


(v) (e:a)* ("probabi~istic looping: exe- 
cute a;(o:a)* with measure o and execute no- 
op with measure 1 -0"). 

We may construct the formulas: 

(vi) -io ("logical negation") 
(vii) p v q ("logical disjunction") 

(viii) {a}op ('~easure test: with measure [0, 
p holds after a"). We require 0 > 0. 

Let Z, ~ be the minimal sets satisfying (i)-(v) 
and (vi)-(viii), respectively. (Also, we informal- 
ly extend to logic to allow the usual logical con- 
nectives ^, ~, ~-+). 

2B. Semantics of PROB-DL 

A model of PROB-DL is a structure ~/~= (S ~, 
~J~, ~ where: 

(i) ~/~ is a set of state8 
(ii) ~A~: (~0× SJ~f× S~4~)÷ D is a partial func- 

tion providing the measure ~(A,s,s') of atomic ac- 
tions (A,s,s') 6 X~ x S~/× S ~ 

(iii) ~'/~S~# 0 gives all states at which 
propositional variables hold. 

We require that for all states s,s' E S "~ 

p(null,s,s') = 0 
p(no-op,s,s') = 1 if s = s' and 0 else 

We also require for each atomic program A 6 Z 0 
that 

1 z (A,s,s) 
S,S t.~ 

We now extend U ~ to define the measure of all el- 
ements of Z × S d[× S ~. We shall extend ]=~ to 
a subset of S~× ~ defining all states at which 
formulas hold. We shall drop the superscript ~4~ 
for a fixed model ~a{{ (and occasionally we will 
write ~,s ~ p to denote s ~,~ p). 

Consider probabilistic program a 6 ~ and 
states s,s' 6S. 

E1 If a = b l;b 2 ("sequencing") then 

p(a,s,s') = ~ ~(bl,S,S")-u(b2,s",s' ) 
s"6S 

E2 If a = p? ("test") then 

~(a,s,s') = 1 if (s = s' and s ~ p) 
= 0 else 

E_3 If a = (o:blIb 2) ("probabilistic choice") 
then 

~(a,s,s') = o-P(bl,S,S') + (l-o)~(b2,s,s') 

E4 If a = (~:b) * ("probabilistic looping") then 

p(a,s,s') = o-~((b;a),s,s'),s,s') + 1-o 

Each (a,s,s') 6~×S×S with ~(a,s,s') > 0 
is an action and has mea8ure ~(a,s,s'). We re- 
quire that ~(a,s,s') < i. 

To extend ~ we let 

E5 s~Ip iff sup 
E6 s~pVq iff s~p or s~q 

E7 s ~ {a}ap iff 0~ ~ p(a,s,s') 
s'6S 

Furthermore, the extended ~ and ~ are required 
to be theunique minimal fixed points of above equa- 
tions EQ = (Ei,...,E7). 

Formula p 6 # is satisfiable iff ~4~,S ~ p 
for some model ~ and state s 6S ~. Let p be 
valid if Ip is not satisfiable. A structure J~= 
(S~,~ ~) is a nonstandard model if sat- 
isfies all the restrictions for a model except E4 
is weakened to 

E4' If a = (a:b)* then 

~(a,s,s') > op((b;a),s,s') +i- o 

We now establish an analogue to the Small Model The- 
orem of [Fischer and Ladner, 1979]. 

THEOREM i. Zfa formula P0 of PROB-DL i8 'k 
satisfiable, then there is a model of size o(2 |p01 ) 
which satisfies PC' for some constant k > O. 

Proof (Sketch). Suppose ~4f is a (possibly 
infinite) model satisfying P0 at state s 0. We 
shall require a finite set of formulas cZ(P0) 6 
("the closure of p0" ) defined as in Fischer and 
Ladner [1979] by introducing new Q-variables asso- 
ciated with subformulas of P0' so that IcZ(P0)l 
is bounded by a polynomial in Ip01. We show by a 
structural induction that the measures of actions 
(a,s,s') of ~4' can be restricted to rationals 
of low precision: 

elements of {X/YI0 <X,Y < 2 Ip01k}'' 

Let ~ = (~,~,~/~{) where 

(i) / = {VisES ~/[f} with 

= {s' 6S~{IVq~cZ(p 0) ~{,s ~ q iff 

Wt, s' ~q} 

(ii) Va6Z, s,s' 6S J~ 

~(a,~,~ T) = s,,~6~J~(a,s,s '') 

(iii) v~',s ~ p iff ,~,s ~ p. 

We can now show that P0 is satisfied at ~0 in ~. D 

3. Complet e and Consistent Axioms for Probe- 
bilistic Pro@rarqnin~ 

We provide an axiomization of PROB-DL be- 
low (we assume in this section PROB-DL contains 
no tests of form p?). 

A1 All tautoligies 

A2 {a}o(l~q) + ({a}op~{a}oq) 

A3 {(oi:alb)}o2p~-+ V ({a} pA {b}o4p) 
03,04: e 3 
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(~3,~4 are restricted to the same order of 

precision as oi,~ 2) 

A4 {a;b}~ ~-+ {a}l({b}~p) 

A5 {(°l:a)*} P ~+ {°l:(a;(~l:a)*)In°-°Ph'o p 
-- ~2 2 

A6 p^ {(~:a)*} 1 (p+{a}IP) ÷{(o:a)*}iP 

For each formula p 6 ~, let ~p if p can 
be derived from the axioms Ai-A6 by rules: 

R_~ (modus ponens) if ~p and ~p÷q then l-q 

R2 (generization) if ~p then {a}~. 

We now sketch a proof of 

THEOREM 2. Formula P0 i8 valid iff ~P0" 

There are three proofs [Segerberg, 1977], 
[Pratt, 1978], [Parikh, 1978] of the completeness 
of various axiomizations of the propositional dy- 
namic logic of [Fischer and Ladner, 1978]; the be- 
low proof for PROB-DL is an extension of Parikh's 
completeness proof. 

Let a pseudomodel be a (possibly infinite) di- 

graph G = (V,E,L,s 0) with 

(i) vertices v; each s 6 V consists of a set 
of formulas and is considered a state 

(ii) edges E cv × V 
(iii) edge fabling L; each edge label has the 

form (~:a) where a 6 D and a is a 8emiatomic 
program (a is atomic or a = (~:b)*) 

(iv) a fixed root s o £ V 

Let s ~:~a s' denote there exists an edge (s,s') 
6 E with label (~:a) (intuitively, "action 
(a,s,s') has measure ~"). 

Let the describing formula of G be PG = Ps 0 
where for each s 6V, 

(~t ql A /k {a}~ s, PS = 
S > S I 
o:a 

Let pseudomodel G = (V,E,L,s 0) be inconsistent if 
there exists some state s 6 V and formulas p,~p 6 s. 
Note that if s ~..~a s' and I- IPs, then by R2 

I- {a} ~Ps' and we can show I- UPs" 

LEMMA i. If G is inconsistent, then ~ IPG- 

Let pseudomodel G' be derived from pseudomodel 
G = (V,E,L,s 0) by choosing a state s 6V and ap- 
plying one of the following modifications: 

M1 add an axiom to s 

M2 if p,(p+q) 6 s and if q~ s then add q to 

s (i.e., apply modus ponens) 

M3 if {a}~p6 s where a is semiatomic and 
-- s ~:a ) s' and p~ s' then add p to s' 

M4 if {a}~p6 s where a is semiatomic and ~' > 0 

(where ~' is ~ - ~ ~") 
~s",0" with 
s ~ . ~  s" 

and p 6 s" 

then add a new state s' = {p} and edge (s,s') 
with label (o':a) (so s d,.~aS' in G') 

LEMMA 2. if G' is derived from G and 
I- IP G' then ~ ~PG" 

Recall that a nonstandard model ~/~ is siml- 
far to a model as defined in Section 2B, except we 
do not require equation E4 of Section 2B to strict- 

ly hold. 

LEMMA 3. Given a formula P0 6 ~, either 
I- IP0 or there is a nonstandard model J~ of Po 
which satisfies axiom A6. 

Proof (Sketch). We define an initial pseudo- 
model G O consisting of a single state s O and 

no edges. Let ~0 = {Go} and for £ = 1,2 .... 
let ~£ be the set of pseudomodels derived by mod- 
ifications MI-M4 from the pseudomodels of ~Z-l" 

By Konig's lemma, either 

CASE 1 B£ > 0 such that all G 6~£0 are incon- 
istent so ~y Lemma 2, ~ IPG, or 

CASE 2 Else there is' no such £ . Let G, be 
the "limit pseudomodel" of ~0' ~i .... 

We now construct the required nonstandard 
model ~= (SV~,M~ ~{) where 

(i) $~/~= the vertices of G, 
(ii) for each s 6S ~{, let ,A4~,s ~ p iff P6 s 

(iii) for each propositional variable A6 ~0' let 

M~A,s,s') = ~ if s ~:A > s' in G,. 
= 0 else. 

We extend Me/f{ to ~ x S~xS ~ by equations 
El, E2, E3 of Section 2B, but in the case a = 
(~:b)* we have instead of E4 the equation 

E4" ~(a,s,s') = MIN(~w((a;b),s,s') + i- ~,~') 

(where ~' is defined by the label s ~,:a > s' 
if (s,s') is an edge of G, and else 
o' = 0.) 

Given the (possible infinite) nonstandard model ~ 
for formula P0 of Lenmna 3, we now apply Theorem 
l~ construct a finite nonstandard model~0(~, 

,~. Note that J~ satisfies P0 at 
but in general is nonstandard (may not satisfy E4 
of Section 2B). To construct a standard model for 
P0 from ~ we iteratively apply equations: EQ" 
= (Ei,E2,E3,E4",E5,E6,E7) (recomputing the measure 
of the actions of non-atomic programs) until 
convergence. Since N and ~ monotonicly de- 
crease on each iteration, we are assured of eventu- 
al convergence to minimal fixed points of EQ. 
Thus we have established Theorem 2. 

As a corollary to Theorem 2, we have 

COROLLARY i. There is a O(2 Ip01k) algorithm 
for testing satisfiability of any formula Po of 
PROB-DL, for some constant k > O. 
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Proof (Sketch). We use an iterative construc- 
tion as in Pratt [1979]. 

[i] Initially, let the state set S consist of 
all sets of formulas seal(P0) 

(a) s is not inconsistent (i.e., if q6 s 
then -lq~ s) 

(b) s is closed under rules Ri, R2 of Sec- 
tion 3 

(c) s is "closed" under the axioms Ai-A6 of 
Section 3 (i.e., if {a;b} Op6 s then 

{a} 1 {b} 0 p6 s as in A4, etc.) 

[2] For each atomic program A of P0 and each 
s,s' 6 S let ~(A,s,s') be the minimum e~£D 
such that 

{A}o, p 6 s and ~' ~ o implies p 6 s' 

[3] Determine the measure of non-atomic actions by 
iteratively computing a minimal fixed point of 
equations EQ' = (Ei,E2,E3,E4',E5,E6,E7). 

[4] If there is a state s 6 S for which we may 
apply modifications M3,M4,M5 then delete s 
and go to step [3]. 

[5] If P0 is contained in any state s 6 S then 
return "P0 is satisfiable," else return "P0 
is unsatisfiable." 

By Theorem i, the measures are rationals with 

small precision, so only O(2 Ip01k)'' iterations 
suffice for convergence in step [3]. 

4. A Probabilistic Quantified Boolean Logic 
with Measure Tests 

We define here a logic PROB-QBF (for probabil- 
istic boolean logic) which has some interesting ap- 
plications to the theory of probabilistic program- 
ming. (Also, in the next section we use the con- 
structs of PROB-QBF to augment the logic of PROB- 
DL defined in Section 2). 

The formulae of PROB-QBF are formed from: 

(i) free instances of propositional varia- 
bles: X,Y,... 

(ii) the usual logical connectives: 7,v,^,÷,++ 
(iii) random quantification: a formula p may 

have the form: 

(CHOOSE X £ RANDOM(o:iI0 ) I_N q) 

where the bound variable X is set to 0 with meas- 
ure o and X is set to 1 with measure (i- ~) 
in a formula q where X occurs free. 

(iv) measure tests: formula p may have the 
form (PROB(q) ~ ~); p holds with measure 1 for 
those instances where q holds with measure 2~, 
and else p holds with measure 0. 

The semantics of a formula p of PROB-QBF 
can be formally specified by recursively defining 
the measure of subformulae of p. A formula p 
is satisfiable if p holds with measure 1 for 
some truth assignment of the free (unbound) vari- 
able of p. (Note a logic equivalent to PROB-QBF 
could be defined by allowing measure tests of the 
form (#q) ~m), where #(q) is the number satisfy- 
ing instances of formula q for given truth as- 
signments of the bound variables and m is a non- 
negative integer.) 

To characterize the complexity of PROB-QBFwe 
introduce a new computational model the ~-TM (for 
measuring Turing machine). 

The ~-TM is essentially a nondeterministic 
Turing Machine with 

(i) state set Q containing distinguished in- 
itial state qI 6 Q and accepting state qA 6 Q. In 
addition, Q contains disjoint measure testing 
states QT and complementing states QN" 

(ii) Tape alphabet A, input alphabet Z~A 
blank and endmarker symbols b,# E A-Z. We have 
t > 1 tapes 1,2,...,t with distinguished input 
tape I, work tapes 2,...,t and distinguished 
measuring tape 2. 

(iii) The measure of the next moves of the p-TM 
are defined by the function: 

~:(Q × A t ×Q × A t × {left,right,same} t ) ~ D 

where D are the rationals on the interval [0,i]. 
Thus, ~(q,d,q',d',h) gives the probability of mo- 
ving directions h = (hl,...h) 6 {left,right,same} t 
from state q6. Q after scanning symbols d = 
(dl,..., ~) 6A ~ on tapes l,...,t and then taking 
new state q' 6 Q with the tape heads scanning sym- 
bols d' = (d', .... d~)6 A t respectively. 

We require that for each state q6 Q and 
d 6 A t 

1 ~ a,~60 p(q,d,q',d',h) 

d,6A t 

h6{left,right,same} t 

Let a configuration C be a sequence containing 
the current nonblank tape contents, with current 
state superimposed to designate the positions of 
the scan heads. Given on input string w6 Z n, the 
initial configuration C I contains initial state 
qI with input tape contents designated by #qiw# 
and all the work tapes blank. We extend ~ so 
that ~(C,C') gives the measure of a move (one 
step) from configuration C to configuration C'. 
The contents of the measuring tape will always be 
assumed to encode in binary a positive rational. 

Let a computation sequence be a sequence of 
,moves with nonzero measure from the initial con- 
figuration from C I. Let the time cost (on in- 
put w) be the length of the maximum computation 
sequence, if it exists, and let the space cost 
be the maximum number of nonblank cells of any 
tape on any computation sequence. 

We define acceptance of the ~-TM by a labeling 
L of each configuration C; if C contains state 
q then 

(a) let L(C) = 1 if q = qA is accepting, 
else 

(b) if q 6Q T let L(C) = 1 if ~C Sthe con- 
tents of the measuring tape 

= 0 else 
(c) if q 6Q N let L(C) = i- UC 
(d) else let L(C) = PC where 

~C = ~ p(C,C')'L(C')) 
~C' 
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(Intuitively, ~C is a weighted stun of the measure 
of subsequent configurations. In (a) all accepting 
configurations have measure i, in (b) we compare 
~C with the contents of the measuring tape, in (c) 
we complement the measure of ~_, and else (d) we 
take ~C as the measure of configuration C.) Let 
L* be a minimal such above labeling; a simple in- 
ductive argument shows there is a unique minimal 
labeling L*. Let the ~-TM accept w 6[ n iff 

L*(Ci) = I. 

In the following let A-TM denote the al- 
ternating Turing machine of [Chandra, Kozen, Stock- 
meyer, 1978], let N-TM denote a nondeterminis- 
tic Turing machine, and let D-TM denote a de- 
terministic Turing machine. Let I-TIME(T(n)) be 
the class of languages accepted by I-TMs within 
time limit T(n), and let I-SPACE(S(n)) be the 
class of languages accepted by h-TMs within space 
limit S(n), for ~6 {~,A,N,D}. 

Also, let h-TIME(poly) = ~0 h-TIME(nk) and 
let I-SPACE(poly) be k~0 h-SPACE(nk)" [Chandra, 
Kozen, and Stockmeyer, 1978] show that A-TIME(poly) 
is poly-time equivalent to satisfiablity of the 
quantified boolean logic QBF. Similar techniques 
can be used to show: 

LEMMA 4. ~-TIME(poly) i8 poSy-time equiva- 
lent to PROB-QBF satisfiability. 

Note that any A-TM may be considered a ~-TM 
with the measure of moves restricted to either 0 
or 1 and with measure tests restricted so that the 
measuring tape is always empty (denoting a test if 
the measure of subsequent configurations are >0). 
Thus, 

A-SPACE(S(n)) ~ ~-SPACE(S(n)) 

and 

THEOREM 3. For 
~-SPACE(S(n)) = 

THEOREM 4. For 
~ D-SPACE (T (n)) 
c~-TLME(T(n) 2) 

Thus 

A-TIME(T(n)) ~ ~-TXME(T(n)) 

The labeling L* defining acceptance of a ~-TM 
with space bound S(n) ~ log n (time bound T(n) Z 
n) may easily be shown to be computable by a D-TM 
in time c S(n) for some c > 1 (in space T(n) 2, 
respectively). Thus from lower bound known re- 
sults of [Chandra, Kozen, and Stockmeyer, 1978] we 
have 

S(n) zlog n,sA-~PACE(S(n)) = 
c~iD_TiME(c (n)) 

T(n) ~n, A-TIME(T(n)) c~-TIME(T(n)) 
and N-SPACE(T(n)) ~A-TIME(T(n) 2) 

COROLLARY 2. PROB-QBF satisfiability is poSy-time 
complete in D-SPACE(poly). 

Let a ~k-TM be a ~-TM restricted to k 
measure tests on any computation sequence. Note 
that ~l-TIME(poly) contains the complexity class 
R considered by Gill [1974], Miller [1975] and 
Adleman [1978]. Also the #P class of enumera- 
..ion problems [Valiant,1977] is contained in 
~l-TIME(poly). 

The ~k-TIME(poly) form an interesting new 
"polynomial time hierarchy" ~0-time(poly) 
~l-TIME(poly) c... D-SPACE(poly) apparently un- 
related to the "polynomial time hierarchy" of 
Stockmeyer [1977]. 

The proof of Lena 4 is extended to show 

THEOREM 5. For each k Z 0, ~k-TIME(poly) is 
poly-time equivalent to the satisfiability for PROB- 
QBF formulas with no more than k nested '~eas- 
ure tests." 

We may also define a ~k-TM to be a ~-TM re- 
stricted so that on any computation sequence there 
are no more than k alternations of "measure tests" 
followed by "measure complementations." These 
~k-TMs have another interesting "polynomial time 
hierarchy" ~0-TIME(poly) c ~i-TIME(poly) ~ ... 
D-SPACE(poly). 

5. Further Work 

The probabilistic logics introduced in this 
paper have for simplicity been restricted to boo- 
lean variables and measure domains over the ration- 
als on the interval [0,I]. I described here only 
the most fundamental complexity and completeness 
results for such propositional probabilistic logics. 

Some further extensions of this work are: 

A The measure domain D may be generalized 
to a Banach space as in Kozen [1979]. For exam- 
ple, the measure domain can be self-referencial 
as in a Scott-Strachy mathematical semantics. 

B The constructs of PROB-DL and ~-QBF may be 
combined and extended to a first order dyno~ic 
logic of probabilistic progranming, as informal- 
ly described below: 

(i) First-0rder Terms: We assume for each 
k > 0, k-addic function signs f{k)," f~k)" .... 

and also o-addic constant symbols Ci, C2,... 
As usual, each model will contain a universe U 
with the constant symbols interpreted to be ele- 
ments of U and each k-addic function sign in- 
terpreted to be a mapping: uk --->U. Variables, 
constant signs and term8 are formed by recursive- 
ly composing functions signs to terms. 

(ii) We allow progrcsns to be constructed from 
atomic programs by the sequencing, test, probabil- 
istic choice and looping constructs of PROB-DL, and 

(iii) forsnxla8 are constructed from the usual 
logical connectives, as well as the model "meas- 
ure tests" of PROB-DL and a generalization of the 
~-QBF random quantification: 

The formula 

(CHOOSE X6RANDOM(~l:tl,~2:t2,...,~r:tr)in q) 

binds variable X to the interpretation of terms 
t I, t2,...,t r with measure Sl, ~---,~r respec- 
tively. 

This first order logic seems sufficiently pow- 
erful to be useful in proofs of probabilistic pro- 
grams such as in [Ramshaw, 1979]. 

The multiprocess logic of [Peterson and Reif, 
1980] may be extended to allow for probabilistic 
strategies in multiproeess games. 
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