
Chapter 15
Modeling DNA Nanodevices Using Graph
Rewrite Systems

Reem Mokhtar, Sudhanshu Garg, Harish Chandran,
Hieu Bui, Tianqi Song and John Reif

Abstract DNA based nanostructures and devices are becoming ubiquitous in
nanotechnology with rapid advancements in theory and experiments in DNA self-
assembly which have led to a myriad of DNA nanodevices. However, the modeling
methods used by researchers in the field for design and analysis of DNA nanos-
tructures and nanodevices have not progressed at the same rate. Specifically, there
does not exist a formal system that can capture the spectrum of the most frequently
intended chemical reactions on DNA nanostructures and nanodevices which have
branched and pseudo-knotted structures. In this paper we introduce a graph rewrit-
ing system for modeling DNA nanodevices. We define pseudo-DNA nanostructures
(PDNs), which describe the sequence information and secondary structure of DNA
nanostructures, but exclude modeling of tertiary structures. We define a class of
labeled graphs called DNA graphs, that provide a graph theoretic representation
of PDNs. We introduce a set of graph rewrite rules that operate on DNA graphs.
Our DNA graphs and graph rewrite rules provide a powerful and expressive way
to model DNA nanostructures and their reactions. These rewrite rules model most
conventional reactions on DNA nanostructures, which include hybridization, dehy-
bridization, base-stacking, and a large family of enzymatic reactions. A subset of
these rewrite rules would likely be used for a basic graph rewrite system modeling
most DNA devices, which use just DNA hybridization reactions, whereas other of
our rewrite rules could be incorporated as needed for DNA devices for example
enzymic reactions. To ensure consistency of our systems, we define a subset of DNA
graphs which we call well-formed DNA graphs, whose strands have consistent 5′ to
3′ polarity. We show that if we start with an input set of well-formed DNA graphs, our
rewrite rules produce only well-formed DNA graphs. We give four detailed example
applications of our graph rewriting system on (1) Yurke et al. [82] DNA tweezer
system, (2) Yurke et al. [77] catalytic hairpin-based triggered branched junctions, (3)
Dirks and Pierce [17] HCR, and (4) Qian and Winfree [59] scalable circuit of seesaw

R. Mokhtar (B) · S. Garg · H. Bui · T. Song · J. Reif
Department of Computer Science, Duke University, Durham, NC, USA
e-mail: reem@cs.duke.edu

H. Chandran
Google, Mountain View, CA, USA

© Springer International Publishing Switzerland 2017
A. Adamatzky (ed.), Advances in Unconventional Computing,
Emergence, Complexity and Computation 23,
DOI 10.1007/978-3-319-33921-4_15

347

348 R. Mokhtar et al.

gates. Finally, we have a working software prototype (DAGRS) that we have used to
generate automatically well-formed DNA graphs using a basic rewriting rule set for
some of the examples mentioned.

15.1 Introduction

15.1.1 Motivation

A DNA nanostructure is a macromolecule composed of DNA strands that are
hybridized together and have a predetermined target structure [62]. A DNA nan-
odevice is a biochemical system composed of DNA nanostructures that undergo
dynamic reactions which modify their structure [38]. DNA nanodevices often act
as nanoscale machines and are designed to perform specific tasks, including DNA
walkers [2, 25, 27, 28, 45, 61, 66–68, 70, 74, 78, 79], tweezers [8, 82], gears [71],
and other nanodevices [6, 44, 48, 50].

DNA nanostructures are known to obey structural constraints, which are diffi-
cult to model in detail [56]. These include geometric and conformational constraints
such as the persistence length, helical pitch, major and minor grooves, supercoil-
ing, conformations under the effect of different hydration levels, and other physical
properties [69]. Most commonly intended reactions in structural and dynamic DNA
nanotechnology research can be treated on a fundamental level while temporarily
discounting these constraints.

We propose a method of coarse-grained modeling that provides a high-level
abstraction of DNA nanostructures. Our coarse-grained modeling of DNA nanos-
tructures includes a class of structures which we call pseudo-DNA nanostructures,
similar to the conventional cartoon descriptions of DNA nanostructures, and an equiv-
alent class of labeled graphs which we call well-formed DNA graphs.

A general approach to modeling a biophysical structure is to develop a coarse-
grained model. The term “coarse-grained modeling” has conventionally been used
to refer to models which more concerned with biophysical models [18, 46, 52].
By coarse-grained modeling, we refer to the modeling of the primary and secondary
structure, and some other properties that affect hybridization and enzymatic reactions,
or transformations, but do not attempt to model or provide specification of tertiary
structure. Tertiary structure is not generally of key importance to these reactions
on DNA nanostructures with relatively smaller scales of complexity (where steric
hindrance does not greatly influence reactions).

15.1.2 Prior and Related Work

The visual representation of DNA nanostructures often termed DNA cartoons is
widely used (such as in Fig. 15.1b as a representation of Fig. 15.1a). They provide a
visual representation of the secondary structure of DNA nanostructures, including 5′

15 Modeling DNA Nanodevices Using Graph Rewrite Systems 349

to 3′ directionality and hybridizations between single strands of DNA. Their goal is to
abstract away individual base-pairings and helical twists to provide a domain-based
representation. Though there are many variations on this, most cartoon renderings
represent a strand with a line that terminates in an arrow at the 3′-end. When two
complementary antiparallel strands hybridize to each other through base pairing, a
series of lines between the strands represent the hybridization bonds between each
base pair. DNA cartoons are frequently used in practice for describing DNA nanos-
tructures and may also be used by visual GUI software, e.g., for graphical specifi-
cation and rendering of DNA nanostructures. Alternatives to string-based methods,
such as explicit graph structures, are needed in order to model certain DNA nanos-
tructures, especially those with branched or pseudo-knotted regions. Many earlier
examples of such graph-based approaches that provide abstractions of DNA nanos-
tructures and their reactions have been developed. Jonoska made early use of graphs
for representing DNA-based computations [31]. Reif [60] developed a graph model
for representing DNA nanostructures with representation of 5′ to 3′ directionality
and hybridizations between single strands of DNA [60]. In addition, Birac et al.
[3] have made use of graph-based data structures for the design and modeling of
DNA nanostructures [3]. Other more recent graph models for DNA nanostructures
include those of Kawamata et al. [30, 32]. None of these model base-stacking which
can be essential for some DNA reactions [76]. There are various prior works on
coarse-grained modeling of dynamic DNA nanodevices that transition between dis-
tinct DNA nanostructures. Cardelli [5], Phillips and Cardelli [54] and Lakin et al.
[40, 42] developed an algebra for representing a restricted set of DNA-based reac-
tions, such as see-saw gates [58]. Yin et al. [77] made use of a graphical represen-
tation of biomolecular self-assembly pathways, in which DNA was rendered into an
abstract nodal representation, then used to manipulate hybridization self-assembly
reaction in constructing nanostructures [77]. Kumara et al. [39] presented analysis

(a)

(b)

Fig. 15.1 a A rendering of a double-stranded DNA duplex (nanoengineer). b A cartoon rendering
of the duplex

350 R. Mokhtar et al.

of assembly pathways for different types of DX tiles that previously refused to
assemble into parallel structures [39]. Ibuki et al. [30] also developed a graph-
structure to model basic DNA reactions [30]. Finally, McCaskill and Niemann [49]
presented the most relevant example of a DNA graph replacement scheme, which
provides a framework for computing intermediary and target DNA and RNA struc-
tures, and more specifically enzymatic reactions [49]. Klavins developed graph gram-
mar models for robotic self-assembly, and also adapted this in DNA self-assembly
[33–36].

Graph grammars and graph rewriting systems (defined in Sect. 15.2.4) have been
described at length in [11, 12, 19, 65]. Graph grammars were introduced as a gen-
eralization of formal grammars on strings (Chomsky grammars [9, 10]) to those on
graphs [20]. Its use to describe distributed assembly started with [35]. Here, we are
attempting to use this same formalism to model commonly intended DNA hybridiza-
tion reactions. Graph grammars were used by Flamm et al. [22, 22], Andersen et al.
[1] and Mann et al. [47] to model chemical reactions, and a Graph Grammar Library
(GGL) software developed to that effect.

Related work in the field of DNA nanotechnology includes [26] domain-based
DNA reaction enumerator, in which strands and nanostructures are represented as
formal structures which produce the most relevant reaction pathway. The method
is based on condensing large reaction graphs by excluding a number of transient
(fleeting or fast reaction) states and combining strongly connected components in
the graph. In Sect. 15.9, we provide an example of how our graph rewriting system can
utilize this concept to decrease the number of states. Finally, oxDNA [18, 46, 52] is
currently the most advanced coarse-grained modeling systems at the time of writing.
However, oxDNA uses a biophysical model that treats each nucleotide as a rigid
body, with a plane perpendicular to the base so as to capture its planar orientation,
and collinear interacting sites. This paper disregards these physical properties and
attempts to abstract them away, since one advantage of this approach is being able
to demonstrate lesser-likely reaction pathways.

The behavior of many complex systems can be explicitly rendered into graph
transformations. Graph rewriting systems provide a powerful, intuitive and flexi-
ble method of analyzing and modeling DNA reactions [15, 55]. Our DNA graph
model allows us to model base-stacking interactions between strands in addition to
the conventional hybridization bonds in DNA nanostructures. We introduce a graph-
theoretic approach that uses graph transformations to represent reactions on DNA
nano structures; these graph transformations correspond to DNA reactions, and trans-
form well-formed DNA graphs into modified well-formed DNA graphs that represent
the products of these corresponding reactions.

Our DNA graphs and graph rewrite rules provide a powerful and expressive way
to model DNA nanostructures and their reactions. These rewrite rules model most
conventional reactions on DNA nanostructures, which include hybridization, dehy-
bridization, base-stacking, and a large family of enzymatic reactions. To ensure
consistency of our systems, we define a subset of DNA graphs which we call well-
formed DNA graphs, whose strands have consistent 5′ to 3′ polarity. We show that
if we start with an input set of well-formed DNA graphs, our rewrite rules produce

15 Modeling DNA Nanodevices Using Graph Rewrite Systems 351

only well-formed DNA graphs. Initially it was thought that one of the advantages
of our approach is that existing rewrite systems which automate the graph rewriting
process can be used, but have since realized that they require some modification,
which is why we chose to develop our own rewriting systems. Some rule-based sys-
tems that were explored included Kappa and KaSim [13, 21], Porgy and Tulip [55],
amongst others, but found that they could not easily perform the domain-level mod-
eling that were intended using graph rewriting within these systems. As an example
using Kappa, separating out the domains as distinct but connected “agents” while
respecting the order in which they occur on a strand, and simultaneous attempting to
incorporate branched and pseudo-knotted structures, while accommodating a rule-set
that is intended to be generalizable did not seem readily feasible.

15.1.3 Overall Organization

In Sect. 15.2, we define the class of pseudo-DNA nanostructures, with an example,
define the class of well-formed DNA graphs, and finally present our graph rewriting
systems. Section 15.3 introduces a set of non-enzymatic graph rewrite rules. In
Sect. 15.4, we show that every graph generated by our rewriting systems belongs to the
class of well-formed DNA graphs, and we show that this class of graphs is equivalent
to the class of pseudo-DNA nanostructures. Algorithms 1 and 2 contain algorithms
for the construction of members of the classes PDN and WFDG as part of the proof
in Sect. 15.4. In Sect. 15.5, we show an example application of the graph rewriting
systems to Yurke et al. [82] DNA tweezer system. Section 15.6 briefly describes our
software system for automating our graph rewriting systems. Section 15.7 displays
further examples of the application of graph rewriting systems to existing DNA
reaction systems, including the catalytic hairpin-based branched junctions [17, 77]
HCR [17] and the [59] scalable circuit comprised of seesaw gates [59]. Section 15.8
has an extended (enzymatic) rewrite system that is used in conjunction with the basic
system. Section 15.7 Provides further example applications of our graph rewrite rules.
Section 15.8 Provides enzymic graph rewrite rules. Sections 15.9, 15.10 and 15.11
discuss further details of the graph rewrite rules and how they can be combined with
existing work. Section 15.12 contains a summary of our results as well as a critical
analysis of the limitations and advantages of our approach.

15.2 Definitions

15.2.1 Pseudo-DNA Nanostructures

In order to accommodate certain physically feasible structures which may be gen-
erated by our rewriting systems, but at the same time maintain a general method of
characterizing the most frequently intended DNA reactions, we define a class of struc-
tures, pseudo-DNA nanostructures (PDN). The class describes only the sequence

352 R. Mokhtar et al.

information and secondary structure of DNA nanostructures, and excludes tertiary
structure information. Any pseudo-DNA nanostructure p ∈ PDN is a set of DNA
strands in the nanostructure, each described by domains (which can be one nucle-
obase or a sequence of nucleobases) and the hybridizations between domains.

Formally, we define p ∈ PDN as a quintuple (D, S , δ, H , B), where:

1. D is a set of domains {d1, d2, . . .}, and their complements {d̄1, d̄2, . . .} (if they
exist in the structure). This is necessary because all domains involved in the
PDN dictate the relationships in the set of hybridizations. If the complementary
domains do not exist, then the set of hybridizations is empty.

2. S is a set of strands {s1, s2, . . .}
3. δ : S → D∗ maps each strand in S to a string over the set of domains in D , and

each string’s domains are read in the 5′ to 3′ direction.
4. H is the set that maps the hybridization relationship between domains of strands

in S . H is a set of 4-tuples. Each h ∈ H is of the form (s1, i, s2, j), indicating
that the ith domain of strand s1 is hybridized to the jth domain of strand s2. Each
domain of any strand can hybridize to no more than one complementary domain
of another (or the same) strand.

5. B is the set that maps base-stacking interactions, specifically those that involve
domains on different strands in S . That is, the members in B define blunt-end,
overhang, and frayed-end base-stacking interactions between domains which are
located on different strands (whether on the 3′ or 5′ in the case of blunt-end,
or at an unpaired location in the case of frayed-end base-stacking, or both in
the case of overhang base-stacking). B is a set of 12-tuples. Each b ∈ B is
(s1, i, e1, s2, j, e2, s3, k, e′

1, s4, �, e′
2). This 12-tuple describes the hybridization

of two pairs of strands (or two duplexes), (s1, i, s3, k) and (s2, j, s4, �). The base
stacking exists between s1’s ith domain’s e1th end with s3’s kth domain’s e′

1th end,
and simultaneously between s2’s jth domain’s e2th end with s4’s lth domain’s e′

2th
end. In this case, e′

1 and e′
2 refer to the corresponding domain ends of s1 and s2,

respectively.

An example is shown in Fig. 15.2, the three-arm branched structure may be rep-
resented as a member of PDN as follows:

1. D = {a, b, c, ā, b̄, c̄}
2. S = {s1, s2, s3}.
3. δ(s1) = ab, δ(s2) = b̄c, δ(s3) = c̄ā.
4. H = {(s1, 1, s2, 2), (s1, 2, s3, 1), (s3, 2, s2, 1)}

Fig. 15.2 A three-arm
junction

15 Modeling DNA Nanodevices Using Graph Rewrite Systems 353

5. B may be any one of the following sets, depending on the junction’s conformation
[43]:

a. ∅
b. (s1, 1, 3′, s3, 2, 5′, s2, 2, 5′, s3, 1, 3′)
c. (s1, 1, 3′, s3, 2, 5′, s1, 2, 5′, s2, 1, 3′)
d. (s2, 1, 3′, s1, 2, 5′, s3, 1, 3′, s1, 2, 5′)

15.2.2 DNA Graph Notation

We will define the following notation for DNA graphs in order to facilitate the
introduction of our DNA graph rewriting systems (note that we will subsequently
show that a subset of DNA graphs, called well-formed DNA graphs, are equivalent
to pseudo-DNA nanostructures). A DNA graph is a vertex-labeled and edge-labeled
graph formally defined as an 8-tuple G = (V , E, LV , LE, �, vl, el, δ) where:

1. V is a finite set of vertices. Each vertex represents an unhybridized DNA strand
domain, a hybridized DNA strand domain, a 3′-end or a 5′-end of a DNA strand.

2. E is a finite set of edges. Each edge represents a relationship between two vertices.
3. LV = {

, , 3′, 5′} is the finite set of vertex labels, where:

a. : unhybridized vertex, where every base in the domain that this vertex is
mapped to is unhybridized.

b. : hybridized vertex, where every base in the domain that this vertex is
mapped to is hybridized.

c. 3′: 3 prime end.
d. 5′: 5 prime end.

4. is the finite set of edge labels, where:

a. : base-stacking, where the arrow direction indicates 5′ to 3′ direction-
ality. Here, we only explicitly represent base-stacking interactions between
adjacent bases on different strands, and not the base-stacking interactions
between adjacent bases on a single strand.

b. : hybridization.
c. : covalent bond linking base pairs between two domains, where the arrow

direction indicates strand directionality.
d. : is an edge label that signifies a strand-end, where the vertical bar location

indicates strand directionality.

5. � is the set of all possible domain names. For each d ∈ �, its complement
is denoted as d̄, and it represents the reverse-complement base sequence. It is
assumed that each d ∈ � has a unique complement d̄ ∈ � s.t. no other symbol in
� − {d} can have a complement d̄. Each domain d is mapped to a base sequence,
which is a string over the set {A, C, T , G}, and the complement of each member
is Ā = T , T̄ = A, C̄ = G, Ḡ = C.

354 R. Mokhtar et al.

6. vl : V �→ LV , is a function that assigns a label to each vertex.
7. el : E �→ LE , is a function that assigns a label to each edge.
8. m : V �→ � is a mapping between vertices and domain names.

15.2.3 Well-Formed DNA Graphs

To be concise, we will define a DNA strand graph here as a maximal subgraph that
consists of one or more vertices with a label in the vertex label subset { , , 3′, 5′}
connected only via edges labeled . In other words, it is a graph representing
only one strand, with no hybridization or base-stacking labeled edges (as shown in
Fig. 15.3).

There are two types of strands: circular (see Sect. 15.4) and non-circular, where
a non-circular strand has an explicit start and end, as opposed to a circular strand,
which maintains directionality without having ends.

A well-formed DNA graph (referred to as WFDG), is a DNA graph that adheres
to the six constraints below. Some of the constraints apply differently to circular
strands, which will be made clear as we define the constraints in this section.

The in-degree of a vertex is the number of edges which are directed into that
vertex. The out-degree of a vertex is the number of edges which are directed out
of that vertex. The degree of a vertex is the sum of its in-degree and out-degree.
The direction of an edge is indicated by the edge label’s end marker location. For
example, in Fig. 15.3a, the direction of the edge with label between vertices v1, u1

(where label(u1) = 3′, and v1 is the hybridized vertex, labeled and marked with
the domain name “d1” for ease of reference) is towards u1.

Constraint 1: Strand Ends In circular strands, no ends exist. That is, by definition,
�u, v ∈ V s.t. their labels are 5′ and 3′, respectively.

In a non-circular strand, ∃u, v ∈ V s.t. their labels are 5′ and 3′, respectively,
subject to:

1. in-degree(u) = 0 and out-degree(u) = 1, and a directed edge labeled from u
(i.e. the 5′-end) to some vertex w s.t. label(w)∈ { , }.

2. in-degree(v) = 1 and out-degree(v) = 0, and a directed edge labeled to v (i.e.
the 3′-end) from some vertex w s.t. label(w)∈ { , }.

Fig. 15.3 a An example
well-formed DNA graph. b
An example of a DNA strand
graph

3′

5′

5′

3′

d1

d̄1

d2

d̄2

(a)

5′ 3′d̄1 d̄2

(b)

15 Modeling DNA Nanodevices Using Graph Rewrite Systems 355

Constraint 2: Unhybridized Vertex Degree ∀ vertices v ∈ V s.t. label(v) = then
in-degree(v) = 1 and out-degree(v) = 1.
Constraint 3: Hybridized Vertex Degree ∀ vertices v ∈ V s.t. label(v) = then
3 ≤ deg(v) ≤ 5. A discussion of the reasoning behind this can be found in Sect. 15.10
(on P. XXX).

Constraint 4: Vertex Edge Labels For each vertex v ∈ V the following conditions
apply:

1. If the vertex v has label(v) = , then it has exactly one hybridization-labeled
edge . This edge is treated as two edges going in both directions,
but is represented as one undirected edge. Which means it counts both an an
in-degree and out-degree for each participating vertex.

2. If the vertex v has label(v) = , then ∃i base-stacking-labeled edges e ∈ E con-
nected to v s.t. and i is an integer s.t. 0 ≤ i ≤ 2

3. ∃j covalently-labeled edges e ∈ E connected to v s.t. and j is an
integer s.t. 0 ≤ j ≤ 2, where there is at most one edge directed towards v and at
most one edge directed away from v.

4. ∃k edges labeled with connected to v, s.t. k = |2 − j|, at most one edge is
directed towards v and at most one edge directed away from v.

Constraint 5: Complementarity For every vertex v where label(v) = , and
m(v) = d ∈ �+ there is a corresponding vertex v̄ s.t.: e(v, v̄) ∈ E, ,
label(v̄) = and m(v̄) = d̄ ∈ �+, the complement of d.

Constraint 6: Directionality If ∃w, x, y ∈ V s.t. w is directly connected to x, and x
is directly connected to y through edges labelled with , then exactly one of the
following is true:

1. Either the edge e(w, x) is directed towards x iff the edge e(x, y) is directed towards
y, or the edge e(w, x) is directed towards w iff the edge e(x, y) is directed towards
x.

2. In non-circular strands (recall Constraint 1), if ∃u, v ∈ V s.t. their labels are 5′
and 3′, then exactly one of the following statements has to be true:

a. There exists a directed path of covalently-labeled edges from u to v that passes
through w, x, y, in that order.

b. There exists a directed path of covalently-labeled edges from u to v that passes
through y, x, w, in that order.

3. In circular strands, this is not applicable (recall Constraint 1). A rendering of the
repercussions on circular strands is made in Fig. 15.4.

15.2.4 Graph Rewriting Systems

A graph rewriting system is a set of rewrite rules that transforms a graph instance to
another, both belonging to the same class of graphs. Each rule in our graph rewriting

356 R. Mokhtar et al.

¯

¯

(a) (b)

reversed

reversed(c)

Fig. 15.4 Directionality is necessary for well-formed DNA graphs to ensure context-free nature
of rewriting systems. a A circular duplex structure, where the domain sequences are ordered in
the direction of the dotted arrow. b Directionality of the same duplex in a if cut by an enzyme.
c Directionality of the same duplex in a if cut by an enzyme, but had the reverse direction of the
domain sequences in b

systems has the form (also known as single pushout) [51] of a triple p = 〈L r→ R〉,
where the left-hand side in each rule, L, undergoes a partial graph morphism r, to a
right-hand side R. The rule is applied to a host graph, or the graph to be transformed
via the application of a rewrite rule. An occurrence of L in a graph G makes the rule
applicable. This occurrence is called a match [64]. In other words, a host graph graph
G can be transformed into another graph H, first by finding a matching between the
left-hand side L of a rule r within the host graph, and transforming it to the right-
hand side R in H. In DAGRS (DNA Graph Rewriting System), a matching is found
by applying the subgraph isomorphism algorithm by Ullmann [73] (explained in
Sect. 15.6).

15.2.5 Our DNA Graph Rewriting Systems

For the purpose of brevity, we have arranged the set of rewrite rules that define
our graph rewriting systems between Sect. 15.3 (non-enzymatic) and Sect. 15.8
(enzymatic): Sect. 15.3 includes only hybridization and base-stacking rules; and
Sect. 15.8 lists the extended rewriting rules that accompany the basic set.

Each side of the rewrite rule is a graph that follows the DNA graph notation
defined in Sect. 15.2.2; and the well-formedness constraints defined in Sect. 15.2.3.
As explained previously, the left-hand side of each rule is a graph that matches a
subgraph of a larger, host graph G. This subgraph encodes: the vertices, edges, vertex-
labels and edge-labels, and directionality. The host graph G in this case is a DNA state
graph, which is some DNA graph G containing one or more DNA strands (as defined
in Sect. 15.2.3), which comprise a well-formed DNA graph. These rules are intended
for coarse-grained modeling, and are independent of any external parameters like salt
concentration and the pH value of the buffer (An extension of this work may involve
applying these rules within the confines of reaction rates, which would dramatically
decrease the number of possible rules that may be applied at each transformation
junction starting from the input species).

15 Modeling DNA Nanodevices Using Graph Rewrite Systems 357

15.3 Non-enzymatic DNA Graph Rewriting Rules

The rules are structured as follows:

1. Cartoon Rendering: a DNA cartoon depiction of the DNA strands or complex.
2. Rewrite Rule: the corresponding graph rewrite rule
3. r and l: the direction of rule application. r indicates that the rule transforms the

left-hand side L to the right-hand side R. If the rule also has the direction l, then
it can be used to transform R to L.

4. L refers to the left-hand side, and R is the right-hand side.

Rule #1: Domain Binding

Cartoon Rendering
d

d̄

d

d̄

.

.

Rewrite Rule

d

d̄

d

d̄

Rewrite Rule: Two complementary DNA domains d and d̄ hybridize together to
form a duplex, or double-stranded DNA. Note, the cartoon represents two strands
each made up of one domain, but the strands may be surrounded by other domains
(vertices) in either direction, while maintaining their original directionality.

L: The unhybridized domains d and d̄ are each represented by a circle, with no
edge between them.

R: They are each represented as solid circles (hybridized). The dashed edge rep-
resents the hydrogen bond(s) between d and d̄.

Rule #2: Strand Displacement

Cartoon Rendering
d1

d̄1

d2

d̄2
d̄2

d1

d̄1

d2

d̄2

d̄2.

.

. .
.

. . .

.

Rewrite Rule: Five domains are involved in this transformation. The vertex with
domain label d̄2, which corresponds to the domain covalently bound to the complex
on the left-hand side, displaces a vertex labeled with the same domain d̄2, which
corresponds to the domain hybridized to d2.

358 R. Mokhtar et al.

Rewrite Rule
d1

d̄1

d2

d̄2

d̄2

d1

d̄1

d2

d̄2

d̄2

L: The upper strand region is composed of domains d1, d2. d1 is hybridized to d̄1,
and d2 is hybridized to its complement d̄2.

R: The hybridization bond between vertex d̄2 and d2 has been removed, and d̄2

has now been relabeled with . The vertex with domain d̄2, which is covalently
bound to d̄1, is relabeled as hybridized (), and a hybridization edge has now been
added to connect this vertex to vertex d̄2.

Rule #3: Base stacking

Cartoon Rendering
d1

d̄1

. d2

d̄2

d1

d̄1

. d2

d̄2

.

Rewrite Rule
3

5

5

3

d1

d̄1

d2

d̄2

d1

d̄1

d2

d̄2

Rewrite Rule: Two double stranded DNA complexes, each comprised of two vertices
with domains d1, d̄1 and d2, d̄2, respectively, are present. All the vertices are attached
to 5′ or 3′-labeled vertices, where the vertex labeled d1 is connected to a vertex labeled
with a 3′, and d2 to a vertex labeled 5′, etc. A base-stacking bond between them is
formed. Since base-stacking may be assumed to be directionally independent [76],
the directionality of the domains on each duplex relative to their neighbors do not
really matter, so this rule can be extended to include all configurations of antiparallel
duplex directionality.

L: Solid vertices with labels d1 and d̄1 are connected by a hybridization edge.
The vertex labels 3′ and 5′ show the directionality of each domain represented by the
vertices. Similarly for d2 and d̄2.

R: The two duplexes form a base-stacking bond with each other. This is repre-
sented by the edges between vertices labeled d1 and d2, and between d̄2 and d̄1.

15 Modeling DNA Nanodevices Using Graph Rewrite Systems 359

Rule #4: Base stacking with overhangs

Cartoon Rendering

d1

d̄1

d3

d4

. .
.

. . .

.d2

d̄2

d1

d̄1

.
d2

d̄2

d3

d4 . . .

. .
.

.

Rewrite Rule

5

3

d̄1

d1

d̄2

d2

d4

d3

d̄1

d1

d̄2

d2

d4

d3

Rewrite Rule: Similar to rule #3, however, here one of the double stranded DNA
complexes actually has overhangs (domains d3, d4) on both ends.

L: Vertices with labels d1 and d̄1 have covalently-labeled edges with d3 and d4, and
the edge directions show the strands’ 5′ to 3′ directionality. The vertices labeled d2

and d̄2 explicitly show directionality, through the 5′ and 3′ labeled vertices connected
to them via strand-end edges.

R: The vertices with 5′ and 3′ labels are destroyed. Base stacking bonds are formed
between d2 and d1. Likewise between d̄1 and d̄2.

Rule #5: Remote Toehold [23] mediated Strand Displacement

Cartoon Rendering

rd1

d̄1

d3.

d̄2

. .
.

d2

d̄2

d3

d̄2.

. d1

d̄1

d2

d̄2

.

Rewrite Rule

r

d1

d̄1

d2

d̄2

d3

d̄2

d1

d̄1

d2

d̄2

d3

d̄2

Rewrite Rule: Similar to rule #2, but the double-stranded DNA complex now has
an extra unhybridized domain d3, which separates the domains d1 and d2. The over-
hanging domain d̄2 has to locate the hybridized domain d̄2, and then displace it.

360 R. Mokhtar et al.

L: Vertex with domain d1 is hybridized to d̄1, and d2 to d̄2. The vertices labeled
d1, d2, d3 are connected via covalent bonds, and the d3 domain is hollow-labeled to
indicate that it is unhybridized.

R: A vertex labeled d̄2 replaces another vertex mapped to the same domain. Vertex
d̄2 is relabeled with a hybridization label, and the other vertex labeled d̄2 is now
unhybridized, hence it is relabeled as hollow. Note that variations of rule # 5 exist,
where the separator between the two parts of the duplex is not a single-stranded
region, but different structures that may act to separate both sides (a hairpin, for
example), without preventing the reaction from occurring. In addition, rules # 2 and
5 are also valid, with reverse directionality of the strands.

15.3.1 Distal Toehold Mediated Strand Displacement

In order to describe reactions in the last step of the example in Sect. 15.7, we need
to use conditional graph rewriting rules. A conditional check is performed before
the application of this rule, whether the two distal parts participating in this reaction
are connected via hybridization and covalent bonds. In other words, the structure
connecting the two parts is irrelevant, so long as it connects them (Fig. 15.5).

15.4 Correctness of Our DNA Graph Rewriting Systems

To prove the correctness of our DNA graph rewriting systems, or that every graph
generated by the systems is a pseudo-DNA nanostructure, we need to prove two
things: (1) the class of structures generated by our graph rewriting systems and the

⇀
d1

d̄1

.

d̄2

. .
.

d2

d̄2
d̄2.

. d1

d̄1

d2

d̄2

.

⇀

d1

d̄1

d2

d̄2

d̄2

d1

d̄1

d2

d̄2

d̄2

(a)

(b)

Fig. 15.5 a Cartoon rendering of distal toehold mediated strand displacement. b Distal toehold
mediated strand displacement graph rewriting rule

15 Modeling DNA Nanodevices Using Graph Rewrite Systems 361

class of well-formed DNA graphs WFDG are equivalent and (2) that WFDG and
the class of pseudo-DNA nanostructures are equivalent.

The first part involves first proving a) that every DNA graph obtained by applying
a rewrite rule to a well-formed DNA graph is also well-formed (Theorem 1), and
(b) that any member of the class of well-formed DNA graphs can be generated by
our graph rewriting systems, by demonstrating that every well-formed DNA graph
can be obtained, given a well-formed input set of DNA strand graphs (Lemma 1),
thus showing that our graph rewriting systems does not produce DNA graphs that do
not belong to the class of well-formed DNA graphs.

Together, these two propositions (Theorem 1 and Lemma 1) show that, given a
well-formed DNA graph, any DNA graph produced by our graph rewriting systems
is also well-formed, and that every well-formed DNA graph may be produced by our
graph rewriting systems, hence, the class of graphs produced by our graph rewriting
systems is equivalent to the class of well-formed DNA graphs.

In the second part (Theorem 2), we show that the class of well-formed DNA
graphs is equivalent to that of the class of pseudo-DNA nanostructures. This is done
by proving (a) every pseudo-DNA nanostructure has a corresponding well-formed
DNA graph (Lemma 2) and (b) every well-formed DNA graph represents a pseudo-
DNA nanostructure (Lemma 3).

These two theorems demonstrate that the class of pseudo-DNA nanostructures
and the class of graphs produced by our graph rewriting systems are equivalent.

Theorem 1 For the rules in Sect. 15.3, any application of a DNA graph rewriting
system rule on a well-formed DNA graph produces a well-formed DNA graph.

Proof Using induction, we consider the following cases:

Single application
Let the initial graph G0 denote an arbitrary, well-formed, DNA graph. For every rule,
given a subgraph L ⊆ G0 that matches the left-hand side, r : L → R transforms the
subgraph to R ⊆ G1.

• Rule #1: Domain Binding If rule #1 is applicable, then a single application of
the rule to one pair of vertices transforms the subgraph in G0 that matches the
left-hand side of rule #1 to the right-hand side, which rewrites the labels of u, v to

, and adds an edge between them with the label , resulting in a new graph
G1. G1, which does not violate any well-formedness constraints:

Constraint 1—Strand Ends: No such vertices are affected, because the rule does
not apply to them.

Constraint 2—Unhybridized Vertex Degree: Since these unhybridized vertices
have not been transformed, then they remain unhybridized, where their in-
degree is 1, and out-degree is 1.

Constraint 3—Hybridized Vertex Degree: For vertices u, v, their degree has
changed by adding one edge. Either it has increased from 2 to 3, 3 to 4 (in
the case of a pre-existing base-stacking-labeled edge), or 4 to 5 (in the case

362 R. Mokhtar et al.

of two pre-existing base-stacking-labeled edges). For all other hybridized ver-
tices, since they have have not been involved in the transformation, then their
degrees remain the same.

Constraint 4—Vertex Edge Labels: For vertices u, v, one new edge has been
added which has the label . Since prior to the transformation no such edge
existed, then exactly one edge . No other edges nor labels
have been affected.

Constraint 5—Complementarity: The rule would only be applied to u, v if
m(u) = d ∈ �+ and m(v) = d ∈ �+, so this rule has not been violated.

Constraint 6—Directionality: If the nanostructure does not allow for circular
strands, then the hybridization respects anti-parallel directionality.

• Rule #2: Strand Displacement If rule #2 is applicable, then the subgraph L
consists of the vertices v1, v2, v3, v4, v5 ∈ V (starting from the unhybridized (hol-
low) vertex v1 with domain d2), and edges such that label(e(v4, v5)) = , and
label(e(v1, v2)) = . The rewriting rule destroys the edge e(v4, v5), changes
the label of v5 to and v1 to , and adds a hybridization edge e(v1, v4), which
does not violate any of the well-formedness constraints.

Constraint 1—Strand Ends: No such vertices are affected, because the rule does
not apply to them.

Constraint 2—Unhybridized Vertex Degree: Except for v1 (displacing domain
d2), unhybridized vertices have not been transformed and remain unhybridized,
where their in-degree is 1, and out-degree is 1. v5 has become unhybridized. An
edge between v4, v5 has been removed, so the vertex degree has been lessened
by 1, which means that its degree has changed from 3 to 2, 4 to 3 (if there is a
pre-existing base-stacking-labeled edge), or 5 to 4 (in case of two pre-existing
base-stacking labeled edges). In addition, v5 has been relabeled to .

Constraint 3—Hybridized Vertex Degree: For vertex v1, which has become
hybridized, its degree has changed by adding one edge. Either it has increased
from 2 to 3, 3 to 4 (in the case of a pre-existing base-stacking-labeled edge),
or 4 to 5 (in the case of two pre-existing base-stacking-labeled edges). For
all other hybridized vertices, since they have have not been involved in the
transformation, then their degrees remain the same.

Constraint 4—Vertex Edge Labels: For vertices v1, v4, one new edge has been
added which has the label . Since prior to the transformation no such edge
existed, then exactly one edge . One edge e(v4, v5) with
label has been removed.

Constraint 5—Complementarity: The rule would only be applied if m(v1) =
m(v5) = d2 ∈ �+ and m(v4) = d2 ∈ �+, so this rule has not been violated.

Constraint 6—Directionality: If the nanostructure does not allow for circular
strands, then the hybridization respects anti-parallel directionality.

15 Modeling DNA Nanodevices Using Graph Rewrite Systems 363

• Rule #3: Base Stacking If rule #3 is applicable, then the subgraph L ⊆ G0 consists
of the vertices v1, v2, v3, v4 ∈ V labeled with domains d1, d̄1, d2, d̄2, respec-
tively. Each of these vertices are connected to u1, u2, u3, u4 in the same order, with
vertex labels 3′, 5′, 5′, 3′, respectively. There are no conditions on the direction-
ality of the strands. The subgraph L undergoes the removal of the edges between
each pair e(ui, vi), and the vertices ui, which violates no well-formedness con-
straints. Then, v1 and v2 are connected via a base-stacking edge, labeled ,
and likewise for v3 and v4. No well-formedness constraints are violated in G1.

Constraint 1—Strand Ends: The vertices u1, u2, u3, u4 are destroyed.
Constraint 2—Unhybridized Vertex Degree: These vertices are not affected.
Constraint 3—Hybridized Vertex Degree: Vertices v1, v6 have had an edge

added with label .
Constraint 4—Vertex Edge Labels: No vertices are relabeled.
Constraint 5—Complementarity: No hybridization reactions have occurred.
Constraint 6—Directionality: The directionality of the strands are maintained

in the direction of the base-stacking arrows.

• Rule #4: Base Stacking with Overhangs If rule #4 is applicable, then the subgraph
L ⊆ G0 consists of the vertices v1 through v6 and u1, u2. v1, v6 (labeled d1 and d̄1)
are labeled , which are connected to v2, v5 (labeled d3 and d4), respectively.
In addition, vertices v3, v4 (labeled d2, d̄2) are connected to u1, u2, which are 5′
and 3′ labeled vertices, respectively. It is assumed that there are no conditions
on the directionality of the strands. The subgraph L undergoes the destruction of
the vertices u1, u2, and the edges between each pair e(ui, vj). Then, v1 and v3 are
connected via a base-stacking edge, labeled , and likewise for v4 and v6,
which does not violate any well-formedness in G1.

Constraint 1—Strand Ends: Two strand-end vertices (u1, u2) are destroyed.
Constraint 2—Unhybridized Vertex Degree: Since these unhybridized vertices

have not been transformed, then they remain unhybridized, where their in-
degree is 1, and out-degree is 1.

Constraint 3—Hybridized Vertex Degree: Since these hybridized vertices have
not been transformed, then they remain hybridized.

Constraint 4—Vertex Edge Labels: For vertices v1, v3 (and v4, v6), one new
edge has been added which has the label . Since prior to the trans-
formation no such edge existed, then exactly one edge .

Constraint 5—Complementarity: The rule does not affect the hybridization state
of any domain, so this constraint remains unviolated.

Constraint 6—Directionality: The rule does not affect the hybridization state
of any domain, so directionality is not violated. Directionality of the duplexes
relative to each other does not matter [76].

364 R. Mokhtar et al.

• Rule #5: Remote Toehold mediated Strand Displacement If rule #5 is applica-
ble, then the subgraph L ⊆ G0 consists of the vertices v1, v3, v4, v6 ∈ V labeled

(with domains d1, d2, d̄2, d̄1), and v2, v5 are labeled (with domains d3, d̄2,
respectively). v5 is connected covalently to v6, and v5 is labeled as unhybridized.
Between v1, v3, the unhybridized vertex v2 resides. As the rule is applied, the edge
e(v3, v4) is destroyed, and vertex v4 is relabeled as an unhybridized vertex, and v5

is then connected to v3 via a hybridization-labeled edge; these operations violate
no well-formedness constraints in G1.

Constraint 1—Strand Ends: No such vertices are affected, because the rule does
not apply to them.

Constraint 2—Unhybridized Vertex Degree: Vertex v6 (domain d̄2) has changed
from hybridized to unhybridized (and relabeled to). An edge e(v5, v6) was
removed, so the degree of v6 has decreased by 1. All other unhybridized vertices
have not been transformed and remain unhybridized, where their in-degree is
1, and out-degree is 1.

Constraint 3—Hybridized Vertex Degree: Vertex v1 (domain d̄2) has changed
from unhybridized to hybridized. An edge e(v1, v5) has been added. For vertices
u, v, their degree has changed by adding one edge. Either it has increased
from 2 to 3, 3 to 4 (in the case of a pre-existing base-stacking-labeled edge),
or 4 to 5 (in the case of two pre-existing base-stacking-labeled edges). For
all other hybridized vertices, since they have have not been involved in the
transformation, then their degrees remain the same.

Constraint 4—Vertex Edge Labels: For vertices u, v, one new edge has been
added which has the label . Since prior to the transformation no such
edge existed, then exactly one edge . No other edges nor
labels have been affected.

Constraint 5—Complementarity: The rule would only be applied to u, v if
m(u) = d ∈ �+ and m(v) = d ∈ �+, so this rule has not been violated.

Constraint 6—Directionality: If the nanostructure does not allow for circular
strands (which in the current framework we have decided to exclude to ensure
this rule’s consistency), then the hybridization respects anti-parallel direction-
ality.

Using induction, we have proven that each rewrite rule of our graph rewriting
systems generates a well-formed DNA graph, given a well-formed DNA graph as
input. We next show that the set of well-formed DNA graphs, has a corresponding
member in the set of (tertiary structure-abstracted) DNA nanostructures, or pseudo-
DNA Nanostructures. This will be accomplished through Lemmas 1–3, which follow.
In Lemma 1, we start by proving that every member W in the class WFDG can be
generated using the basic set of graph rewriting rules in Sect. 15.3, by starting from

15 Modeling DNA Nanodevices Using Graph Rewrite Systems 365

the simplest version of W , a DNA strand graph which corresponds to this well-formed
DNA strand graph W .

Lemma 1 Every W ∈ WFDG can be produced by a sequence of non-enzymatic
rule applications on its corresponding input set of well-formed DNA strand graphs.

Proof Consider any well-formed DNA graph w. A well-formed DNA graph consists
of four types of edge labels, as mentioned in Sect. 15.2.2: base-stacking, hybridiza-
tion, covalent and strand-ends. Of these, consider only the base-stacking edge set b
and the hybridization edge set h. For this w ∈ WFDG, construct a graph w′ such that
w′ = w \ {b, h}. This results in a set of DNA strands represented by disconnected
subgraph components within w′. We consider w′ as the input set of DNA strand
graphs. Clearly, w′ ∈ WFDG. Applying rule # 1 on w′ yields a new graph sg1. To
keep track of states, we can store the graphs in a state graph (called SG), where the
root is represented by w′. A child node represents the result of applying a rule to a
parent strand graph sgi ∈ SG. Subsequent applications of rule # 1, # 3, # 4, which
have matching subgraphs in the current sgi, yields up to two child strand graphs each,
until there are no more possible applications. We ignore rules # 2 and # 5, because
they result in graphs which are isomorphic to the ones made by the other rules. Let
w′

i′ ∈ SG represent a leaf node of SG. Assuming that there are no isomorphic strand
graphs, we claim that at least one leaf node w is equivalent to either a w′

i′, or any sgi

in SG. That is because there exists at least one graph sgi ∈ SG which is isomorphic
to w. Hence, by some sequence of non-enzymatic rule applications on a set of input
DNA strand graphs, we have constructed a well-formed DNA graph. The same holds
for any well-formed DNA graph WFDG.

Lemma 2 Every PDN can be represented by a well-formed DNA graph. The algo-
rithm in Algorithm 1 does not violate any WFDG constraints.

Proof Given an input PDN, p = (D, S , H , B), we first start by constructing all
the strand graphs. For each strand starting from the 5′ vertices, an -labeled vertex
is constructed for each domain until no more are encountered, and a 3′ vertex is
created to terminate the strand. Once all the strand graphs are created, incorporate
the hybridization and base-stacking edges (), and relabel the hybridized
vertices with .

We give an algorithm (Algorithm 1) that constructs a graph W . For each strand,
only one 5′ and one 3′ vertex is created. This ensures constraint 1 is valid. Lines 2–15
ensure constraints 2 and 6 are valid. Lines 19–26 add a single hybridization edge to
all hybridized vertices, while lines 28–35 can add at most two base-stacking edges
to each vertex. This ensures constraints 3 and 4 are valid. Line 23 ensures constraint
5 is valid.

366 R. Mokhtar et al.

Lemma 3 Every well-formed DNA graph in WFDG has a corresponding PDN.

Proof Given an input well-formed DNA graph W = (V , E, Lv, Le, �, vl, el, m) ∈
WFDG. We give an algorithm that constructs a PDN p = (D, S , H , B) in Algo-
rithm 2. The pseudocode in Algorithm 2 constructs a valid PDN given a well-formed
DNA graph. A valid PDN contains a set of DNA strands (S), the set of domains (D)
that hybridize (H), and the set of domains that base-stack (B). Lines 2–15 create a
set of domains D and strands S . Each strand can have only one 5′ and one 3′-end.
Lines 16–20 create a set of hybridizations H . By constraint 4, there can be at most
1 hybridization per vertex. Lines 21–30 create a set B of base stacking tuples. By
constraint 4, there can be at most two base-stackings per vertex. The ends of the
vertex signify whether the 5′ or the 3′ end of the vertex base stacks with another
edge. Each of the well-formedness constraints ensures that a PDN is created.

15 Modeling DNA Nanodevices Using Graph Rewrite Systems 367

Theorem 2 Both classes WFDG and PDN are equivalent: A member of PDN exists
if and only if it has one corresponding member of WFDG.

In Lemma 2 we have demonstrated that a pseudo-DNA nanostructure can be trans-
formed into a well-formed DNA graph by constructing vertices and edges for each
strand out of the strand domains, and hybridization edges between vertices out of the
set of hybridizations, and finally base-stacking edges out of the set of base-stacking
interactions, while maintaining the constraints that define the class of well-formed
DNA graphs. In Lemma 3, we have demonstrated that every member of WFDG
has a respective member belonging to PDN. These three propositions prove that
the classes WFDG and PDN are equivalent. Following that, PDN and the class of
structures generated by our grammar are equivalent.

368 R. Mokhtar et al.

15.5 Example: Yurke et al. DNA Tweezer

Table 15.1 illustrates one possible reaction sequence of the DNA tweezer nanoma-
chine, developed by Yurke et al. [82], using DNA graph rewrite rules. In the begin-
ning, the tweezer consists of two duplex DNA arms with toehold domains at both
ends (i.e., d2 and d3). d̄3 and d̄2 domains from the DNA fuel strand undergo toehold
binding (rule # 1) with d3 and d2 of the tweezer, respectively. As a result of this
process, the set strand pinches two arms of the tweezer together and results in the
“closed” state with a remaining exposed toehold domain d5. To open the tweezer, d̄5

domain of the unset strand d̄5, d3, d2 binds to domain d5 of the closed-state tweezers.
To completely displace the strand d̄2, d̄3, d5 the strand displacement rewrite rule (rule
2) is applied and results in waste duplex. As a result of this process the original
tweezer state is restored. Note this is one path of many possible rule-application
sequences. This is also shown in the corresponding states of this path generated by
DAGRS in Fig. 15.21.

15.6 Brief Description of Our Prototype Software System

We implemented a prototype that generates all the states possible depending on a
subset of the basic rules defined in Sect. 15.3. Choosing a subset of the states, we
display one specific sequence of reactions in Table 15.1. The DNA Graph Rewriting
System (DAGRS) is a simple prototype implemented in Python 2.7 [57] that uses
the graph-tool library [53] to parse, store and apply graph rewriting rules, and uses
the [73] subgraph isomorphism algorithm to match the set of left-hand side of the
graph rewriting rules to some subgraph in a given host DNA graph G. PyQt5 [63]
was used to render the states, which were explored in a breadth-first search manner.
This is implemented as follows: a list is maintained of states (E) that have been fully
explored (where the given set of rules may no longer be applied to these states), and a
queue of states currently being explored Q. The program attempts to find a matching
for the first rule supplied by the user on a state removed from the queue (which
is some well-formed DNA graph si). If no such matching exists, this is repeated
with the next rule in the set. If no matching can be found, the program terminates.
If a matching is found, a new state is generated, where the matched subgraph is
transformed into the right-hand side of the rule applied. This state is then added to
Q, and the next rule is applied to the current state being explored (si). The prototype
is able to generate the landscape of states depending on the input species, and the
subset of rules supplied. We demonstrated that it is able to accommodate simple
systems, including the previous example in Sect. 15.5, as well as further examples
mentioned in Sect. 15.7. Depending on the rewrite rules used, all possible applications

15 Modeling DNA Nanodevices Using Graph Rewrite Systems 369

Table 15.1 One sequence of rule-applications representing one possible reaction pathway

Cartoon rendering Intermediate graph Gi Matching rule

d1
d2

d4
d3

d5

d̄3

d̄2

d3

d4

d1

d2

d̄4

d̄1

d5 d̄3 d̄2

Initial input
species (G0)
has matching
subgraph
consisting of
vertices with
domains d3
and d̄3, which
matches the
LHS of Rule
#1.

d1

d2

d4

d3
d5

d̄3

d̄2

d5d̄3

d̄2

d3

d4

d1

d2

d̄4

d̄1

Rule #1

d1

d2

d4

d3
d5

d̄3

d̄2
+

d3d̄5 d2

d5d̄3

d̄2d1

d4

d3

d2

d̄4

d̄1

Rule #1

d1
d2

d4 d3 d5
d̄3

d̄2

d̄5d3

d2

d5d̄3

d̄2

d2d3

d̄5

d1

d4

d3

d2

d̄4

d̄1
Rule #2

d1
d2

d4

d3

d5

d̄3

d̄2

d̄5

d3

d2

d5d̄3

d̄2

d2

d3 d̄5

d1

d4

d3

d2

d̄4

d̄1

Rule #2

(continued)

370 R. Mokhtar et al.

Table 15.1 (continued)

Cartoon rendering Intermediate graph Gi Matching rule

d1
d2

d4
d3

d5

d̄3

d̄2

d̄5

d3

d2

d̄5d3d2

d̄2 d̄3 d5d1

d4

d3

d2

d̄4

d̄1

are considered by using a basic breadth-first exploration of the state-space, starting
from an input state. To select the next rule to apply, a subgraph isomorphism test is
performed on the current state graph Gi to check for the existence of some subgraph
sgj matching the left-hand side of any rewrite rule in a given rule-set. There is the
possibility of not generating a large, even exponential, number of structures, if graph
rewriting were the only method applied. However, one can restrain the number of
generated states depending on other restrictions that are not currently handled, such
as domain length (as discussed in the Conclusion section). In essence, the current
system does not handle constraining the number of states. However, to show that
this graph-centered paradigm can be utilized with at least one alternative way of
collapsing the number of states, we applied the results from the work by Grun et al.
[26] to an example in Sect. 15.9. Reactions are divided into transient (fast) and non-
transient (slow), which has the advantage of decreasing the state-space size.

15.7 Examples of Non-enzymic Devices

15.7.1 Catalytic Hairpin-Based Triggered Branched Junction

Figure 15.7 shows a detailed sequence of graph rewrite rule applications, which can
be applied in succession to produce a 3-arm junction. From the cartoon representation
of the 3-arm junction in Fig. 15.6, we see the sequence of steps that are involved in
the catalytic creation of the DNA complex.

We start with a set of 4 DNA complexes, 3 hairpins A, B, C and an initiator I .
Initiator I and hairpin A hybridize via a toehold a, followed by subsequent strand
displacement to give complex A + I (Figs. 15.6 and 15.7). On strand displacement
of hairpin A, the stem loop is opened, exposing domain b̄, and allowing it to react

15 Modeling DNA Nanodevices Using Graph Rewrite Systems 371

Fig. 15.6 Catalytic hairpin-based trigger branched junction

with hairpin B. Again, this is followed by stem loop opening of hairpin B, forming
complex A + B + I . Domain c̄ is now exposed, which hybridizes with hairpin C and
subsequently opens the stem loop.

Note that a region of hairpin C, namely b̄ā is complementary to the arm ab of
the original hairpin A. By a process of remote-toehold mediated strand displacement
[23], the domain b̄ā displaces the attached initiator, creating the final 3-arm junction
A + B + C, and releasing initiator I , which is free to catalyze the formation of another
structure A + B + C (Figs. 15.9 and 15.10).

15.7.2 Qian and Winfree’s Seesaw Gate

Figure 15.11 shows a sequence of rules that have been applied for the see-saw system,
via which [59] developed a circuit that can compute the square root of a fixed integer.
We use two graph rewrite rules in the simulation of this complex: domain binding
and strand displacement. The rules can also be used to show the leaks, both fuel-gate
and gate-gate, if the domains are segmented further to represent shorter sequences.

The Qian and Winfree [59] system shown above contains four single-stranded
DNA: input (S2TS1), output (S3TS2), fuel (S4TS2), and gate (T̄ S̄2T̄). We start with
a set of three DNA complexes, two single-stranded DNA: input and fuel, and one
double-stranded DNA: gate-output complex as shown above. The input and gate-
complex hybridize via a toehold (rule #1), followed by strand displacement of the
domain S2 (rule #2). Following this, toehold T dehybridizes, releasing the output
strand. A fuel strand reacts with the new input-gate complex, and the same reactions
as above take place, only in the reverse order. The input strand is released, and is free
to catalyze the release of another output strand.

372 R. Mokhtar et al.

Fig. 15.7 The figure shows a sequence of graph rewrite rules that can be applied in succession. We
obtain the 3-arm junction in the above design by Yin et al. [77]. Note that the application of rule #5
here includes the variation of the original (see Sect. 15.3.1)

15.7.3 Hybridization Chain Reaction

Figure 15.12 shows how to apply the rewrite rules to basic HCR system designed by
Dirks and Pierce [17]. We use two graph rewrite rules: toehold binding and strand
displacement.

A description of basic HCR system as shown in Fig. 15.13: there are two types of
hairpins (H1 and H2) and one type of single strand (I) in this system. The reaction
starts with hybridization between a domain of I and a domain of H1 (rule #1).

15 Modeling DNA Nanodevices Using Graph Rewrite Systems 373

Fig. 15.8 a–g A subset of the sequence of states generated by our DNA Graph Rewriting System
(DAGRS)

Hairpin H1 is opened by initiator I after toehold binding (rule #1). c domain of
I ∗ H1 hybridizes with c domain of hairpin H2 (rule #1). Hairpin H2 is opened by
I ∗ H1 after toehold binding (rule #2). The ba domain of I ∗ H1 ∗ H2 will be the
initiator in the next cycle (Fig. 15.15).

374 R. Mokhtar et al.

Fig. 15.8 (continued)

15.8 Enzymatic DNA Graph Rewriting Rules

These rules differ from the non-enzymatic ones defined in Sect. 15.3 in that they
require a regular expression, which represents a restriction site, to be matched on
one or both strands (depending on the enzyme). This is why each rule is separate than
its perceived reverse reaction. These rules have not been implemented in DAGRS.

15 Modeling DNA Nanodevices Using Graph Rewrite Systems 375

Fig. 15.9 The set of states generated by the graph rewriting rules given the input species. There
are 26 states. Those circled in red (state_0) and blue mark the chosen subset of states in Fig. 15.8

Fig. 15.10 Cartoon rendering of seesaw gate system

376 R. Mokhtar et al.

Fig. 15.11 This shows a sequence of graph rewriting rules that can be applied in succession, for the
DNA circuit system based on see-saw gates. The input strand in the above system acts as a catalyst,
and helps in releasing the output strand, via help from a fuel strand [59]

15 Modeling DNA Nanodevices Using Graph Rewrite Systems 377

Fig. 15.12 The figure shows how to apply our graph rewriting systems to the basic HCR system
designed by Dirks and Pierce [17]

Rule #6: Restriction Enzyme Cutting (Overhang formation)

Cartoon Rendering

d1 d2 d3

d̄1 d̄2 d̄3

d1 d2 d3

d̄1 d̄2 d̄3

Rewrite Rule

d1 d2

d̄1

d3

d̄2 d̄3

d1 d2

d̄1

d3

d̄2 d̄3

378 R. Mokhtar et al.

Fig. 15.13 Depiction of HCR system reaction

