

- 2 -

design of a systolic architecture (a very practical model of massively paral-
lel computation where each processor communicates only with its left and
right neighbor in a linear array) for dynamic textual substitution, a power-
ful approach to data compression that prior to this work, seemed to require
complex global communication.

Our approach is to modify one of the best textual substitution methods
in a way that yields equivalent compression but admits a practical systolic
implementation. The key technical idea is the formulation of an inherently
“top-down” serial learning strategy as a “bottom up” parallel strategy.

We have designed and fabricated a prototype VLSI chip based on this
architecture. Each chip contains 128 processing elements and thirty of these
chips comprise a complete encoding / decoding pipe of 3,839 processing
elements that is capable of operating at 300 million bits per second (that
is, using a 40 meg hertz clock, in encoding mode the system can read a new
byte on every clock tick and in decoding mode the system can write a byte
on every clock tick). These chips, together with some control logic, can be
placed on a single board to form a complete system. To speed completion
time and reduce costs, the design process has been kept simple; higher
performance is clearly possible with current technology.

2. Textual Substitution Methods

To simplify our discussion we henceforth assume all data to be a se-
quence of 8-bit characters and we refer to the set of all possible characters
(the integers 0 through 255) as the input alphabet Σ. In addition, we assume
that all handling of the data while it is in compressed form is noiseless (no
bits are added, lost, or changed). We make this assumption for convenience;
a host of techniques are available in the literature for error detection and
correction.

We employ an on-line model for data compression where the encoder
and decoder, each have a fixed (finite) amount of local memory, which we
refer to as a local dictionary, D. We assume that the two local dictionaries
may be initialized at the beginning of time to be empty. What distinguishes
this model from an off-line model is that neither the sender or the receiver
can see all of the data at once; data must be constantly passing from the
sender through the encoder, through the decoder, and on to the receiver.

- 3 -

A powerful (and practical) approach to compression of a string of char-
acters is textual substitution. For a general treatment of textual substitution
techniques as they apply to both on-line and off-line algorithms, as well as
further references on the subject, see the book of Storer [1988]. The basic
idea is to use the local dictionary D to store a constantly changing set of
strings. Data is compressed by replacing substrings of the input stream
that also occur in D by the corresponding index into D; we refer to such in-
dices as pointers. Thus, the input to an on-line data compression algorithm
employing textual substitution is a sequence of characters and the output is
a sequence of pointers (where typically, most of the pointers specify strings
of length greater than 1 but a few are essentially character codes).

The following page presents generic encoding and decoding algorithms
for on-line dynamic textual substitution. Most on-line textual substitution
algorithms can be viewed as instances of one general approach. The generic
encoding algorithm reads a stream of characters and writes a stream of bits,
and the generic decoding algorithm receives a stream of bits and outputs a
stream of characters. We use the notation Dmax to denote the maximum
number of entries that D may contain. The chip that has been fabricated
for our architecture uses Dmax = 4, 096 (indices 0 to 255 correspond to the
basic single byte values and are not actually stored).

We have intentionally talked about the maximum number of entries that
D may contain without any reference to how long individual entries may
be. This is because all of the algorithms to be discussed in this section (and
the parallel algorithm to be presented in the next section) can organize the
local dictionary D with a data structure that represents each dictionary
entry by a constant amount of space that is independent of the actual
length of the corresponding string. Experimental simulations show that in
practice, Dmax = 4, 096 provides a nice compromise that achieves most of
the compression achievable with the underlying algorithm while at the same
time keeping the number of entries reasonable.

The generic encoding and decoding algorithms work in lock-step to
maintain identical copies of D (which is constantly changing). The encoder
repeatedly finds a match between the incoming characters of the input
stream and the dictionary, deletes these characters from the input stream,
transmits the index of the corresponding dictionary entry, and updates the
dictionary with some method that depends on the current contents of the
dictionary and the match that was just found; if there is not enough room

- 4 -

(1) Initialize the local dictionary D to have one entry for each character
of the input alphabet.

(2) repeat forever

(a) {Get the current match string s:}
Use a match heuristic MH to read s from the input.

Transmit dlog2|D|e bits for the index of s.

(b) {Update D:}
Add each of the strings specified by an update heuristic UH to
D (if D is full, then first employ a deletion heuristic DH to make
space).

Generic Encoding Algorithm

(1) Initialize the local dictionary D by performing Step 1 of the encoding
algorithm.

(2) repeat forever

(a) {Get the current match string s:}
Receive dlog2|D|e bits for the index of s.

Retrieve s from D and output the characters of s.

(b) {Update D:}
Perform Step 2b of the encoding algorithm.

Generic Decoding Algorithm

- 5 -

left in the dictionary, some deletion heuristic must be performed. Similarly,
the decoder repeatedly receives an index, retrieves the corresponding dictio-
nary entry as the “current match”, and then performs the same algorithm
as the encoder to update its dictionary.

Left out of the generic encoding and decoding algorithms is the speci-
fication of the following three heuristics:

The match heuristic, MH: A function that removes from the input
stream a string s that is in D. Since the characters of Σ are implicitly in
D and can never be deleted, there is always at least one such s.

The update heuristic, UH: A function that takes the local dictionary
D and returns a set of strings that should be added to the dictionary if space
can be found for them.

The deletion heuristic, DH: A function that takes the local dictio-
nary D and returns a string of D that may be deleted.

Our architecture is based on the following choices:

MH: The greedy heuristic is to always take the longest possible match
between the input stream and a string in D. Key to our archi-
tecture will be a “bottom up” method for approximate deter-
mination of the longest match.

UH: The identity (ID) heuristic is to add the previous match con-
catenated with the current match. Key to our construction will
be a modified version of the ID heuristic to be discussed later.

DH: The swap (SWAP) heuristic works as follows: When the pri-
mary dictionary first becomes full, an auxiliary dictionary is
started, but compression based on the primary dictionary is
continued. From this point on, each time the auxiliary dic-
tionary becomes full, the roles of the primary and auxiliary
dictionaries are reversed, and the auxiliary dictionary is reset
to be empty. Although this heuristic does not fit directly into
the generic algorithms, they can be modified to accommodate
it.

Different combinations of choices for the above three heuristics than we
have used here give rise to a variety of methods, many of which have been
studied extensively in the literature. However, we shall not be concerned

- 6 -

with other heuristics here. The book of Storer [1988] considers tradeoffs be-
tween different heuristics (in terms of both computing resources and amount
of compression) and the relationship between various heuristics and work
by past authors. Most authors in the past have used for MH the greedy
heuristic. Other choices for UH include the first character (FC) heuristic
(concatenate the last match and the first character of the current match)
and the all prefixes (AP) heuristic (concatenate the last match with each of
the prefixes of the current match). Using the traditional serial RAM model
of computation, the FC and AP heuristics can be easily implemented in real
time using constant space per entry by representing the dictionary with a
standard trie data structure (dictionary entries correspond to nodes of the
trie). The ID heuristic requires a much more complicated data structure
that has some undesirable worst-case properties. However, the situation
changes with a massively parallel model of computation (with some ap-
propriate modifications to the ID heuristic). Other choices for DH include
FREEZE (once the dictionary is full, it remains the same from that point
on) and LRU (delete that string in D that has been matched least recently);
note that SWAP can be viewed as a discrete version of LRU. The FREEZE
heuristic can be “unstable” in practice when the data characteristics change
after the dictionary is full. The LRU and SWAP heuristics typically per-
form equivalently in practice. The serial nature of a doubly-linked list use
by LRU is “natural” for a serial implementation whereas SWAP appears to
be more natural for parallel implementations. The FC-FREEZE heuristic
can be viewed as a practical interpretation of the second model proposed
by Lempel and Ziv (Lempel and Ziv [1976], Ziv and Lempel [1977,1978],
Welch [1984]), and the FC-LRU is a natural improvement to FC-FREEZE.
The ID heuristic was considered by Seery and Ziv [1977,1978] and the ID-
LRU heuristic models the work of Miller and Wegman [1985]. The AP-LRU
heuristic is discussed in Storer [1988].

3. A Parallel Implementation
The model of parallel computation employed by our algorithm is a

systolic pipe; that is, a linear array of processors, each connected only to its
left and right neighbors.

A real-life example of a systolic pipe is an automobile assembly line
may produce a new car every 20 minutes even though each car is in the
assembly line for a day. Although each station in the automobile assembly

- 7 -

line performs a different task, the stations are at least conceptually identical,
if we view them all as taking as input a partially built car, performing an
elementary operation (such as welding), and then outputting a partially
completed car to the next station.

From the point of view of VLSI, a systolic pipe has the following desir-
able properties:

• All processors are identical and the length of connections between ad-
jacent processors can be bounded by a constant.

• The structure can be laid out in linear area and power and ground can
be routed without crossing wires.

• The layout strategy can be independent of the number of chips used. A
larger pipe can be obtained by placing as many processors as possible
on a chip and then, using the same layout strategy, placing as many
chips as possible on a board.

We have intentionally left out of our definition of a pipe the specification
of what constitutes a “processor”. In principle, any computational device,
including a main-frame computer, could be used. However, it is typical for
processors to be extremely simple. Here a processor consists of only a few
registers, a comparator, and some finite-state logic.

Figure 1 depicts a standard “snake” layout for a systolic pipe, Figure 2
shows an individual processor, and Figure 3 shows how power and ground
for the processors can easily be added to the snake.

Gonzalez and Storer [1985] and Storer[1988] present a systolic pipe im-
plementation for the static dictionary model (where the dictionary is sup-
plied in advance and never changes) that effectively forms an associative
memory where a given entry may be formed with pointers to other entries.
Here we describe how to generalize such a structure to maintain a dynam-
ically changing dictionary based on a variant of the ID update heuristic,
the SWAP deletion heuristic, and a “bottom up” parallel version of the
greedy match heuristic.

3.1. Encoding

We start by describing a systolic pipe implementation only as it per-
tains to encoding; unlike the serial case, here, decoding will be the more

- 8 -

complicated operation. All pointers are represented by the same number of
bits; the bits for each input character are padded to the left with zeros to
form the corresponding pointer and sent into the left end of the pipe (for
our chip, each input character of 8 bits is padded to the left with 4 zeros
to form a 12 bit pointer). The pipe consists of Dmax − |Σ| − 1 processors
numbered |Σ| through Dmax − 2 going from left to right; there are no pro-
cessors for indices 0 through |Σ| − 1 since the characters of Σ are always
implicitly in the dictionary and there is no processor numbered Dmax − 1
(this pointer value is used for the nilpointer, to be discussed later). The
processors are numbered so that if i < j, then processor i is to the left of
processor j (and occurs earlier in the pipe than processor j).

The pipe stores a “pair forest” representation of the dictionary (each
dictionary entry is represented by a pair of pointers to two other entries or
to single characters) and implements a modified version of the ID heuristic.
Each processor is capable of holding a pair of pointers (corresponding to the
left and right pointers into the pair forest), but is initialized to be empty.
The leader bit is initially 1 for the leftmost processor and 0 for all others. It
is always the case that at most 1 processor is the leader, that the processors
to its left contain dictionary entries, and that processors to its right are
empty.

As data passes through the processors to the left of the leader as it
is encoded. That is, whenever a pair of pointers enter a processor and
matches the pair of pointers stored at that processor, this pair of pointers
is removed from the data stream and replaced by a single pointer (the index
of that processor). Data passes unchanged through the processors to the
right of the leader. When a pair of pointers enters the leader, they represent
adjacent substrings of the original data and can be viewed as the “previous”
and “current” match. The leader can simply adopt this pair of pointers as
its entry, set its leader bit to 0, and send a signal to the processor to its
right to set its leader bit to 1. Note that unlike the serial algorithm, this is
a “bottom up” approach to finding a longest match, since bigger matches
are built from smaller ones. We do not want the new leader to adopt the
same pair of pointers that was just adopted by the processor to its left.
Hence, when a processor first becomes the leader, it must allow one pointer
to pass through before proceeding to “learn”.

When the rightmost processor becomes the leader, it adopts a pair of
pointers as its entry and then sends a signal to the right to pass on the

- 9 -

leader bit; this signal indicates that the dictionary is full. At this point,
the SWAP deletion heuristic can be implemented with a switch between
two copies of the pipe that routes input/output lines appropriately as the
dictionaries turn over.

3.2. Decoding

Consider now the operation of the decoding pipe. Although the same
pipe is used for both encoding and decoding and when decoding data still
enters from the left and leaves to the right, the numbering of processors
is reversed; the rightmost processor is numbered |Σ| (processor indices are
sent down the pipe by the controller into the index registers upon power up
or upon a restart that changes between encode and decode mode). Oper-
ation of the decoding pipe is essentially the reverse of the encoding pipe.
Processor |Σ| is initially the leader, and the remaining processors are empty.
Compressed data enters from the left, passes through the empty processors
unchanged, and is decoded in the non-empty portion of the pipe; that is,
when a pointer arrives to a processor that is equal to the processor index,
it is replaced by the two pointers stored by that processor. The leader bit
propagates from right to left (the opposite direction from the encoder).

It is an inherent aspect of data compression there may be no reasonable
bound on how many more decompressed bits there are than compressed bits.
We address this issue with a stop bit that is be sent from a processor to the
processor to its left to signal that no more data should be sent until the bit
is turned off. A typical sequence of events for a decoding processor would
be the following (each processor has a buffer capable of holding at most two
pointers in its BuffA and BuffB registers):

1. The input buffer currently contains one pointer that is not the same
as the processor index and the stop bit from the processor to the right
is not set.

2. A clock tick occurs and the current pointer in the buffer is sent to the
right and a new pointer is read into the buffer.

3. The new pointer in the buffer is the same as the processor index.
This pointer is replaced by the first of the two pointers stored in the
processor memory and the stop bit is set.

4. A clock tick occurs. The pointer in the buffer is transmitted to the
right. Although a stop bit is now being transmitted, the processor to
the left has not seen it yet and another pointer arrives. The second
pointer in the processor memory is placed in the buffer before the
pointer that just arrived. The buffer now contains two pointers.

- 10 -

5. A clock tick occurs and the first of the two pointers in the buffer is
transmitted to the right (no new pointer arrives from the left since
the stop bit was set on the last clock tick). The stop bit is unset.

6. A clock tick occurs, the pointer in the buffer is sent to the right, and
a new pointer arrives from the left.

If the stop bit is sent from the leftmost processor to the communication
line, then this must handled with an xon / xoff protocol to the sender.
Note that the use of the stop bit does not require any signal propagation;
on each clock tick, the only form of communication is between a processor
and the processors to its immediate left and right.

3.3. A Modified Pointer Adoption Strategy

We have not yet discussed in detail how the decoder “learns” entries.
The naive method is to do essentially the same as the encoder. Suppose, for
example, that four pointers are coming down the pipe: pointer x, followed
by pointer w, followed by pointer v, followed by pointer u. Now consider
what happens when pointers w and x have arrived at the leader processor.
The leader processor adopts the entry wx and then passes leadership to the
left. The processor to the left waits until pointer u and v have arrived and
then adopts the entry uv. The encoder would have also learned the entries
uv and wx; but in addition, it the encoder would have learned the entry
vw. The entry vw has been “lost” by the above naive implementation of
the decoder. The situation can be remedied by interspersing a nilpointer
between every pointer in the input stream to the decoder. The effect is to
slow down the operation of the decoder to allow time for the “overlapping”
entries such as vw to be learned. The interspersion of nilpointers is neces-
sary only during the learning period when not all processors have adopted
an entry. Note also that the output data rate from the decoder is unaffected
so long as the data has been compressed by at least a factor of 2.

We will not consider the details of such an implementation further
because empirical tests indicate that learning every other entry achieves
equivalent compression in practice (the full draft also gives theoretical jus-
tification). That is, our strategy is to use the naive decoder implementation
described above and modify the encoder to also learn only every other en-
try. The old rule for a leader in the encoder was to adopt a pointer pair
only if at least one of them was not adopted by the preceding leader. The
modified rule is:

- 11 -

Adopt a pointer pair only if neither pointer was adopted by the
preceding processor.

We implement his modified version of the ID heuristic by marking a pointer
(by passing an extra bit along with each pointer) once it has been adopted
by a leader. This could also be done by waiting for two pointers to pass
by before trying to adopt; however, the mark bit proves useful for other
purposes when the details of the finite state control of a processor are con-
sidered.

3.4. The Flush Operation

As mentioned earlier, the processor numbered Dmax − 1 has been left
out of the pipe. The corresponding pointer value (which is all ones when
Dmax is a power of 2) is called the nilpointer. Nilpointers are sent into the
encoding pipe on every clock tick for which no input is present. Another
role of the nilpointer is to implement flush operations and record them in
compressed data. A flush operation is a signal sent down the encoding pipe
to “push” all data out when there is a pause in the input or when it has
ended. Note that it is not necessary to wait for a flush to make it through
the pipe before starting a new input stream; after one clock tick, new data
can “follow” the flush that is pushing out old data.

- 12 -

4. A Massively Parallel VLSI Chip

A preliminary custom VLSI chip for our architecture (patent pending)
with a reduced number of processors was fabricated by MOSES in July of
1990 (and has passed all tests). Layout was done by the CDSR group at the
Research Triangle Institute of North Carolina. The full version is currently
being fabricated by MOSES and has the following characteristics:

• 1.0 micron double metal CMOS technology.

• 68-pin LCC package (48 pins for signals, 20 pins for power and ground).

• Die size = 9,650 by 10,200 microns (.38 by .40 inches).

• 350,000 transistors.

• Power consumption = 750mW (the consumption is very evenly dis-
tributed; the chip has no “hot” spots).

• 128 processors per chip (30 chips form a complete systolic pipe of 3,389
processors).

• 40 mhz clock, 8 bits per cycle, 320 million bits per second.

The packaged chips are less than 1 inch square. Due to the extremely
simple pattern of interconnections (communication is only between a chip
and the ones to its immediate left and right), a board area of approximately
5 by 6 inches suffices to accommodate a basic set of 30 chips that forms a
complete systolic array of 3,389 processing elements. This chip set along
with some control logic can easily be placed on a small board.

5. References
M. Gonzalez and J. A. Storer [1985]. “Parallel Algorithms for Data Compres-

sion”, Journal of the ACM 32:2, 344-373.

A. Lempel and J. Ziv [1976]. “On the Complexity of Finite Sequences”, IEEE
Transactions on Information Theory 22:1, 75-81.

V. S. Miller and M. N. Wegman [1985]. “Variations on a Theme by Lempel and
Ziv”, Combinatorial Algorithms on Words, Springer-Verlag (A. Apostolico
and Z. Galil, editors), 131-140.

J. B. Seery and J. Ziv [1977]. “A Universal Data Compression Algorithm: De-
scription and Preliminary Results”, Technical Memorandum 77-1212-
6, Bell Laboratories, Murray Hill, N.J.

- 13 -

J. B. Seery and J. Ziv [1978]. “Further Results on Universal Data Compres-
sion”, Technical Memorandum 78-1212-8, Bell Laboratories, Murray
Hill, N.J.

J. A. Storer [1988]. Data Compression: Methods and Theory, Computer Science
Press, Rockville, MD.

T. A. Welch [1984]. “A Technique for High-Performance Data Compression”,
IEEE Computer 17:6, 8-19.

J. Ziv [1985]. “On Universal Quantization”, IEEE Transactions on Information
Theory 31:3, 344-347.

J. Ziv and A. Lempel [1977]. “A Universal Algorithm for Sequential Data Com-
pression”, IEEE Transactions on Information Theory 23:3, 337-343.

J. Ziv and A. Lempel [1978]. “Compression of Individual Sequences Via Variable-
Rate Coding”, IEEE Transactions on Information Theory 24:5, 530-536.

- 14 -

Figure 1: “Snake” Layout

- 15 -

reset

mode
flush
leader

1-Bit Registers

active
stop

fullA
fullB

markA
markB

dummy

VDD VDD

GND GND

reset

mark

leader

stop

nil

12-bit
data bufA bufB

storeA storeB

index

reset

mark

leader

stop

12-bit
data

nil

Figure 2: An Individual Processor

- 16 -

normal cells

upsidedown cells

VDD

GND

normal cells

upsidedown cells

normal cells

INPUT

OUTPUT

Figure 3: Power and Ground Distribution

