

[CZ89]), communication costs such as network latency
and bandwidth (e.g., the LPRAM [ACS89], Postal
Model [BNK92], BSP [Val90], and LogP [CKP+93]),
and memory hierarchy, re
ecting the e�ects of multi-
leveled memory such as di�ering access times for regis-
ters, local cache, main memory and disk I/O (e.g., the
P-HMM [VS94], PMH [AC94], and P-UMH [NV91]).

The approach followed by these models is that of
a parameterized (or generic) model, which abstracts
the architectural details into several generic parame-
ters which we call resource metrics. Typical resource
metrics include the number of processors, communi-
cation latency, bandwidth, block transfer capability,
network topology, memory hierarchy, memory organi-
zation and degree of asynchrony. Using such a pa-
rameterized model one can design broadly applicable
parameterized algorithms that can be tailored to spe-
ci�c machines by instantiating the parameters, such
as latency and bandwidth, to match machine charac-
teristics. The more recent models typically try to use
more parameters to more �nely capture the resource
characteristics of parallel machines. However, a care-
ful balance must be struck between incorporating de-
tail and being too �nely parameterized (in too many
dimensions) so as to render optimal algorithm design
impossible. Therefore, identifying resource metrics and
appropriately choosing them is critical in the design of
models of parallel computation.

In this paper we identify resources and resource met-
rics which are important for the performance of parallel
machines and use them as a framework to character-
ize the variety of parallel models. Within this frame-
work we will categorize models into four classes: ba-
sic synchronous models, asynchronous models, models
which incorporate notions of latency and bandwidth,
and models which address hierarchical memory. The
models discussed here are generally in an increasing
order of the number of resource metrics considered.

Throughout the discussion, we use the problem of
Fast Fourier Transform (FFT) computation to illus-
trate the principles of algorithm design and complex-
ity analysis for many of the di�erent models. The
data movement of the FFT computation forms a but-
ter
y graph, also called a FFT graph. The N -point
FFT graph with N = 2m, can be de�ned as fol-
lows: there are N input and output points denoted as
x0;0; x0;1; :::; x0;N�1 and xm;0; xm;1; :::; xm;N�1 respec-
tively. The computation is often called pebbling and
denoted as xj;q = f(xj�1;q ; xj�1;r); where f is a con-
stant cost function and the only di�erence of q and r

is in the (j � 1)th position when represented as binary
numbers.

The examination of the resource metrics chosen by

previous models reveals a void in models that accu-
rately treat both network communication and multi-
level memory. As a simple example of the process of
developing improved performance models, we propose
a new hybrid model of parallel computation, the LogP-
HMM model, whose evolution naturally �lls this void.
The LogP-HMM extends an existing parameterized
network model (the LogP, with resource metrics of la-
tency, bandwidth, and overhead on handling messages)
with memory hierarchy at each processor (there fol-
lowing the sequential HMM model). The LogP-HMM
represents a pragmatic re�nement of parallel computa-
tion models within the framework of resource metrics
to accommodate more detailed performance measures.
We examine the potential utility of LogP-HMM model
in the design of near optimal sorting and FFT algo-
rithms. It turns out that one of the near optimal FFT
algorithms, the hybrid layout method, can run opti-
mally in the P-HMM model.

The remainder of this paper is organized as follows.
Section 2 identi�es resources and resource metrics for
parallel computation. Section 3 discusses basic syn-
chronous models. Section 4 discusses extensions of
the basic synchronous models, including asynchronous
models, models incorporating communication cost, and
hierarchical models. In Section 5 we summarize the
resource metrics chosen by di�erent models of parallel
computation, de�ne the new LogP-HMM model, and
present near optimal sorting and FFT algorithms for
this model. We conclude by reviewing the critical role
the careful choice of resource metrics plays in the de-
sign of parallel models, as demonstrated through the
LogP-HMM, and discuss ongoing research.

2. Resource metrics

We �rst present de�nitions of resources, resource
metrics and models of parallel computation.

De�niton 1 A resource refers to an architectural fea-

ture that signi�cantly a�ects the performance of a par-

allel machine. A resource metric is a measure of the

corresponding resource, which could be quantitative or

qualitative. The value of a quantitative resource metric

is normally a multiple of the unit processor execution

time.

De�niton 2 A computational model is an abstraction

of a computing machine which is characterized by the

choice of several resources and the corresponding re-

source metrics. A computational model may thus be

identi�ed with a set of resource metrics. Moreover, al-

gorithms will be designed and analyzed based on these

resource metrics.

For example, a sequential computer is suitably char-
acterized by the resources of sequential computation
time and space usage. It is commonly accepted that
the sequential computational models, such as RAM
and its hierarchical memory extensions HMM, BTf

and UMH [AACS87, ACS87, ACF90], re
ect these re-
sources quite well and therefore provide a common
base for sequential computation. Resource metrics for
a practical parallel machine are far more complicated
than those of sequential machines. We identify the fol-
lowing list of signi�cant resources and resource metrics
for parallel computation:

Number of processors P . A theoretical model nor-
mally assumes that there is an unlimited number of
processors available, while a more practical model as-
sumes a bounded number of processors, such as hun-
dreds or thousands.

Memory organization. Machines may be charac-
terized as having physically shared memory or dis-
tributed memory. The former often has a local cache.
The latter typically uses explicit message passing prim-
itives.

Communication latency. The costs of accessing lo-
cal memory and global memory in a shared memory
machine are quite di�erent; similarly, in a distributed
memory machine, the costs of accessing local memory
and communication with other processors are quite dif-
ferent. Latency is one measure of the cost of global
memory access.

Degree of asynchrony. Processors may run syn-
chronously, semi-synchronously (loosely
synchronously) or asynchronously. Semi-asynchrony
refers to a computation that is divided into a sequence
of independent execution phases; within each phase,
the program runs asynchronously, but all of the pro-
cessors are synchronized at the end of each phase (i.e.,
barrier synchronization occurs).

Bandwidth. Communication bandwidth and mem-
ory bandwidth are both limited in practice. Currently,
communication bandwidth lags far behind internal pro-
cessor memory bandwidth. The bisection bandwidth,
de�ned as the bandwidth across a line that separates
the network into two parts, is normally used for the
bandwidth resource metric.

Overhead of a processor for message handling.

The communication overhead is the time that the pro-
cessor engages in sending and receiving a message. In
most cases, the value is dependent on the communica-
tion protocol implemented in a practical machine. For

example, in the CM-5 it could be a linear function of
the message size [CKP+93].

Block transfer capability. In most architectures,
a signi�cant cost (latency) is incurred to access the
�rst of a contiguous block of words, but after that,
successive words can be accessed in unit time.

Memory hierarchy. Many sophisticated machines
have several layers of memory with di�ering access
times, such as register, cache, main memory and sec-
ondary memory. A model capturing this memory hier-
archy can organize the memory as a tree or a sequence
of layers with increasing sizes, where each node or level
is parameterized by memory size, block size, and inter-
module bandwidth.

Memory contention. Memory can be accessed as
a block or a set of banks. When the bank is unit size,
the memory locations may be accessed simultaneously.
This assumption is adopted by most of the models dis-
cussed in this paper. Protocols for resolving con
ict
in concurrent memory access include EREW, CREW,
CRCW and QRQW.

Network topology. The processors may be inter-
connected using a mesh, cube, fat tree, ring, or other
topology. The most common metric for this resource
is the diameter of the network.

In the subsequent sections we present a detailed dis-
cussion of each model and its choice of resource met-
rics. Because each resource has a metric associated
with it, we will henceforth not distinguish resources
and resource metrics.

3. Basic synchronous models

PRAM. The PRAM model extends the sequential
RAM model by replicating the processor part. A
PRAM machine is a set of sequential processors shar-
ing a global memory and each having its own pri-
vate unbounded local memory. A PRAM computation
is a sequence of read, write and computation steps.
All processors execute in lock-step, that is, they are
synchronized before they execute the next instruction.
The costs of memory access, either to local or global
memory, and computation steps are uniform. The cost
of synchronization is free. Several variations of the
PRAMmodel use di�erent protocols to handle simulta-
neous access of several processors to the same location
of global memory. Protocols include EREW (exclusive
read - exclusive write), CREW (concurrent read - ex-
clusive write), and CRCW (concurrent read - concur-
rent write). The latter protocol can be further divided

into several classes by the semantics of the concurrent
write. The most recent variation is QRQW [GMR94],
which assumes that simultaneous access to the same
memory block will be inserted into a request queue
and served in a FIFO manner.

VRAM. Another extension of the serial RAM model
is the Vector Random Access Machine (VRAM)
[Ble90]. The VRAM is a serial random access ma-
chine with the addition of a vector memory, a vector
processor, and vector input and output ports. Typi-
cal vector instructions include elementwise operations,
data movement operations, scans, and packs.

Two measures, step and element complexity, can be
derived for a problem of size N in the VRAM model.
Step complexity (s) is the total number of instruc-
tions executed and element complexity (e) is the vec-
tor length per primitive instruction call, summed over
the number of the calls. These values give a measure
of the parallel time and the total work respectively.
The PRAM complexity of an algorithm designed in
the VRAM model can be derived as O(e=P + s).

The PRAM has proven to be useful by permitting
algorithm designers to focus on the structure of com-
putational tasks rather than the architecture details of
a currently available machine. A large number of ef-
�cient algorithms have been developed by exploiting
its simplistic assumptions, but in practice, some of the
architectural issues that the PRAM ignores are impor-
tant.

4. Extensions of the basic models

The PRAM model provides an abstraction that ig-
nores concerns such as asynchrony, communication de-
lay and memory hierarchy. In this section we discuss
several extensions of the PRAM model which incorpo-
rate some of these measures. The extensions may be
viewed as adding more resource metrics to the PRAM
model in order to gain improved performance mea-
sures.

4.1. Asynchronous models

Among the �rst extensions to the PRAM were the
Phase PRAM and APRAM models, which incorporate
some notion of asynchronous execution.

Phase PRAM. The Phase PRAM [Gib89] extends
the PRAM model with semi-asynchrony. A Phase
PRAM machine consists of a shared global memory, a
set of P sequential processors, and a private local mem-
ory for each processor. The computational task is sep-
arated into a set of phases of asynchronous execution,

each ended by an explicit barrier synchronization. The
cost of global read, global write and local operations
are the same constant. The cost of a synchronization
step is dependent on the number of processors. Space
limitations preclude presentation of a Phase PRAM al-
gorithm design for FFT computation; an example may
be found in [Gib89]. It is worth noting that a variant of
the Phase PRAM, the Phase LPRAM model, accounts
as well for the cost of communication latency.

APRAM. The Asynchronous PRAM (APRAM) is
a \fully" asynchronous model [CZ89]. The APRAM
model consists of a global shared memory and a set
of processes with their own local memories. The basic
operations executed by the APRAM process are called
events. An APRAM computation is denoted as the
set of possible serializations of events executed by the
processes. A virtual clock is associated with each seri-
alization. This virtual clock assigns a time t(e) to each
event e. The clock \ticks" when each process has exe-
cuted at least one event. Events may be read and write
events, which operate on the shared and local memory,
or local events. All events are charged unit cost.

The pair [round complexity, number of processes]
is used to measure the complexity of an APRAM al-
gorithm, where a round is de�ned as the sequence of
events between two clock ticks in a computation. The
round complexity for a computation is de�ned to be
the maximum number of possible ticks for that com-
putation. For an algorithm the round complexity is
de�ned as the maximum round complexity over all of
the possible computations. An example of APRAM
algorithm design using these measures for the problem
of summation may be found in [CZ89].

4.2. Models incorporating communication
latency and bandwidth

The models discussed here consist of two subclasses:
the synchronous latency models such as the LPRAM
and BPRAM which add the notion of latency into the
PRAM model, and models such as the BSP and LogP
which not only incorporate asynchrony and latency but
also address the issue of bandwidth limitation.

LPRAM. The Local-Memory PRAM (LPRAM)
model [ACS89] consists of a shared global memory and
a set of processors with unbounded local memory exe-
cuting in lock-step. The access protocol to global mem-
ory is CREW. At every time step, each processor can
perform either a communication step, in which it can
write and then read a word from the global memory,
or a computation computation step, which is an oper-
ation which accesses at most two words from its local

memory.

BPRAM. An extension of the LPRAM, the Block
PRAM (BPRAM), is described in [ACS90]. The
BPRAM takes into account the reduced cost for trans-
ferring a contiguous block of data. The BPRAM model
is de�ned with two parameters L (latency or startup
time) and b (block size). The cost of accessing local
memory is unit time. However the cost of transmit-
ting a block of size b of contiguous locations from global
memory is L+ b .

Postal model. The Postal model [BNK92] is a dis-
tributed memory model with the constraint that the
point-to-point communication has latency �. Several
elegant optimal broadcast and summation algorithms
have been designed based on this model, which were
then extended for the LogP model [KSSS93]. Al-
gorithms other than broadcast and summation have
largely not been presented for this model.

Bulk-Synchronous Parallel model. The BSP is
a distributed memory model [Val90]. Like the Phase
PRAM, the BSP is also a semi-asynchronous model
because it requires synchronization after each \su-
perstep", within which the processes can run asyn-
chronously. The BSP model is described in terms of
three elements: processes/memory modules, a router
which delivers the messages between pairs of compo-
nents and a synchronizer which synchronizes all or a
subset of the components. Within the framework of
resource metrics, a router is just an abstraction of net-
work bandwidth and latency. A computational task in
the BSP model consists of a sequence of supersteps.
In each superstep, every component is allocated a task
which contains some combination of local computation
steps and message transmissions. The local computa-
tions, including reads and writes to local memory, are
charged unit cost. The message transmission is ac-
complished by the router, which can send and receive
a certain number of messages in each superstep (or in
BSP terminology, the router can realize an h-relation).
The cost of realizing such an h-relation is assumed to
be gh + s time units, where g can be thought as the
reciprocal of the communication bandwidth and s de-
notes the startup cost or the latency. If the length of
a superstep is L, then L local operations and a bL

g
c

- relation message pattern can be realized. The pa-
rameters of the machine are therefore L, g and P (the
number of processors). A FFT algorithm for the BSP
is described in [Val90].

LogP model. The LogP model is motivated by cur-
rent technological trends in high performance com-

puting towards networks of large-grained sophisticated
processors. The LogP model uses the parameters L

(an upper bound of latency for transmitting a single
message), o (the computation overhead of handling a
message), g (a lower bound of time interval between
consecutive message transmissions at a processor) and
P (the number of processors) [CKP+93]. In contrast
to the BSP model, it removes the barrier synchroniza-
tion requirement (h-relation in BSP) and allows the
processors to run asynchronously. The network of a
LogP machine has a �nite capacity such that at any
time at most bL

g
c messages can be in transit from or

to any processor. It can support shared or distributed
memory.

The LogP model encourages well-known general
techniques of designing algorithms for distributed
memory machines including exploiting locality, reduc-
ing communication complexity and overlapping com-
munication and computation. The LogP model also
promotes balanced communication patterns by intro-
ducing the limitation on network capacity so that no
processor is overloaded with incoming messages. More-
over, it is often reasonable to ignore the parameter of
o in a practical machine, such as in a machine with
low bandwidth (high g value). Examples using this
strategy can be found in the FFT algorithm discussed
below and also in [KSSS93].

FFT. The data layout and communication schedul-
ing are two key aspects to achieving an e�ective
algorithm for the FFT problem under the LogP
model. Three methods of data layout are discussed
in [CKP+93]. The cyclic layout assigns the ith row
of the butter
y to the ith processor. The block lay-
out places the �rst N

P
rows on the �rst processor, the

next N
P

rows on the second processor, and so on. Un-

der either layout, each processor spends N
P
logN time

computing and sends and receives N
P

messages, which

needs (gN
P

+L) logP time. The third method is called
hybrid layout, which switches from cyclic to blocked
layout at any column between the logP -th and the
log N

P
-th (assuming N > P 2). With this layout, each

processor sends N
P 2 messages to every other proces-

sor, requiring only g(N
P
� N

P 2) + L time. Therefore,
this method leads to an algorithm with running time
O(N

P
logN + (N

P
� N

P 2)g +L): which is within a factor
(1 + g

logN
) of optimal.

The naive communication schedule stalls on the �rst
send. The technique of overlapping computation and
communication can be used to eliminate this stall for
the large problem instances. The method introduced
in [Sah92] staggers the di�erent starting rows for dif-
ferent processors: processor i starts with its iN

P 2 -th row,

proceeds to the last row, and wraps around. This leads
an optimal algorithm for large problem instances and
reasonable g value.

4.3. Hierarchical models

The Parallel Memory Hierarchy model (PMH)
[AC94] and Parallel Hierarchical Memory model (P-
HMM) [VS94] discussed in this section address the con-
cerns of memory hierarchy in a parallel setting. The
P-HMM primarily originates from considering in a par-
allel network the existence of secondary or disk mem-
ory. PMH on the other hand uses \memory hierarchy"
as a more general technique to model not only the hi-
erarchy within a processor but also the communication
characteristics of a parallel machine.

Parallel Memory Hierarchy model. The PMH
is a so-called generic model which de�nes a class of
speci�c models [AC94]. In the PMH model, a parallel
computer is modeled as a tree and each node of the tree
is called a module. All of the leaf modules are used to
denote the processors and the internal modules hold
the data. A child module is connected to its parent by
a unique channel with a certain amount of bandwidth.
Data in a module is partitioned into blocks which are
the basic unit of data transfer between the child and
parent. Thus communication between two processors
proceeds up the tree by some path and then down the
tree to the target processor, somewhat resembling the
fat tree architecture.

The model is characterized by four parameters spec-
i�ed for each module m: blocksize sm, blockcount Nm

which denotes the number of blocks in each module,
childcount cm which denotes the number of children
for each module, and transfer time tm which denotes
the number of cycles used to transfer a block between
the current module and its parent. To model a partic-
ular computer, one chooses a tree structure and values
for the parameters appropriate for the machine's com-
munication capabilities and memory hierarchy. Even
though this model is termed a parallel memory hier-
archy, the internal modules need not necessarily corre-
spond to actual memory modules of the real machine;
when modeling the CM-5 for example, many of the
modules are used to capture the interprocessor com-
munication capabilities [AC94].

The PMH model derives from the developers' ex-
perience in tuning code for memory hierarchy. Many
sequential algorithms have been developed for the orig-
inal sequential UMHmodel. However, perhaps because
of the complexity and generality of the model, not too
many algorithms have been developed for the PMH
parallel model.

Parallel Hierarchical Memory model. The P-
HMM model is also called the parallel I/O model
[VS90, VS94]. It originates from the consideration
that data must often reside in secondary storage rather
than main memory; in a parallel setting this may in-
volve the parallel access of multiple disks. Therefore
it is necessary to design parallel algorithms which con-
sider the possible data movement between main and
secondary memory [AV88], and more generally which
consider multiple levels of memory including register
and cache.

In the P-HMM model, each processor has a memory
hierarchy organized into discrete levels, much like the
memory organization in the HMM, and all of P sepa-
rate memories are connected together at the base level
of each hierarchy. A further assumption is that the
P hierarchies can each function independently. Com-
munication between hierarchies takes place at the base
memory level (level 1) which consists of location 1 from
each of the P hierarchies. The interconnection network
for the P base memory level locations is normally as-
sumed to be a hypercube (or cube-connected cycles)
so that the P records in the base memory level can be
sorted in O(logP) time. The model can be extended to
allow block transfer; the resulting model is called the
P-BT model [VS94]. Several other extensions which
use the UMH memory model and PRAM interconnec-
tion respectively are discussed in [NV91].

Two factors are critical for developing e�ective P-
HMM algorithms: data placement and movement be-
tween the levels of memory hierarchy, and data move-
ment among the processors.

FFT. We present the following P-HMM algorithm
from [VS94], performing the N -input FFT when N �
P 2:

1. Compute
p
N
p
N -inputs FFTs. Assume that ith

FFT is on the ith contiguous group of
p
N
P

tracks
(or memory levels).

2. Shift the records in the kth hierarchy to hier-
archy 1 + (k+o�set�1) mod P , where o�set =
(i� 1) mod P for ith group.

3. Shu�e the records to form
p
N new contiguous

groups of
p
N
P

tracks. For every 1 � i �
p
N , the

ith new group consists of the ith record from each
of the original

p
N groups.

4. Do
p
N

p
N-input FFTs for the new groups.

When P � N � P 2, we �rst do N
P

P-input FFTs, fol-

lowed by a shu�e-merge, and then do N
P
-input FFTs.

Proc Synchrony/ Memory Latency Bandwidth Block Overhead Memory

asynchrony Organization Transfer Hierarchy

PRAM P Synchronous Shared

VRAM 1 Synchronous Vector

LPRAM P Synchronous Shared
p

BPRAM P Synchronous Shared
p p

Postal P Asynchronous Distributed
p

PHASE P Semi-asynch Shared

PRAM

PHASE P Semi-asynch Shared
p

LPRAM

APRAM P Asynchronous Shared

BSP P Semi-asynch Distributed
p p

LogP P Asynchronous Both
p p p

PMH P Asynchronous Distributed
p p p p p

P-HMM P Asynchronous Distributed
p p

H-PRAM P Semi-asynch Both
p

LogP-HMM P Asynchronous Distributed
p p p p

Table 1: Resource metrics chosen by di�erent models of parallel computation.

The time required by this algorithm, T (N;P), is ex-
plained as follows. Step 1 and 4 take

p
NT (

p
N;P) +

N
P
log N

P
time. The �rst term in this formula is easy to

understand. The second term arises because the dif-
ferent

p
N

p
N -inputs FFTs sit in di�erent memory

levels (or tracks). We need to move them into the low-
est memory levels in order to recursively compute thep
N -input FFT. Similarly, the shifted elements need

to be brought to the base memory and to be transmit-
ted by the network which connects the base memory.
Therefore, the shift time is O(N

P
(logP + logN

P
)). The

shu�ing can be done in the order of input size times the
data movement in the hierarchy, which is O(N

P
log N

P
).

Therefore, we have following recurrence

T (N;P) = 2
p
NT (

p
N;P) +O(N

P
logN);

which gives the result O(N
P
logN log logN

logP
): This

matches the FFT lower bound in [VS94] and so is op-
timal.

5. LogP-HMM model

The resource metrics chosen by di�erent parallel
models discussed so far are summarized in Table 1. It
is apparent that each of the models addresses di�ering
aspects of resource usage, which suggests that resource
metrics are appropriate tools to categorize and exam-
ine di�erent models of parallel computation. Using the
framework of resource metrics, we can also build new
models by adding or deleting several resource metrics
from the existing models. However, this
exibility po-
tentially causes di�culty. If we consider each resource
metric as a dimension in the design space of a ma-
chine's architecture, then we may introduce too many

dimensions with which to deal. Therefore, a careful
analysis and choice of resource metrics is necessary.

The LogP-HMM model, de�ned below, serves as an
illustration of how the framework of resource metrics
can be used to guide the design of pragmatically re-
�ned models that �ll a need for more detailed per-
formance measures. From an examination of the re-
source metrics of existing models, it is apparent that
a void exists in parallel models that accurately treat
both network communication (as does the LogP) and
multi-level memory (as does the P-HMM). The LogP
model does not address the problem of several layers of
memory. Yet it is important to model the several layers
of memories which exist in many machines, since di�er-
ing access times to local cache and disk may strongly
e�ect performance. On the other hand, models such
as the P-HMM or P-UMH address in detail the re-
source of memory hierarchy, but not so much the ac-
curate characterization of the communication network.
These models normally use simple assumptions about
the network, such as a PRAM connection or an ab-
stracted hypercube connection.

The LogP-HMM model �lls the gap by combining
both kinds of models together (or one might say by
adding more resource metrics into either model). We
take the approach of extending an existing parallel
model with memory hierarchy. The resulting model
consists of two parts: the network part and the mem-
ory part. The network part can be any of the parallel
models such as BSP and LogP, while the memory part
can be any of the sequential hierarchical memory mod-
els such as HMM and UMH. In this paper we will focus
on the extension of the LogP model with HMM, which
we call LogP-HMM.

 M/P M/P M/P

 M M M

 MM M

Hierarchical parameters

LogP parameters

THE NETWORK

Figure 1: Structure of the LogP-HMM model.

5.1. De�nition of the model

The LogP-HMM model, pictured in Figure 1, is de-
�ned much like the parallel hierarchy memory model
[VS94]. A LogP-HMM machine consists of a set of
asynchronously executing processors, each with an un-
limited local memory. The local memory is organized
as a sequence of layers with increasing size, where the
size of layer i is 2i. Each memory location can be
accessed randomly; the cost of accessing a memory lo-
cation at address x is logx (using access cost function
f(x) = logx). The processors are connected by a LogP
network at level 0. In other words, the four LogP pa-
rameters, L, o, g and P , are used to describe the in-
terconnection network. A further assumption is that
the network has a �nite capacity such that at any time
at most bL

g
c messages can be in transit from or to any

processor.

5.2. Algorithm design and analysis

Exploiting locality is the key to designing e�cient
algorithms for the LogP-HMM model. In LogP-HMM,
there are two potential sources of data locality: the net-
work part and the memory part. In the network part,
we need to layout data in such a manner that each pro-
cessor will use the data intensively before it needs the
data in other processors. A similar situation exists in
the memory part: before we move data to higher mem-
ory levels, the data should have been used intensively
and should not be needed after moving. Several algo-
rithms presented below illustrate these ideas. Before
we present the algorithms, we �rst prove the following
theorem.

Theorem 5.1 The lower bound of sorting N � P ele-

ments (or computing a FFT graph) in the LogP-HMM

model with memory access cost f(x)=logx is

(N
P
log N

P
log log N

P
):

Proof: In a LogP-HMM machine with P processors,
the best way we can sort N � P elements is to divide
N elements into P sets of equal size and place the ele-
ments among the processors already in interprocessor-
sorted order. Then each processor simultaneously sorts
N
P
elements in its local memory and no communication

between processors are required. In this case, the sort-
ing lower bound for N

P
elements in each processor is

also the lower bound for the whole sorting procedure.
By the result in [AACS87], the sorting lower bound for
N
P

elements in HMM model with memory access cost

f(x)=logx is exactly
(N
P
log N

P
log log N

P
): A similar

argument can be used for FFT computation. Therefore
we prove the theorem. 2

FFT { Algorithm 1. Using the technique in [VS94]
and the algorithm given in section 4.3.2, we can com-
pute the FFT on a LogP-HMM machine. The time
needed by this algorithm is

O(L+o
L

gN
P
log N

P
log log N

P
):

Steps 1 and 4 take
p
NT (

p
N;P) + N

P
log N

P
time.

The shu�ing step spends time O(N
P
log N

P
) after each

group is \shifted" by an appropriate o�set, because the
shu�ing can be done in the local memory hierarchy
and does not cause any communication. The shifting
can be done using following method. Each processor
sends the \shift" messages to the other processors si-
multaneously. When dL

g
e messages have been sent, ev-

ery processor begins to receive the dL
g
e messages. This

procedure is continued until each processor has sent
and received all of the N

P
messages. The time required

for this communication is

O((N
P
=dL

g
e)(4L+ 4o)) = O(L+o

L
gN
P
):

But each record sent may reside at a di�erent level
of the memory hierarchy. In order to move them into
the lower memory levels, we need another log N

P
factor,

which gives

O(L+o
L

gN
P
log N

P
):

Therefore we have following recurrence

T (N;P) = 2
p
NT (

p
N;P) +O(L+o

L
gN
P
log N

P
);

which yields the bound given above. The algorithm is

thus within a factor of g(L+o)

L
optimal.

FFT { Algorithm 2. Algorithm 1 basically uses
block layout for the input data. This algorithm will
use the hybrid data layout and a tighter upper bound
can be derived. The idea of the hybrid method has
been discussed in section 4.2. A more detailed discus-
sion can be found in [Sah92].

Using the similar notation given in [Sah92], we de-
note m = N

P
and l = m

P
. Two steps are used to

compute the N -input FFT. In Step I, each processor
computes a m-input butter
y and after each processor
�nishes its computation, it sends N

P 2 messages to each
of the other processors. After each processor accepts
the N

P
� N

P 2 messages, it begins Step II which com-
prises the computation of the non-input nodes of l dis-
joint P -input butter
ies. By the result of [AACS87],
Step I computation needs O(m logm log logm) time.
Step II computation needs O(l � P logP log logP) =
O(m logP log logP) time plus the time to move the
l P -input FFTs to the lower memory levels, which is
bounded by O(P N

P 2 log
N
P
) or O(N

P
log N

P
). When there

is no memory hierarchy, the communication time is

(N
P
� N

P 2)=dLg e)(4L+ 4o)) = L+o
L

g(N
P
� N

P 2).

However, the messages sent may reside at di�erent
memory levels. This gives the communication time to
be

L+o
L

g(N
P
� N

P 2) log
N
P

Thus the total running time is:

O(N
P
log N

P
log log N

P
+ L+o

L
g(N

P
� N

P 2) log
N
P
);

Because N
P
� P , the running time is within a factor

1 + g(L+o)

L log log N
P

of optimal.

Sorting. A near optimal sorting algorithm can be
obtained by using columnsort [Lei85] and the modi�ed
median-sort algorithm proposed in [AACS87]. We will
denote this modi�ed median-sort algorithm as HMM-
sorting in the rest of the paper and we will use the
result that the HMM-sorting can sort N elements in
O(N logN log logN) time. The columnsort performs
sorting on a column-major r � c matrix with the con-
ditions of c%r = 0 and r > 2(c � 1)2. It executes
eight consecutive steps, of which the odd-numbered
steps sort the r elements in each column and the even-
number steps permute the data among the processors.

In order to devise an e�cient algorithm in the LogP-
HMM model, we take c = P � 2 and r = N

P
. The

columnsort condition is satis�ed if N > 2P (P � 3)2.
Each processor will be responsible for sorting a col-
umn. Therefore, by using HMM-sorting, each of odd-
numbered steps will take time O(N

P
log N

P
log log N

P
).

In step 2 and 4, each processor sends and receives
N
P
� N

P 2 elements. These elements may reside at or
send to di�erent memory levels, therefore the commu-
nication overhead would be

L+o
L

g(N
P
� N

P 2) log
N
P
:

In step 6 and 8, each processor sends and receives N
2P

elements. The communication overhead would be

L+o
L

g N
2P

log N
P
:

Therefore the sorting can be done in time

O(N
P
log N

P
log log N

P
+ L+o

L
gN
P
log N

P
);

when N > 2P (P � 3)2, which is within a factor 1 +
g(L+o)

L log log N
P

of optimal.

5.3. An alternative optimal FFT algo-
rithm for the P-HMM model

The hybrid algorithm discussed above can be
adapted for the P-HMM model and an optimal run-
ning time can be achieved. The analysis is summarized
below:

1. The time form-input FFT is O(m logm log logm)
on a single processor.

2. In the shu�e stage, each processor sends N
P
� N

P 2

elements. In P-HMM, sending a message over the
network takes logP time. Therefore, the time for
this stage is (N

P
� N

P 2)� (logP +log N
P
), where the

second term of log N
P

is for transferring the data
in the memory hierarchy.

3. The time to compute l P -input FFTs is
(O(l(P logP log logP)+ N

P
log N

P
). Again the sec-

ond term is for transferring the data in the mem-
ory hierarchy.

Summing all of them together, we get the following
result:

O(N
P
log N

P
log log N

P
);

which matches the lower bound O(N
P
logN log logN

logP
)

proven in [VS94]. And therefore it is optimal.

6. Conclusions

This paper presents a framework of using resource
metrics to characterize the various models of parallel
computation. Using the properties of resource met-
rics, we can classify models into the basic synchronous
models and extensions which incorporate notions of
asynchrony, communication costs, and memory hier-
archy. The merits and disadvantages of these models
are brought out by examining their characteristics in
terms of resource metrics and their utility in designing
such algorithms as FFT.

Resource metrics can be used not only to under-
stand existing models, but also to guide the design of

new models. The LogP-HMM model, proposed in this
paper, serves as an illustration of a model designed
to �ll the gap observed between models which address
communication and those which address memory hier-
archy. The design of near optimal sorting and FFT al-
gorithms for LogP-HMM gives promise that the LogP-
HMM model has the potential to serve as a viable tool
for the design and analysis of what may prove to be
practical algorithms for a large class of machines.

The LogP-HMMmodel leaves large room for further
study. Ongoing investigations include examining the
utility of replacing the memory part by a more prac-
tical model like the UMH. We are also pursuing the
design of algorithms besides FFT and sorting for the
LogP-HMM model. Finally, we are pursuing the com-
parative evaluation and experimental measurement of
how accurately these models re
ect real parallel ma-
chines by implementing the algorithms on machines
such as the IBM SP-2.

References

[AACS87] A. Aggarwal, B. Alpern, A. Chandra, and
M. Snir, \A model for hierarchical memory," in
Proc. 19th ACM Symp. on Theory of Comput-

ing, pp. 305{314, May 1987.

[AC94] B. Alpern and L. Carter, \Towards a model
for portable parallel performance: exposing the
memory hierarchy," in Portability and Perfor-

mance for Parallel Processing, pp. 21{41, John
Wiley & Sons, 1994.

[ACF90] B. Alpern, L. Carter, and E. Feig, \Uniform
memory hierarchies," in Proc. 31st IEEE Symp.

on Foundations of Computer Science, 1990.

[ACS87] A. Aggarwal, A. Chandra, and M. Snir, \Hier-
archical memory with block transfer," in Proc.

28th Symp. on Foundations of Computer Sci-

ence, pp. 204{216, Oct. 1987.

[ACS89] A. Aggarwal, A. Chandra, and M. Snir, \On
communication latency in PRAM computa-
tion," in Proc. 1st ACM Symp. on Parallel Al-

gorithms and Architectures, pp. 11{21, 1989.

[ACS90] A. Aggarwal, A. K. Chandra, and M. Snir,
\Communication complexity of PRAMs," J.

Theoretical Computer Science, Mar. 1990.

[AV88] A. Aggarwal and J. Vitter, \The input/output
complexity of sorting and related problems,"
Comm. ACM, vol. 31, pp. 1116{1127, Sept.
1988.

[Ble90] G. E. Blelloch, Vector Models for Data-Parallel

Computing. MIT Press, 1990.

[BNK92] A. Bar-Noy and S. Kipnis, \Designing broad-
casting algorithms in the Postal model for
message-passing systems," in Proc. 4th ACM

Symp. on Parallel Algorithms and Architectures,
pp. 11{22, ACM, June 1992.

[CKP+93] D. Culler, R. Karp, D. Patterson, A. Sahay,
K. E. Schauser, E. Santos, R. Subramonian,
and T. von Eicken, \LogP: Towards a realis-
tic model of parallel computation," in Proc. 4th

ACM Symp. on Principles and Practice of Par-

allel Programming, pp. 1{12, ACM, 1993.

[CZ89] R. Cole and O. Zajicek, \The APRAM: Incor-
porating asynchrony into the PRAM model," in
Proc. 1st ACM Symp. on Parallel Algorithms

and Architectures, pp. 169{178, ACM, 1989.

[FW78] S. Fortune and J. Wyllie, \Parallelism in ran-
dom access machines," in Proc.10th ACM Symp.

on Theory of Computing, pp. 114{118, 1978.

[Gib89] P. B. Gibbons, \A more practical PRAM
model," in Proc. 1st ACM Symp. on Parallel Al-

gorithms and Architectures, pp. 158{168, ACM,
1989.

[GMR94] P. B. Gibbons, Y. Matias, and V. Ramachan-
dran, \The QRQW PRAM : Accounting for
contention in parallel algorithms," in Proc.

5th ACM-SIAM Symp. on Discrete Algorithms,
pp. 638{647, 1994.

[Goo93] M. Goodrich, \Parallel algorithms column
I: Models of computation," SIGACT News,
vol. 24, pp. 16{21, Dec. 1993.

[KSSS93] R. Karp, A. Sahay, E. Santos, and K. Schauser,
\Optimal broadcast and summation in the LogP
model," in Proc. 5th ACM Symp. on Parallel Al-

gorithms and Architectures, pp. 142{153, 1993.

[Lei85] T. Leighton, \Tight bounds on the complexity
of parallel sorting," IEEE Transactions on Com-

puters, vol. 34, no. 3, pp. 344{354, 1985.

[NV91] M. Nodine and J. Vitter, \Large-scale sorting in
parallel memories," in Proc. 3rd ACM Symp. on

Parallel Algorithms and Architectures, pp. 29{
39, July 1991.

[Sah92] A. Sahay, \Hiding communication costs in
bandwidth-limited parallel FFT computation,"
Technical Report UCB/CSD 92/722, UC Berke-
ley, 1992.

[Ski91] D. Skillicorn, \Models for practical parallel
computation," International Journal of Parallel

Programming, vol. 20, no. 2, pp. 133{158, 1991.

[Val90] L. Valiant, \A bridging model for parallel com-
putation," Comm. ACM, vol. 33, pp. 103{111,
Aug. 1990.

[VS90] J. Vitter and E. Shriver, \Optimal disk I/O
with parallel block transfer," in Proc. 22nd ACM
Symp. on Theory of Computing, pp. 159{169,
1990.

[VS94] J. S. Vitter and E. A. M. Shriver, \Algorithms
for parallel memory II: Hierarchical multilevel
memories," Algorithmica, 1994.

