The GCD problem for univariate polynomials with P-rational coefficients can be solved
in randomized parallel time (log® n) using P (n) processorswith success probability: 1 — 1/,

6.6.3. Padé approximants

We next observe our parallel algorithms for extended GCD (CoroBay can be applied to derive
an efficient parallel algorithm for finding Padé approximants. Consider a (formal) power détips-
ag+arx +asx?+- - - with ag # 0. A Padé approximant is a rational function approximation to the power
seriesA(x). The(m, n) Padé approximarto A is defined (see [36]) to be the rational functiBgy, (x) =
U(x)/V(x), whereU andV are polynomials witlleg (U) <m anddeg(V)<n andA(x)V(x) —U(x) =
o (x™tn+1) Padé approximants are widely used in applications for rational function approximation.
Frobenius [30] first defined Padé approximants and proved:

Lemma 6.9. The(m, n) Padé approximanP,,, (x) = U(x)/V (x) to Ais unique

Padé[61] popularized the use of Padé approximants. Gragg [36] gave quadratic time algorithms for
Padé approximants. Brent et al. [18] developed an efficient sequéntital: +m) log?(n+m)) algorithm
for Padé approximants, using a reduction to the solution of Toeplitz system®attéetable/36] is a
two-dimensional array where the:, n) Padé approximan®,,, (x) is in the position indexed byn, n).
Brent et al. [18] show that the entries of the Padé table can be computed by the extended Euclidean
algorithm [1].

Let A(x) be a power series withg # 0. Rational formU (x)/V (x) is an (m, n) Padé approximant
to A(x) if A(x)V(x) — U(x) = O(x™*"t1), Note that this equatioA(x)V(x) — U(x) = O (x™tn+ly
defines a linear system of + n + 1 equations (each corresponding to a powex)ofith m + n + 2
unknownsv;,i = 0, ..., n, corresponding t&/ (x) = Y /_, vix! andu;,i = 0, ..., m, corresponding
toU(x) =Y ", u;x" wherea, = 0 if v < 0. These equations have the form

agp r ug -
ay dap .
V0 :
: — | Um
am Am—n U' 0
n
L Am+n am | L 0

Observe that a rearrangement of this linear system gives the linear system

John H. Reif / Journal of Computer and System Sciences 71 (2005) 86—143 135

am Am+n—2 Am+n—1 0 07r Up | [am+n]
Am—n+1 Am-1 Am 00 V1 Am+1
Am—n ay—2 Am—1 -1 U am V0.
ao
0 ao "
i O O _1_ | UQ _| L 4do _

By Lemma6.9, there always exist solutions to this linear system, which is Block Toeplitz.
Hence, our parallel algorithms for extended GCD of Corollary 6.6 provides an efficient parallel algo-
rithm for finding Padé approximants

Corollary 6.7. The(m, n) Padé approximanP,,,(x) = U(x)/V (x) to a power series can be computed
in randomized parallel time (log? n) using P (n) processorswith success probabilityz 1 — 1/,

6.6.4. Applications to Sturm sequences and finding real roots
A Sturm sequencésee[20]) of polynomials fo(x), f1(x) is the sequence of polynomialg(x),
f1(x), ..., fitx)wherefori =1,2,... k=1, fit1(x) = q;(x) fi(x) — fi—1(x), theg; (x) are linear, and
fx(x) is constant. The Sturm sequencefpfx), f1(x) is similar to the remainder sequence generated by
the Euclidean algorithm for th@ C D(fo(x), f1(x)) except thatf;+1(x) is the negative of the remainder
of the division of f;_1(x) by f; (x). Therefore, the Sturm sequence can be computed in@meog? n)
by simple modification (see [7]) of the usual HGCD algorithms (see Ndte The precision required
can be reduced by use of additional indeterminants as linear factors; see [6,7,24] for details. Pan [65] and
others have observed that the linear system defining the Sturm sequence is block Toeplitz, with bounded
displacement rank. Applying our results for bounded displacement rank matrices, by Lemma 4.4, and
Corollaries 6.3 and 6.4 we have

Corollary 6.8. The Sturm sequence can be computed in parallel tifleg® 1) using P (n) processors
with success probability 1 — 1/22%D.

6.7. Real root isolation

The (standard¥turm sequenasf a single polynomial (x) of degreen with derivative /' (x) is defined
to be the lengtlt <n Sturm sequence gb(x) = f(x), f1(x) = f'(x). In the following, we assume that
f(x) has real coefficients and all roots are real. The applications of Sturm sequences use the following
lemma, attributed to Rolle; s¢86],

Lemma 6.10. If f(x) has real coefficients and all roots are re#ien the roots of’(x) are all real and
they strictly interleave the roots gf(x).

For a reala, let V, be the number of sign variations of the Sturm sequeface), f1(a), ..., fi(a),
that is, the number of time§ (a) - fi+1(a) < O. It follows from the result of Rolle that

136 John H. Reif / Journal of Computer and System Sciences 71 (2005) 86—143

Lemma 6.11. For any interval[a, b] of the real ling the number of real roots in this interval I, — V.

Order the zeros of the linear termgx) of the Sturm sequencg, <y;, < ... <y;, and order the roots
of f(x)r1 <rz <--- <r,. Foranyfixed;, 0 < ¢ < % a pointson the real line is an-splitting point
for the roots off (x) if r; < s < rj4+1 for someen <i < (1 — ¢)n. Ben-Or et al]6] prove the remarkable
result that:

Lemma 6.12. There & a j such thay;; is a %—splitting point for the roots of (x)

Now we give parallel algorithm for finding %ksplitting point for the roots of (x). The sign sequence

of the Sturm sequence is computable by multipoint evaluation, which costs parallé tiog?) using

P (n) processors (s€d2]). Using a binary search @ (log n) stages on the sequenge<y;, < ... <yj,
and applying Lemma 6.11 to count the number of rootg @f) in the appropriate interval considered at
each stage of this binary search, we get

Corollary 6.9. A %-splitting point for the roots of a polynomigl(x) with all real roots can be computed
in parallel time O (log? n) using P (n) processorswith success probability 1 — 1/,

6.7.1. Parallel solution of the real roots problem

Given a univariate complex polynomiglx) of degreen with rational coefficients expressed as a ratio
of two integers< 2™, theroot problemis to find all the roots off (x) up to specified precision 2. The
real root problemis the root problem where all the roots of the polynomial are real. Réif gave a
real root algorithm which has sequential arithmetic time cos® 6P (n) log® n(log n + log b)), where
b = m + u. In the following, we assume for simplicity the case of high precigicam + u<n¢, for a
constant > 1. In that case, the sequential algorithm of Reif has time baDG# () Iog3 n). The real
root algorithm of Reif [76] proceeds by splitting with very high accuracy, the degpdynomial into
a product of two polynomials each with degree at legdt2. This splitting algorithm can be viewed as
a reduction to the problems (for polynomials of degne® inputs of sizen): (i) polynomial convolution
and multiplication, (ii) polynomial division, (iiin point polynomial evaluation and interpolation, and
(iv) Sturm computation. By Corollaries 6.6, 6.8, 6.9 all these computations can be done in parallel time
0 (log? n) using P (n) processors. Thu® (log n) stages of root splitting allow us to extract all the root

with high accuracy 2= 2"""", implying:

Corollary 6.10. Given a polynomial of degree n with only real roots and coefficient bit-precisien
n?® we can approximate all the real roots within bit-precisibr= n°® | in parallel time O (log® n)
using P (n) processorswith success probability: 1 — 1/n%D,

6.7.2. The symmetric tridiagonal eigenvalue problem
Thesymmetric tridiagonal matrix eigenvalue problésrithe problem of finding all the eigenvalues of
ann x n symmetric tridiagonal matrix

John H. Reif / Journal of Computer and System Sciences 71 (2005) 86—143 137

Fb1ap 0 0 ... O 0 07
a» bp a3 0 ... O 0O O
0O O

0 az3 b3 as ... O

an-1 by_1 a
0 a, by

[eoNe)

The real roots problem has an efficient reduction to and from the symmetric tridiagonal matrix eigenvalue
problem, which has been attributed to HE88] and described in [10-12,52] and also by JaJa [42], p. 428,
homework 8.37 (this relationship is well known and is also occurs in many other computational prob-
lems as inverse eigenvalue problems, orthogonal polynomials, Sturm sequences, three-term recurrences
Euclidean scheme, and Lanczos algorithm). This reduction from the symmetric tridiagonal matrix eigen-
value problem for the above matuxto the real roots problem requires us to compute the characteristic
polynomialder (.1 — A). We sketch here this efficient reduction, with arithmetic a@$t log?). For

eachi = 1,...,nletp;(1) = det (A —AYD), whereA® isthei x i submatrix consisting of the firstows

and the first columns. Note thapg(1) = 1, p1(1) = A— b1, andp; (1) = (A —b;) pi—1(4) — aizpi_z(}v).

This recurrence equation (see [42]) can be solvedpfgr) = det(1I — A) within arithmetic work
O(P(n)log? n), orin parallel timeO (log? n) usingO (P (n) log n) processors. The reverse reduction of

the polynomial root-finding problem for a polynomiglx) to the symmetric tridiagonal matrix eigen-

value problem, by the Euclidean remainder scheme, is described in Hald [38]. This reverse reduction is
used also in [10-12], and shown to have Boolean €bs¥ (n) M (nm) log n). The arithmetic cost for

this reduction isO (n log? n). The Euclidean scheme can be appliedfta) and f/(x) or equivalently,

to f(x) andg(x) where f'(x;)g(x;) > 0, f(x;) = 0. The computation of this reduction can be done by

the quotient-tree procedure of Ben-Or and Tiwari [7] (Section 8.1). The quotient-tree procedure yields
all the quotients and the leading coefficients of the remainders, which are the entries of the tridiagonal.
Recovery of the coefficients of the polynomial from the entries of the matrix is described in [10-12] and
can also done by the technigue of Krishnakumar and Morf [52]. Thus the arithmetic cost for these forward
and reverse reductions is easily be seen t@b& (n) log® n) sequential steps. Bini and Pan [9,11,12]
have noted that this also gives a parallel reduction to and from the real root problem and the eigenvalue
problem for symmetric tridiagonal matrices. These reductions require the computation of a Euclidean
polynomial remainder sequence similar to polynomial GCD, which we can compute by Corollary 6.6 in
parallel timeO (log? n) using P(n) processors. Bini and Pan [9,11,12] requi@dog?® ») time using

n P (n) processors for their parallel reductions. We can improve their reduction by applying our results
for bounded displacement rank matrices. Using Lemma 4.4, and Corollaries 6.3 and 6.4, we can compute
these reductions in parallel tim@(log? n) using P (n) processors. By Corollary 6.10,

Corollary 6.11. Given a symmetric tridiagonal matrix of sizex n and coefficient bit-precisioh =
n?®D we can approximate all the eigenvalu@shich are all real in this casewithin bit-precision
b =n%® in parallel ime O (log® n) using P (n) processorswith success probabilitg 1 — 1/n%D),

138 John H. Reif / Journal of Computer and System Sciences 71 (2005) 86—143

7. Condition bounds for random matrices

Proposition 7.1(Demmel26, Eq. 4.20). Let S be a realhomogeneous hypersurface over a given di-
mension N defined by a single polynomial of degree d. Let p be a random point chosen over a uniform
distribution on the unit sphere of dimension d. bets(p, S) the shortest Euclidean distance from p to

S. Then for any > 0,

N
Prob(dist(p. S)<e) <2 (7) (2ds)’.

j=1

Let S, be the set of reat x n matrices which are singular. Note th&t is a real, homogeneous
hypersurface over dimensiod = n? defined by a single polynomial of degrde= n (that is, the
determinant polynomial set to 0). Eckart and YoUi2g] (also see [26, Theorem 3.1]) proved:

Proposition 7.2. The distancelisz (A, S,,) from a matrix A to the nearest singular matrix|ig —1|| 1.

Since by definitiorcond>(A) = ||A| ||A~L||, this distance islist(A, S,) = ||Al|/condo(A). This
implies thatcond>(A) can be upper bounded by a lower bounddesy (A, S,,) as given by Proposition
7.1

The Frobenius normof matrix Ais [|Allr = (O, |a,-j|)1/2. Let A be a random x n matrix with
elements chosen so thipd || /|| Al r uniformly distributed over the unit sphere. Propositions 7.2 and 7.1
can be immediately applied to bound the conditioidiy (see [26, Theorem 5.1]):

n? 2 j
Prob(conda(4)>x)<2) <”J) (Zx—"> :

j=1

HenceProb(conda(A)>x)< 0 n3/x) for x > 4nS.

Similarly, let LT S, be the set of real, singular x n lower triangular Toeplitz matrices with unit
diagonal elements. Note that each such matrix is defined from only thé strictly lower elements of
the first column. Thud. TS, is a real, homogeneous hypersurface over dimensica n — 1 defined
by a single polynomial of degre& = n — 1 (again, this is the determinant polynomial set to 0). lLet
be a random: x n lower triangular Toeplitz matrix with unit diagonal elements and with strictly lower
elements of the first column randomly chosen with a uniform distribution over the unit sphefé.lhest
the lower triangular Toeplitz matrix derived frolmp where the: — 1 strictly lower elements of the first
column are normalized to unit Frobenius norm. Propositit@sand 7.1 immediately imply that

n—1 j
Prob(conda (L") >x) SZZ (n N 1) <M)

X
j=1 /

and soProb(cond>(L') >x)< O(n?/x) for x > 4n?. Since the renormalization to unit Frobenius norm
can only decrease the condition by a factokdf/n?, the bound

Prob(conda(L) >xn%) < 0 (n®/x)

John H. Reif / Journal of Computer and System Sciences 71 (2005) 86—143 139

holds for the (un-normalized) the matitix Since by Propositioi.2,dist (L, LTS,) = || L||/cond2(L),
this is equivalent to the bound:

Prob(dist(L, LT Sy) <||L|l/(xn?) < 0 n?/x).

This immediately also implies a similar bound on the condition for a lower triangular Toeplitz natrix
whose elements are randomly chosen over a discrete uniform distribution, where the distance between
discretization pointsis/lu® = o(||L||/(xn?)) for ¢ > 4. Letx = n°~2. Inthis case, with at most this same
probability O (n?/x) = 0(1/n“~%), we havelist (L, LT S,)<||L|/(xn?) —1/n < (|L|/n°)(1—0(1)),

and so with at most this same probabiliy1/n¢~%), we havecondo(L) > xn?(140(1)) = n¢(1+0(1)).
Absorbing they(1) additive factor into the) (—) notation, with at most probabilitg (1/n~%), we have
conda(L)>nC.

Lemma7.1. Let L be a randomm x n lower triangular Toeplitz matrix L with unit diagonal ele-
ments and with the strictly lower elements of the first column randomly chosen uniformly over the
values{i/n¢| where i is an integer on the range fromn® to n¢}, for a constantc > 4. Then with

high Iikeiihood matrices L, U are well conditioned and in particular Prob(condz(L)>n®)<
O01/n%).

8. Randomized construction of displacement generators

SupposeA is ann x n matrix with minimum displacement rank and letS = A, (A) = A —
ZAZT.If Ais a generic matrix then the resultiSdas a nonsingulat x leading principal submatrix
S([41, [6]), so we can then apply Lemmgb as given in Section 4.3 to constradisplacement generators
for A.

However, in generab may have a singulat x § leading principal submatrix. Here we extend these
technigues of Section 4.3 to specific rather than just generic matrices. To remedy this, we choose random
n x n nonsingular lower triangular Toeplitz matricesU” (see [47]) with unit diagonal elements and
with the strictly lower elements of the first column randomly chosen uniformly over the valpey
wherei is an integer on the range frorn¢ to n¢} for a constant >5. Then by Lemma 7.1, the condition
of matricesL, U is <n¢ with likelihood >1 — Q(1/n%).

These preconditioning multipliers, L, can be used to construct a matrix which is expected to act
like a generic matrix; in particular, by Proposition &1= U SL has a nonsingulat x ¢ leading prin-
cipal submatrixs’([d], [6]) with likelihood >1 — 1/n%® . (In the cases’([6], [8]) or U, L are singular,
we repeat the random choice Uf L.) Now, we consider the case where the leading principal subma-
trix S’([4], [6]) of S’ is nonsingular and alst/, L are nonsingular. Sinc8 has ranks, and U, L are
nonsingular, and’ = USL, it follows that S’ has ranks. By Proposition 4.15" = S§'(—, [6])S"([d],
[BD~1s'([6]) so it follows that S = UL~ = U-1S(—, [oDS (6], [6]) LS ([oDpL~2.
Therefore we redefingy, ..., gs to be the firstd columns of the product/ ~1S'(—, []). We also
redefineh;” to be theith row of the products’([d], [6]) 1S’ ([6])L~ for i = 1,...,5. (Note that
this naturally generalizes the definition of thé in Lemma 4.5, where previously these were de-
fined to be ith row of the product M~1S([5]).) For this redefiniton of theg; and h;

140 John H. Reif / Journal of Computer and System Sciences 71 (2005) 86—143

we have

o
> gihi” =W (=, [0S (01, [o) S (ASHL
i=1
=U"1S'(—, [O)S' (6], [a) S (e Lt = S.

Thus we have the following extension of Lemrh& to the general case.

Lemma 8.1. Let A be am x n matrix and letGEN ERAT O Rs(A) be theA, -displacement generator
n-vectorsg;}, {h;},i =1, ..., d where theg; andh; are as just redefined with a nonsingul&i[4], [5]).
If A has minimum displacement ravkthen S = A, (A) = Zlegih,-T and by Lemmal.4, A =

Y0 L(g)LT (hi).

9. Conclusion

9.1. Open problems

There are a number of further open problems remaining:

e Our RF algorithm includes the random selection of a prime whose binary representation’s length is
linear in the size of the input matrix. So there remains the open problem of finding similarly efficient
parallel algorithms that do not use randomization.

e Also, our RF algorithm requires us to apply a homomorphism f@to Z ,. To apply this homomor-
phism, we have assumed a model of computation with unit cost division over a finite field (whereas
prior works do not generally require this). Recall that NC is the class of Boolean circuits of polylog
depth and polynomial size. Division over a finite field is NC reducible to extended integer GCD. How-
ever, no NC algorithm has yet been found for extended integer GCD, and we can not directly derive an
efficient algorithm in the Boolean circuit model. We conclude that there remains the challenging open
problem of finding similarly efficient parallel algorithms that use significantly smaller prime moduli
or that work in the Boolean circuit model of parallel computation.

Acknowledgments

The authorthanks Shenfeng Chen, Chris Lambert, Arman Glodjo, K. Subramani, Aki Yoshida, Hongyan
Wang, and Prokash Sinha for various edits and comments on the paper, Ken Robinson for excellent edi-
torial assistance, and especially Deganit Armon for a very thorough technical reading of this paper and
her insightful comments. We also gratefully acknowledge the referees as well as Wayne Eberly and Wei
Zhang for suggesting substantial improvements to our presentation and proofs.

References

[1] A.V.Aho, J.E. Hopcroft, J.D. Ullman, The Design and Analysis of Computer Algorithms, Addison-Wesley, Reading, MA,
1974.

(2]
(3]

(4]
(5]

(6]
(7]
9]

(10]
(11]

(12]
(14]

(15]
(16]

(17]
(18]

(19]

(20]
[21]
(22]

(23]

(24]
(25]

[26]
[27]
(28]
(29]

(30]
(31]
(34]

(35]
(36]
(37]

(38]
[40]

John H. Reif / Journal of Computer and System Sciences 71 (2005) 86—143 141

G.S. Ammar, W.G. Gragg, Superfast solution of real positive definite Toeplitz systems, SIAM J. Matrix Anal. Appl. 9
(1988) 61-76.

D. Armon, J. Reif, Space and time efficient implementations of parallel nested dissection, Proc. SPAA92 BS83 (1992)
344-352.

A. Ben-Israel, A note on iterative method for generalized inversion of matrices, Math. Comput. (1966) 439-440.

A. Ben-Israel, D. Cohen, On iterative computation of generalized inverses and assorted projections, SIAM J. Numer. Anal.
(1966) 410-419.

M. Ben-Or, E. Feig, D. Kozen, P. Tiwari, A fast parallel algorithm for determining all roots of a polynomial with real roots,
SIAM J. Comput. (1986).

M. Ben-Or, P. Tiwari, Simple algorithms for approximating all roots of a polynomial with real roots, J. Complexity 6
(1990) 417-442.

D. Bini, Divide and conquer techniques for the polynomial root-finding problem, Proceedings of the International Congress
of Nonlinear Analysts, Tampa, August, 1992.

D. Bini, L. Gemignani, On the complexity of polynomial zeros, SIAM J. Comput. 21 (4) (1992) 781-799.

D. Bini, V. Pan, Parallel complexity of tridiagonal symmetric eigenvalue problem, Proceedings of Second Annual
ACM-SIAM Symposium on Discrete Algorithms, 1991, pp. 384—393.

D. Bini, V. Pan, Practical improvement of the divide-and-conquer eigenvalue algorithms, Computing 48 (1992) 109-123.
R.R. Bitmead, D.O. Anderson, Asymptotically fast solution of Toeplitz and related systems of linear equations, Linear
Algebra Appl. 34 (1980) 103-116.

R.R. Bitmead, S.-Y. Kung, D.O. Anderson, T. Kailath, Greatest common divisors via generalized Sylvester and Bezout
matrices, IEEE Trans. Automat. Control (1978) 1043-1047.

A. Borodin, J. von zur Gathen, J. Hopcroft, Fast parallel matrix and GCD computations, Inform. Control 52 (1982)
241-256.

A. Borodin, I. Munro, The Computational Complexity of Algebraic and Numeric Problems, American Elsevier, 1975.
R.P. Brent, F.G. Gustavson, D.Y.Y. Yun, Fast solution of Toeplitz systems of equations and computation of Padé
approximants, J. Algorithms 1 (1980) 259-295.

W.S. Brown, J.F. Traub, On Euclid’s algorithm and the theory of subresultants, J. Assoc. Comput. Math. 18 (1971)
505-514.

W.S. Burnside, A.W. Panton, The Theory of Equations, vols. 1 and 2, Dover, New York, 1960.

D.G. Cantor, E. Kaltofen, On fast multiplication of polynomials over arbitrary rings, Acta Inform. 28 (1991) 697-701.

J. Cheriyan, J.H. Reif, Parallel and output sensitive algorithms for combinatorial and linear algebra problems, Proceedings
of Symposium on Parallel Algorithms and Architectures '93, 1993.

J. Chun, T. Kailath, Divide-and-conquer solution of least-squares problems for matrices with displacement structure, SIAM
J. Matrix Anal. Appl. 12 (1991) 128-142.

G.E. Collins, Polynomial remainder sequences and determinants, Amer. Math. Monthly 73 (1966) 708—712.

D. Coppersmith, S. Winograd, Matrix multiplication via arithmetic progressions, J. Symbolic Comput. 9 (3) (1990)
251-280.

J.W. Demmel, The probability a numerical analysis problem is difficult, Math. Comput. 30 (182) (1988) 449-480.

W. Eberly, Personal communication, 1995.

C. Eckart, G. Young, The approximation of one matrix by another of lower rank, Psychometrika 1 (1936) 211-218.

B. Friedlander, T. Kailath, M. Morf, L. Ljung, Extended Levinson and Chandrasekar equations for general discrete-time
linear estimation problems, IEEE Trans. Automat. Control 4 (1978) 653—659.

G. Frobenius, Uber relationem zwischen den Naherungsbruchen von potenzreihen, J. Math. 90 (1881) 1-17.

H. Gazit, G.L. Miller, Personal communication, 1990.

I.C. Gohberg, A.A. Semencul, On the inversion of finite Toeplitz matrices and their continuous analogs, Mat. Issled. 2
(1972) 201-233 (in Russian).

G.H. Golub, C.F. van Loan, Matrix Computations, Johns Hopkins University Press, Baltimore, MD, 1989.

W.B. Gragg, The Padé table and its relation to certain algorithms of numerical analysis, SIAM Rev. 14 (1972) 1-62.

F.G. Gustavson, Analysis of the Berlekamp—Massey linear feedback shift-register synthesis algorithm, IBM J. Res. Develop.
20 (1976) 204—212.

O.H. Hald, Inverse eigenvalue problems for Jacobi matrices, Linear Algebra Appl. 14 (1976) 63—85.

H. Hotelling, Some new methods in matrix calculation, Ann. Math. Statist. (1943) 1-34.

142

[41]
[42]
[43]
(44]

[45]
[46]

[47)
[48]
[49]
[52]
[53]
[54]
[55]
[56]
[57)
[59]
[61]
[62]

(63]
(64]

(65]

[66]
(67]

(68]
(69]

[70]

[71]
[72]

[73]
[74]
[76]
(80]

(81]

John H. Reif / Journal of Computer and System Sciences 71 (2005) 86—143

H. Hotelling, Further points on matrix calculations and simultaneous equations, Ann. Math. Statist. (1943) 440-441.

J. JaJ4, An introduction to parallel algorithms, Addison-Wesley, Reading, MA, 1992.

T. Kailath, A View of Three Decades of Linear Filtering Theory, IEEE Trans. Inform. Theory 20 (1974) 146-181.

T. Kailath, J. Chun, Generalized Gohberg—Semencul formulas for matrix inversion, Oper. Theory: Adv. Appl. 40 (1989)
231-246.

T. Kailath, S.-Y. Kung, M. Morf, Displacement ranks of matrices and linear equations, J. Math. Anal. Appl. (1979) 395-407.
T. Kailath, A. Viera, M. Morf, Inverses of Toeplitz operators, innovations, and orthogonal polynomials, SIAM Rev. 20
(1978) 106-119.

E. Kaltofen, V.Pan, Processor efficient parallel solution of linear systems over an abstract field, Proceedings of the Third
Annual ACM Symposium on Parallel Algorithms and Architectures, 1991, pp. 180-191.

E. Kaltofen, V. Pan, Processor-efficient parallel solution of linear systems Il The positive characteristic and singular cases,
Proceedings of the 33rd Annual IEEE Symposium on F.O.C.S., 1992, pp. 714-723.

E. Kaltofen, B.D. Saunders, On Wiedemann’s method of solving sparse linear systems, in Proceedings of the AAECC-5,
Lecture Notes in Computer Science, vol. 536, Springer, Berlin, 1991, pp. 216-226.

A.S. Krishnakumar, M. Morf, Eigenvalues of a symmetric tridiagonal matrix: a divide-and-conquer approach, Numer.
Math. 48 (1986) 349—-368.

R.J. Lipton, D.J. Rose, R.E. Tarjan, Generalized nested dissection, SIAM J. Numer. Anal. 16 (1979) 346—358.

R.J. Lipton, R.E. Tarjan, A separator theorem for planar graphs, SIAM J. Appl. Math. (1979) 177-189.

J. Makhoul, Linear prediction: a tutorial review, Proc. IEEE (1975) 561-580.

M. Marden, Geometry of Polynomials, American Mathematical Society, Providence, RI.

R.T. Moenck, J.H. Carter, Approximate algorithms to derive exact solutions to systems of linear equations, Proceedings
of the Eurosam, Lecture Notes in Computer Science, 1979, pp. 63—-73.

B.R. Musicus, Levinson and fast Choleski algorithms for Toeplitz and almost Toeplitz matrices, Internal Report, Laboratory
of Electronics, MIT, New York, 1981.

H. Padé, Sur la representation approchee d’une fonction par des fractions rationelles, Thesis, Ann. Ecole Norm. 9 (1892)
2-93.

V. Pan, Fast and efficient parallel algorithms for the exact inversion of integer matrices, Proceedings of the Fifth Conference
on FST and TCS Lecture Notes in Computer Science, 1985, pp. 504-521.

V. Pan, Complexity of parallel matrix computations, Theoret. Comput. Sci. 54 (1987) 65—85.

V. Pan, New effective methods for computations with structured matrices, Technical Report 88-28, Computer Science
Department, State University of New York at Albany, Albany, NY.

V. Pan, Fast and efficient parallel evaluation of the zeros of a polynomial having only real zeros, Comput. Math. Appl. 17
(1989) 1475-1480.

V. Pan, On computations with dense structured matrices, Math. Comput. 55 (191) (1990) 179-190.

V. Pan, Parameterization of Newton'’s iteration for computations with structured matrices and applications, Technical
Report CUCS-032-90, Computer Science Department, State University of New York at Albany, Albany, NY, 1990.

V. Pan, Parallel solution of Toeplitzlike linear systems, J. Complexity 8 (1) (1992) 1-21.

V. Pan, J.Reif, Efficient parallel solution of linear systems, Proceedings of the 17th ACM Symposium on Theory of
Computing (STOC), 1985, pp. 143-152.

V. Pan, J.H. Reif, Some polynomial and Toeplitz matrix computations, Proceedings of the 28th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), 1987, pp. 173-184.

V. Pan, J.H. Reif, Fast and efficient parallel solution of dense linear systems, Comput. Math. Appl. (1989) 1481-1491.

V. Pan, J.H. Reif, The parallel computation of minimum cost paths in graphs by stream contraction, Inform. Proc. Lett. 40
(1991) 79-83.

V. Pan, J.H. Reif, Fast and efficient parallel solution of sparse linear systems, SIAM J. Comput. (1992).

V. Pan, |. Sibe, A. Atinkpahoun, On parallel computations with band matrices, Inform. Comput. 120 (2) (1995) 237-250.
J.H. Reif, AnO(n Iog3n) Algorithm for the Real Root Problem, IEEE Symposium of Foundations of Computer Science
(FOCS93), Palo Alto, CA, 1993.

J.T. Schwartz, Fast probabilistic algorithms for verification of polynomial identities, J. Assoc. Comput. Math. 27 (1980)
701-717.

V. Strassen, The asymptotic spectrum of tensors and the exponent of matrix multiplication, Proceedings of the 27th Annual
IEEE Symposium on Foundations of Computer Science (FOCS), 1986, pp. 49-54.

John H. Reif / Journal of Computer and System Sciences 71 (2005) 86—143 143

[83] W.F. Trench, An algorithm for the inversion of finite Toeplitz matrices, J. SIAM (1964) 515-522.
[84] R.E. Zippel, Probabilistic algorithms for sparse polynomials, in: Proceedings of the EUROSAM '79, Lecture Notes in
Computer Science, vol. 72, 1991, pp. 216-226.

	Efficient parallel factorization and solution of structured and unstructured linear systems62626262
	Introduction
	Assumptions and machine model
	Motivation
	Bounds on basic computations on matrices and polynomials
	Known techniques and results
	Newton's iteration
	Hensel lifting and variable diagonal
	Matrix factorizations
	Recursive factorization of matrices
	Symmetric matrices with separable graphs
	Stream contraction

	Dense structured matrices
	Displacement operators for compact generation and compression of structured matrices
	Previous results for structured matrices

	Our results
	Organization of the paper

	Preliminaries
	Matrix definitions
	Matrix norms and required bit precision

	The normal form reduction
	RF sequences of matrices
	RF trees of matrices

	Our parallel algorithm for computing an RF of a matrix
	Random choice of modulus
	Multipliers for the RF
	RF algorithm
	Newton--Hensel lifting
	Lifting of a matrix
	Newton--Hensel lifting of modular RFs
	Newton--Hensel lifting algorithm for an RF

	Newton iterations for approximation of an RF of diagonally dominant matrices
	epsilon-Diagonally dominant matrices
	Approximate inverse of DD matrices
	Newton iterations within bounded bit precision
	Nonpipelined Newton iterations for RF
	Pipelined Newton iterations for RF
	Newton iteration algorithm for an RF
	Bounding error accumulation in recursions
	Applying stream contraction to the RF Newton iterations

	Analysis of the RF algorithm

	Parallel RF computation for matrices of bounded displacement rank
	Toeplitz matrices and their computations
	Generation and compression of structured matrices by matrix operators
	Displacement operators for generalizations of Toeplitz matrices
	Finite generation of Toeplitz-type matrices

	Bounded displacement rank matrices
	Constructing displacement generators
	Computations on bounded displacement rank matrices
	The normal form reduction for bounded displacement rank
	Sequential computation of an RF of a matrix of bounded displacement rank
	Our parallel algorithm for computing an RF of a matrix of bounded displacement rank
	Algorithm RF for bounded displacement rank
	Matrices that are nearly diagonal with bounded diagonal elements

	Newton--Hensel lifting for RF of bounded displacement rank
	Displacement rank bounds for Newton--Hensel lifting
	Newton--Hensel lifting for matrices of bounded displacement rank
	Newton--Hensel lifting for RF of bounded displacement rank

	Approximate Newton iterations with bounded displacement rank
	Bounding error due to application of GENERATOR
	Inductive proof of quadratic convergence
	Non-pipelined Newton iterations for RFs of bounded displacement rank
	Bounding error accumulation in recursions of RFs of bounded displacement rank
	Pipelined Newton iterations for RFs of bounded displacement rank

	Analysis of the RF algorithm for bounded displacement rank

	Parallel RF computation for matrices with separable sparsity graphs
	Applications of the RF
	Reduction of matrix problems to RF computation
	A randomized reduction from RANK to RF
	Applications of the matrix reductions to dense matrices
	Applications of the matrix reductions to sparse matrices
	Applications of the matrix reductions to bounded displacement rank matrices
	The RANK problem for bounded displacement rank matrices

	Applications to polynomial problems
	Parallel computation of polynomial resultant
	Parallel computation of polynomial GCD
	Padé approximants
	Applications to Sturm sequences and finding real roots

	Real root isolation
	Parallel solution of the real roots problem
	The symmetric tridiagonal eigenvalue problem

	Condition bounds for random matrices
	Randomized construction of displacement generators
	Conclusion
	Open problems

	References

