

ERROR-RESILIENT OPTIMAL DATA COMPRESSION 935

Fig. 1.1. Dynamic dictionary communication.

may cause the decoder’s dictionary to differ from that of the encoder. Note also that
D contains a set of entries (so when we talk about adding a new entry to D, we always
mean to add it if it is not already present).

1.2. Applications of dynamic dictionary communication. The major ap-
plication of dynamic dictionary communication that motivates this work is adap-
tive lossless data compression by textual substitution (Storer and Szymanski [1978]),
where the dictionary stores a set of strings that have been seen in the past and data
is compressed by sending only indices of strings over the channel; such compression
algorithms are often called “LZ algorithms” after the work of Lempel and Ziv [1976]
and Ziv and Lempel [1977, 1978]. (See Storer [1988] for an introduction to the subject
and references to the literature.) Other possible applications of dynamic dictionary
communication include computational learning theory and robotics (e.g., reporting of
data by an autonomous remote robot that is mapping unexplored terrain and trans-
mitting coordinates as displacements from previous locations).

1.3. Error resilience. A potential drawback of dynamic dictionary communi-
cation is error propagation; that is, a single error on the communication channel (e.g.,
insertion, deletion, or change of an index sent on the channel) could cause the dic-
tionaries of the encoder and decoder to differ, which in the worst case could corrupt
all data to follow. That is, since decoding is guaranteed to be correct only when the
dictionary remains the same as the one used to encode the data, there is no way to
bound the effects of a single error in the worst case. With one-way communication
channels, where the decoder cannot send messages to the encoder, the problem be-
comes even more critical. In addition, with many existing communication systems
where the full bandwidth of the channel is consumed, even if a two-way channel is
available to let the encoder know that an error has occurred, retransmission of data
can often be tantamount to losing new data that could have been transmitted during
the time used to retransmit the old data. Retransmission can also introduce further
error propagation problems. In addition, a data-storage device where data may be
corrupted during storage can be viewed as a one-way communication channel.

In some sense, dynamic dictionary communication can be viewed as “raising the
stakes” for the effects of errors on a one-way channel; even if the chance of an error
is made very small via a standard error-detection/correction protocol, if an error
does occur on a single data item, it can have the catastrophic effect of corrupting
an unbounded number of additional data items. We present a technique for “error
resilience,” where no attempt is made to detect or correct errors but strong guarantees
are provided that errors do not propagate. This technique can be combined with
standard error-detection/correction protocols to yield one-way dynamic dictionary
communication with a low rate of errors that do not propagate.

1.4. Outline. The next section contains basic definitions; it formally defines
the dynamic dictionary communication model, which assumes several axioms, reviews

936 JAMES A. STORER AND JOHN H. REIF

how data compression by textual substitution fits into the model and shows that the
axioms hold for key methods that are provably optimal for stationary ergodic sources
(the standard assumption in data compression literature), presents a model for errors
on the communication channel, and defines error-resilient communication. Section 3
then presents a scheme for protecting against error propagation from k errors for any
constant k under any distribution of errors; we make no attempt to analyze how this
scheme affects the amount of compression achieved (although it appears to be quite
practical). In section 4, we employ randomized techniques to “expand” the k-error
technique to give propagation protection with very high probability against a fixed
uniformly and independently distributed error rate of probability 1/r; in particular,
for any k ≥ 1, the probability of error propagation can be made less than 1/rk. For
example, an error rate of 1/1012 (a relatively “clean” communication channel with a
low-overhead error-correcting mechanism) can be effectively “damped” to 1/1048 by
choosing k = 4. In addition, the generalized k-error protocol presented in section 4
has no asymptotic affect on the amount of compression achieved. Section 5 discusses
practical considerations.

2. Basic definitions.

2.1. Dynamic dictionary communication. Throughout this paper, when dis-
cussing dynamic dictionary communication with respect to a dictionary D, we use the
following notation:

• |D| = the current number of entries in D.
• |Dmax| = the maximum number of entries that D may contain.
• |s| = the number of characters in the string s.
• BITS(i) = the number of bits needed to write i in binary (i.e., BITS(i) =
blog2(i)c+ 1).

Generic encoding and decoding algorithms for dynamic dictionary communication
are shown below. Indices of D run from 0 to |D| − 1 and are represented using
exactly BITS(|D|−1) bits, although in practice it is often the case that for simplicity
BITS(|Dmax|−1) bits are used for all indices. We refer to codes sent over the channel
that represent indices as pointers.

GENERIC ENCODING ALGORITHM.
1. Initialize the local dictionary D with one entry for each character of the input

alphabet.
2. repeat forever

A. {Get the current match pointer p:}
Use a match method to read a string s from the input.
p = the index of s in D.
Transmit p using BITS(|D| − 1) bits.

B. {Update D:}
Add each of the strings specified by an update method to D.

GENERIC DECODING ALGORITHM.
1. Initialize the local dictionary D by performing step 1 of the encoding algorithm.
2. repeat forever

A. {Get the current match string s:}
Receive BITS(|D| − 1) bits for the current match pointer p.
s = the string in D corresponding to p.
Output s.

B. {Update D:}
Perform step 2B of the encoding algorithm.

ERROR-RESILIENT OPTIMAL DATA COMPRESSION 937

The match heuristic reads from the input stream a string that is in the dictionary.
(It must always be possible to read such a string since all strings of length 1 are always
in the dictionary.) After the match has been encoded by the encoder or decoded by
the decoder, “learning” consists of modifying the dictionary by adding one or more
new strings with an update heuristic. Although it is possible to have the update
heuristic employ a deletion heuristic that removes old entries to make room for new
ones (see Storer [1988]), we restrict our attention here to update heuristics that do
nothing once the dictionary is full so that encoding and decoding continue indefinitely
(or until the system is restarted) without any further modification of the dictionary.

The exact choice of the match and update heuristics is not important for the work
described here as long as the following axioms are satisfied. (We shall show shortly
that these axioms hold for a variety of optimal adaptive lossless data compression
methods.)

Succinctness. Except for the dictionary initialization (where entries for each of
the characters of the input alphabet are formed), the string (or strings) added by the
update heuristic at a given step depend only on the current match and the previous
match.

Robustness.

A. There is a constant 1 ≤ ρ such if the update heuristic adds a new match based
on a particular successive pair of matches, it will do so after this successive pair has
occurred at most ρ times.

B. There is a constant 1 ≤ α, called the learning constant, such that the encoder
dictionary reaches size |Dmax| after at most αρ|Dmax| entries have been transmitted.

The succinctness axiom addresses how dictionary entries may be formed. The
robustness axiom allows the system to be “conservative” and to not form a new entry
until it has “proved” itself by appearing a number of times, but not too conservative
because this number of times must be bounded by a constant. In addition, the learning
constant ensures that progress is made toward filling up the dictionary as data is
encoded (and we don’t waste too much effort relearning entries that have already
been added earlier). Note that condition B of the robustness axiom is somewhat
pessimistic because for all of the data-compression methods that we shall consider, if
ρ, α > 1, then the encoder dictionary reaches size |Dmax| after at most (α+ ρ)|Dmax|
entries have been transmitted.

For technical reasons to be discussed shortly, our results will also work for a
variation of the succinctness axiom.

Succinctness, version 2. Except for the entries that contain the characters of the
input alphabet, the string (or strings) added by the update heuristic at a given step
depend only on the current match and the next character.

The second version of the succinctness axiom is similar to the first version except
that it is “one step ahead”; it models certain update heuristics that are important
for proofs of optimality in applications involving data compression. Both versions
have the property that except for the characters of the alphabet, each entry of the
dictionary can be constructed from a pair of pointers to two other entries; this is all
that will really be needed in our construction (and, as we shall see shortly, suffices for
practical data-compression algorithms).

2.2. Applications to data compression. As mentioned earlier, the major
application that motivates this work is data compression by textual substitution. In
this section, we review a number of textual-substitution algorithms and show that

938 JAMES A. STORER AND JOHN H. REIF

they can be modified to satisfy the robustness axiom without sacrificing compression.
Our definition of “optimal” compression is optimal in the information-theoretic sense;
that is, for stationary ergodic sources of entropy H, after processing n characters, the
method in question sends an average of H+ε(n) bits per character, where ε(n) goes to
0 as n goes to ∞. (See Cover and Thomas [1991] or Gallager [1968] for definitions of
entropy, etc.) This asymptotic measure of performance for stationary ergodic sources
is standard throughout the literature. Furthermore, the methods we discuss here work
well in practice for virtually any source. (See Storer [1988] for a detailed presentation
of these methods as well as experimental results.)

Typically, the match heuristic used is the greedy heuristic; that is, read the longest
match possible. Although other heuristics can be used and the greedy match heuristic
does not guarantee the best possible compression on finite strings for any of the update
heuristics to be discussed below (Storer [1988]), it does perform well in practice and
is used in all of the methods that are provably optimal in the information-theoretic
sense. Examples of update heuristics that might be used for data compression are as
follows.

Uncompressed character (UC). Add the current match concatenated with the
next character of the input; the next character of the input is sent along in uncom-
pressed form as part of the current pointer (so that the next match starts after the
character following the current match). This heuristic does not fit exactly into the
generic encoding and decoding algorithms, but they can easily be modified to accom-
modate it by not allowing a match to a single character until it has been sent to the
decoder. (The cost of dictionary entries “wasted” by characters that have yet to be
seen becomes arbitrarily low as the dictionary size increases.) For finite-length strings
and dictionaries of bounded size, UC typically does not perform as well in practice
as the NC or FC heuristics discussed below, but we include it because it reflects the
construction of Ziv and Lempel [1978] that is provably optimal.

Next character (NC). Add the current match concatenated with the next char-
acter of the input. This can be viewed as a more practical implementation of UC. It
also requires modifications of the generic encoding and decoding algorithms because
the next character of the input stream cannot be deduced by the decoder until the
following match is received. (For the special “glitch” where the string matched at the
current step is the one formed at the previous step, the decoder can deduce that the
first and last character of the current match are the same as the first character of
the previous match.) This is the heuristic used by Welch [1984] (upon which UNIX
“compress” command is based) and Miller and Wegman [1985].

First character (FC). Add the last match concatenated with the first character
of the current match. This heuristic performs similarly to NC in practice, but fits
cleanly into the generic encoding and decoding algorithms (and does not have the
decoding “glitch” mentioned above); it is discussed in Storer [1988].

Current match (CM). Add the last match concatenated with the current match.
This heuristic is discussed by Miller and Wegman [1985] and Seery and Ziv [1977,
1978]. A variant of this method is employed by Reif and Storer [1990, 1992] and
Royals et al. [1993] in a massively parallel systolic custom VLSI design.

All prefixes (AP). Add the set of strings consisting of the last match concatenated
with each of the prefixes of the current match. This heuristic has the fast-growing
characteristics of CM but like FC, NC, and UC maintains a dictionary with the prefix
property (if a string is in the dictionary, then so are all of its prefixes); it is discussed
in Storer [1988].

ERROR-RESILIENT OPTIMAL DATA COMPRESSION 939

It is easy to see that the FC, CM, and AP update heuristics satisfy the succinctness
axiom and that the UC and NC update heuristics satisfy version 2 of the succinctness
axiom.

For part A of the robustness axiom, observe that the learning constant is 1 for
the UC and NC heuristics since the greedy match heuristic ensures that the current
match together with the next character of the input stream cannot already be in the
dictionary. The FC heuristic has a learning constant of ≤ 2 since the greedy match
heuristic insures that the only way the last match together with the first character
of the current match can already be in the dictionary is when this is the same as
the current match, which can only happen once. Similarly, it can be argued that the
learning constant for CM and AP is ≤ 2.

Part B of the robustness axiom is satisfied by all of the heuristics listed above for
ρ = 1. In this paper, we will use ρ > 1 in our constructions for error resilience (so that
a successive pair of matches may be seen several times before learning takes place). We
shall not address how this modification affects the amount of compression achieved by
the CM and AP heuristics since they are not provably optimal to start with (Lempel
and Ziv [1990]), although they work well in practice, and restrict our attention to the
FC, NC, and UC heuristics. The UC heuristic is exactly the algorithm shown optimal
in Ziv and Lempel [1978]; a nice proof that it is optimal in the information-theoretic
sense appears in Cover and Thomas [1991]. The essence of this proof is to show that
any method that parses the input stream into distinct phrases (and sends a number of
bits equal to ε(n) of the current number of phrases to the decoder) must be optimal.
Furthermore, as outlined in the appendix, this proof can be modified to show that
a constant-redundant parsing (one where there is a constant that bounds how many
times any phrase may appear in the parsing) is also optimal. Hence a “redundant”
version of UC is optimal. In addition, we also show in the appendix that redundant
versions of FC and NC are optimal.

2.3. Bounded-size dictionaries. Theoretical proofs of optimality such as pre-
sented in Lempel and Ziv [1976] and Ziv and Lempel [1977, 1978] simply assume
that the dictionary grows indefinitely as the infinitely long input stream is processed.
However, a practical strength of the compression methods outlined earlier is that rel-
atively small bounds on the size of the dictionary (e.g., 212 to 216 entries) provide
good performance in practice on virtually all types of data. As mentioned earlier,
we take the same approach here and simply assume that once the dictionary fills,
it remains fixed for the remainder of the data to be processed (so that the update
heuristic is defined to add nothing once the dictionary is full). Although this strat-
egy typically works well on individual files, in practice some method for changing the
dictionary over time after it has filled is usually incorporated into the algorithm. (See
Storer [1988] for discussion of various strategies.) For example, the UNIX compress
command monitors compression and restarts the dictionary-growing process if com-
pression falls off after the dictionary is full. Another simple strategy is a “swapping”
arrangement with two dictionaries, where after the dictionary fills for the first time,
continue using it to compress data but at the same time start forming new entries in
a second dictionary; once the second dictionary is full, it can be used for compression
and the first dictionary reset to be empty, and so on. Since restarting or changing
of dictionaries occurs infrequently, very secure protocols (e.g., several hundred bits to
encode a single bit) can be used to periodically restart the process or to send a swap
bit. Such a protocol can also be used to agree that the dictionaries are now “frozen”
and will not be modified further. We shall not address these issues further in this

940 JAMES A. STORER AND JOHN H. REIF

paper.

2.4. A model for error-resilient communication. We use the term commu-
nication channel to refer to any medium or device over which data is transmitted
and received. We assume that pointers sent from the encoder to the decoder over a
communication channel are subject to the following errors:

• add: An extra pointer, chosen at random, is inserted into the communication
stream.
• delete: A pointer is deleted from the communication stream.
• change: A new pointer, chosen at random from the space of all pointers,

replaces a pointer.
We consider the following classes of error distributions:

• uniform: Errors occur randomly.
• arbitrary: Errors may be arbitrarily correlated.

Note that our results do not apply to the case where an individual bit is inserted or
deleted but do allow individual bits to be changed because this is just a special case
of a change error. (In fact we are only charging a cost of 1 no matter how many bits
of a pointer are changed.)

The goal is to provide guarantees that there is perfect protection against error
propagation due to a specified number of channel errors; that is, there is no further
corruption of the data beyond what is directly due to the channel errors.

3. Protection against k errors. In this section, we present an encoding scheme
which, for any fixed integer constant k ≥ 0, guarantees that k or fewer errors on the
channel will not cause any error propagation. We will not address how this protocol
affects the amount of compression (although it appears reasonable in practice); rather,
this protocol will be an important building block for a more general construction,
presented in the next section, that does guarantee that compression is not affected
asymptotically.

To simplify our presentation, we shall assume that the update heuristic adds at
most one new match (e.g., UC, NC, FC, and CM have this property but AP does not);
at the end of this section, we describe how this encoding scheme can be generalized to
update heuristics that may add more than one new entry. Also, similar modifications
as for the generic encoding and decoding algorithms are discussed for the UC and NC
heuristics.

The two key ideas are as follows:
• Hashing is used to compute where a new entry is to be placed in the dictionary.

For simplicity, throughout this paper, we assume that a truly random hash function
is used; in practice, a 2-universal hash function (see Carter and Wegman [1979]) can
be used. Hashing has the effect of eliminating the dependence between addresses that
is normally present in dynamic dictionary communication so that if a given index is
not used right away, it will have no effect on what indices are used in the future.
• Counts are maintained for all pointer pairs seen thus far and a pair is used by

the match heuristic only if it “warms up” to be a clear winner over pairs that hash
to the same address.

DEFINITION. Suppose that counts (initially 0) are maintained in the encoder for
all pointer pairs sent thus far (i.e., each time a pointer is sent/received, the count of
the pair of pointers it represents is incremented) and in the decoder for all pointer
pairs received thus far. For a sequence S of pointers sent by the encoder, LAG(S)
is the maximum amount that any count in the decoder is incorrectly increased due to
errors on the channel plus the maximum amount any count fails to be increased due

ERROR-RESILIENT OPTIMAL DATA COMPRESSION 941

to errors on the channel. For any integer k ≥ 0, the warming value for k, w(k), is
the smallest integer such that LAG(S) ≤ w(k) over all sequences of pointers with at
most k errors.

LAG THEOREM. For any k ≥ 1, w(k) ≤ 3k.
Proof. Let

S = U0C1U1 . . . CmUm be the sequence of pointers sent by the encoder and

R = U0I1U1 . . . ImUm be the sequence of pointers received by the decoder
where

Ui, 0 < i < m, |Ui| ≥ 1 are blocks of pointers,

Ii, 1 ≤ i ≤ m, |Ii| ≥ 0 are blocks of pointers, and

|
∏m
i=1 Im| ≤ k (the product denotes string concatenation).

That is, S and R are partitions (which are not necessarily unique) of the input and
output streams into blocks of pointers defined as follows. The U ’s are blocks of
pointers that went across the channel unchanged and the C’s are blocks of pointers
that were correctly sent to the communication channel but due to errors on the channel
were received incorrectly by the decoder as the I blocks, where all pointers in a given
I block are incorrect.

Now consider a particular block Ci that is received as Ii. Let
x = the number of pointers that are changed,

y = the number of pointers that are deleted, and

z = the number of pointers that are added
and write

Ci = q1 · · · qx+y,
Ii = r1 · · · rx+z.

Any way of choosing x, y, and z that corresponds to a way to convert Ci to Ii suffices
for our construction. Let p be the last pointer of Ui−1 and s be the first pointer of
Ui+1. The only counts that might not be incremented (but should have been) are due
to the loss of

pq1, q1q2 · · · qx+y−1qx+y, qx+ys,

which in the worst case can increase the lag by x+ y+ 1. The only counts that might
be incorrectly incremented are due to the addition of

pr1, r1r2 · · · rx+z−1rx+z, rx+zs,

which in the worst case can increase the lag by x + z + 1. Note that if i = 1 and/or
i = m, then p and/or s may not exist, and this can only lower the number of counts
that might not be incremented or might be incorrectly incremented. Thus the total
change in lag for the transformation of Ci to Ii is at most 2x + y + z + 2. In fact,
for the case where y = z = 0 (there are only change errors), this upper bound can be
reduced by observing that if

pq1 = q1q2 = · · · qx+y−1qx+y = qx+ys,

then it follows that p = q1 · · · qx+y = s, and so it cannot be that pr1 = r1r2 (or that
pr1 = r1s) or r1 would not be an incorrect pointer, so the lag can be at most 2x+ 1.
Hence we have

LAG(Ci) ≤
{

2x+ 1 if (y + z) = 0,

2x+ y + z + 2 if (y + z) > 0

}
.

942 JAMES A. STORER AND JOHN H. REIF

Let e = x + y + z. For the case where (y + z) = 0, assuming that k > 0 (otherwise,
LAG(Ci) = 0), 2x+ 1 ≤ 2e+ 1 ≤ 3e. For the case where (y + z) > 0:

2x+ y + z + 2 = 2(e− (y + z)) + (y + z) + 2

= 2e− (y + z) + 2

≤ 2e+ 1

≤ 3e.

Hence the warming value for each block of e errors is ≤ 3e, and the theorem follows.
ENCODING ALGORITHM WITH k-ERROR PROTOCOL.
1. Initialize the local dictionary D to have one entry for each character of the

input alphabet and to have an empty hash table that is capable of storing pointer
pairs; let h denote a hash function that maps pointer pairs to the range 0 . . . (|D|−1).

2. repeat forever
A. {Get the current match string s and compute the current match pointer p:}

Read a string s for which there exists pointer pair qr such that
• s = the string corresponding to the pointer pair qr,
• count(qr) > count(uv) + w(k) for all uv such that h(uv) = h(qr).

if s does not exist
then p = the index in D of the next input character
else begin

p = h(qr)
count(qr) = count(qr) + 1
end

Transmit p using BITS(|D| − 1) bits.
B. {Update D:}

for each pair xy produced by the update method do
if xy is not already in the dictionary then count(xy) = 0

DECODING ALGORITHM WITH k-ERROR PROTOCOL.
1. Initialize the local dictionaryD by performing step 1 of the encoding algorithm.
2. repeat forever

A. {Get the current match pointer p and compute the current match string s:}
Receive BITS(|D| − 1) bits for the current match pointer p.
if p represents a single character

then s = the single character corresponding to p
else if there is a pointer pair qr such that

h(qr) = p and count(qr) is largest among all pairs that hash to p
then begin
s = the string corresponding to qr
count(qr) = count(qr) + 1
end

else s = the empty string
Output s.

B. {Update D:}
Perform step 2B of the encoding algorithm.

Given the lag theorem, the generic encoding and decoding algorithms can be
modified, as shown above, to employ the k-error protocol to insure perfect protection
against any k errors; that is, no bytes are corrupted beyond those corrupted by channel
errors.

ERROR-RESILIENT OPTIMAL DATA COMPRESSION 943

For correctness of the protocol, observe that for each pointer p in a sequence
S of pointers sent by the encoder, the pointer pair qr that p represents is a clear
“winner” among all pointer pairs that hash to p; that is, the count of qr is greater by
at least LAG(S) than the count of any other pair uv that hashes to p. Hence when
the decoder receives an uncorrupted pointer p, the pointer pair qr with the largest
count that hashes to p must be the correct pair for p because k errors cannot cause
some other pair uv that hashes to p to have a count equal or greater than that of qr.

As mentioned at the beginning of this section, the encoding and decoding algo-
rithms with the k-error protocol can be adapted to the UC and NC heuristics, and to
heuristics such as AP that may add more than one entry. For the UC and NC heuris-
tics, the same modifications as for the generic encoding and decoding algorithms can
be used. For the AP heuristic, or any heuristic that may construct more than one
match from the last match and the current match, we can hash on triples consisting
of the two pointers in question together with an integer that indicates which of the
strings corresponding constructed from this pointer pair is being referenced; this in-
teger can be provided by the match heuristic. The lag theorem can still be used to
verify the protocol because it is still the case that at most one count is incremented
when a pointer is sent by the encoder or received by the decoder.

We leave as an open problem the class of sources for which the k-error protocol
produces a constant-redundant parsing for update heuristics that satisfy the succinct-
ness and robustness axioms. All that has been shown here is that k errors will not
propagate when using the k-error protocol. Because hash conflicts could in theory
cause the counts of two entries that hash to the same location to “race” (so that
neither count sufficiently exceeded the other), it is not clear what effect, if any, the
protocol has asymptotically on the amount of compression obtained with a given
update heuristic (as compared with the same heuristic without the protocol). We
conjecture that in practice, performance will not be significantly affected for small
values of k and reasonably size dictionaries (e.g., 216 or more entries). In the next
section, we make use of the k-error protocol in a way that avoids hash conflicts and
insures constant redundancy.

4. High-probability protection against an error rate. In this section, we
employ probabilistic analysis to examine more carefully the proof of the lag theorem
of the last section. The idea is to show that the k-error protocol actually gives, with
high probability, strong protection against a fixed error rate during the period when
the dictionary is changing and is vulnerable to error propagation. In addition, by
encoding pointers to avoid hash conflicts with high probability, we can guarantee no
asymptotic loss of compression.

We employ the Chernoff bound (see Hagerup and Rub [1989]) on the number
of heads X in a sequence of independent coin tossings with expected value µ (e =
2.7182 . . . denotes the natural logarithm base defined by limn→∞(n

n−1)n):

For x ≥ 0, Prob(X ≥ (1 + h)µ) <

(
eh

(1 + h)(1+h)

)µ
.

To obtain the form of the bound that we shall use here, first we observe that the
right-hand side is

=
1

eµ

(
e

1 + h

)(1+h)u

=
1

eµ

(
(1 + h)µ

eµ

)−(1+h)µ

944 JAMES A. STORER AND JOHN H. REIF

and hence, since e > 1, it follows that

For z > eµ, Prob(X ≥ z) < 1

eµ

(
z

eµ

)−z
<

(
z

eµ

)−z
.

DAMPING THEOREM. If a sufficiently large dictionary is employed with a method
satisfying the succinctness and robustness axioms together with the k-error protocol
of the last section (where w(k) denotes the warming value for k and α denotes the
learning constant) on a channel with a uniform independent error probability of 1/r
(on the average, one error for every r pointers), then the probability that the system
looses stability (i.e., the probability that any errors propagate) is

<
1(r

4eα

)(w(k)
2 +1

) .
In addition, with probability greater than 1− 1/2|D|(1−ε(|D|)), the amount of compres-
sion achieved is within a factor of (1+ε(|D|)) of what would be achieved with the same
method used on a perfect channel without the protocol, where ε(|D|)→ 0 as |D| → ∞.

Proof. To simplify notation, we assume throughout this proof that all logarithms
are base 2.

Although the k-error protocol may work in the presence of hash conflicts, it is
difficult to estimate the effect of the hash conflicts on the performance of the protocol
for the application in question; for example, for data compression, it is not clear how
the compression achieved is affected in the worst case. We avoid this problem by
employing a more complicated hashing scheme that has no conflicts with extremely
high probability. Although this scheme may increase the number of bits in some
pointers, it will have no asymptotic effect on the total number of bits sent.

To store n items in the hash table, we use a table of size n log(n)2. Since at any
time the table contains at most n elements, each time an element is inserted into
the table, the probability that it goes to a bucket that already contains an entry is
at most n/(n log(n)2) = 1/(log(n)2), and thus the expected number of hash conflicts
after inserting all n elements is bounded above by n/ log(n)2. Hence from the Chernoff
bound, with µ = n/ log(n)2 and z = n/ log(n), it follows that the number of hash
conflicts is greater than n/ log(n) with probability

<

(
n/ log(n)

en/(log(n)2)

)−n/(log(n)2)

=

(
log(n)

e

)−n/(log(n)2)

<
1

2n/(log(n)2)
.

Thus it follows that

Prob(number of hash conflicts < n/ log(n)) > 1− 1

2n/(log(n)2)
.

ERROR-RESILIENT OPTIMAL DATA COMPRESSION 945

The n/ log(n) conflicting entries can all be hashed again into a table of size n log(n),
the remaining n/(log(n)2) conflicting entries can all be hashed again into a table of
size n, and so on. In general, each pointer is now being represented by a sequence of
indices, each consisting of a number of bits equal to log of the size of the corresponding
hash table followed by a bit that is 0 if the index is the last in the pointer or 1 if
there is another to follow. By summing the bits sent for a sequence of n pointers, we
see that all n pointers use log(n log(n)2) + 1 bits for the first index, at most n/ log(n)
pointers have an additional log(n log(n))+1 bits for the second index, and so on. The
first term is bounded by (1 + ε(n))n log(n), where ε(n) → 0 as n → ∞, the second
term is O(n), and the remaining terms go down geometrically by a factor of log(n).
Hence the total number of bits sent is asymptotically arbitrarily close to the n log(n)
bits that are sent in any case.

Given that we can assume that there are no hash conflicts for the encoder, the
k-error protocol takes care of conflicts at the decoding end. That is, if a pointer is
received whose bits are the prefix of the bits of two or more pointers, the one with
the largest count wins.

We now bound the average value of the following two quantities:

Xij = the number of times that the count of pair i, j is incorrectly increased
by the decoder due to errors on the channel, before the dictionary of the
encoder is full;

Yij = the number of times that the count of a pair i, j fails to be increased
when it would otherwise have been increased if there had been no errors
on the channel, before the dictionary of the encoder becomes full.

Let

E(D) = the expected number of pointers transmitted by the encoder before its
dictionary is full.

From the proof of the lag theorem, we know that each error can cause at most two
counts to incorrectly increase, and hence for each of the E(D)/r pointers that are
corrupted, at most two counts, which are equally likely to be any of at least |Dmax|
pairs, can be incorrectly increased. So the expected value of Xij , which we denote by
µXij , is bounded by

µXij ≤
2E(D)

r|Dmax|
.

By the robustness axiom, E(D) ≤ αw(k)|Dmax|, and hence

µXij ≤
2αw(k)

r
.

Since each error can cause at most two counts to incorrectly fail to increase, similar
to Xij , we can compute

µYij ≤
2αw(k)

r
.

946 JAMES A. STORER AND JOHN H. REIF

Hence the probability that Xij or Yij is ≥ (w(k)
2 + 1) is

>

(
w(k)

2 + 1
2eαw(k)

r

)−(w(k)
2 +1

)

=
1(

r(w(k)+2)
4eαw(k)

)w(k)
2 +1

<
1(

r
4eα

)w(k)
2 +1

.

From the above bound, the theorem follows since a LAG of more than w(k) cannot
occur if no values of Xij or Yij are more than w(k)/2.

Let us now consider the amount of compression achieved. We have already verified
that each of the |D| pointers is encoded with only a factor of 1 + ε(|D|) more bits,
where ε(|D|) → 0 as |D| → ∞. Hence if the method in question is optimal in the
information-theoretic sense, then by the robustness axioms, as |D| → ∞, the same
method with the k-error protocol must also be optimal in the information theoretic
sense (since it is w(k)-redundant).

COROLLARY. For α ≤ 2 (which is the case for all data-compression methods that
we have considered) and r ≥ 1012 (a reasonable assumption in practice for a clean
channel with a low-overhead error-correction mechanism), choosing w(k) ≥ (2.2509k−
2) yields a probability that is

<
1

rk
.

For example, if k = 5, then by using w(k) = 10, an error rate of 1/1012 is effectively
“damped” to 1/1060.

Proof. If we write w(k) = 2xk − 2, we can solve for the minimum value of x by
simplifying the expression above as follows:

≤ 1

rk

(
r
w(k)

2 +1−k

(8e)
w(k)

2 +1

)

=
1

rk
(
rx−1

(8e)x

)k .

The expression rx−1

(8e)x , which is monotonically increasing in x, becomes ≥ 1 when

(r/8e)x ≥ r, which is true when x ≥ log(r)
log(r)−log(8e) . Assuming r ≥ 1012, w(k) ≥

2.2509k − 2 suffices.

5. Practical considerations. The previous section encoded pointers to make
the probability of any hash conflicts arbitrarily small. Although the protocol may
work even in the presence of hash conflicts, this eliminated the need to address the
issue of what affect hash conflicts have on performance of the system (e.g., the amount

ERROR-RESILIENT OPTIMAL DATA COMPRESSION 947

of compression achieved). We leave it as an open problem whether, in the case of data
compression for stationary ergodic sources, performance is affected when hash conflicts
are allowed. Here we mention another strategy that can be viewed as a compromise
between allowing hash conflicts and rehashing to avoid them. With a small number
of extra bits per pointer, we can make the number of hash conflicts small and then
simply not use these entries of the dictionary (thus “wasting” a small fraction of the
dictionary).

A small constant c ≥ 1 extra bits are added to each pointer so that the |Dmax|
dictionary entries are hashed into a space of |Dmax|2c indices. Consider a particular
index i that is used for the first time in a sequence of n pairs that are hashed into the
dictionary. The probability that all other pairs do not hash to index i is

≥
(

1− 1

n2c

)n−1

>

(
1− 1

n2c

)n

=

((
1− 1

n2c

)n2c
)2−c

≥
(

1

e(n)

)2−c

, where e(n) =

(
n

n− 1

)n
,

=

(
1
e

)2−c(
e(n)
e

)2−c

>
1− (2−c)(
e(n)
e

)2−c
, ex =

∞∑
i=0

xi

i!
and for all 0 < x < 1,

1

ex
> 1− x.

Hence the probability that two pairs hash to index i is

≤ 1− 1− (2−c)(
e(n)
e

)(2−c)

< 2−c +

(
1−

(
e

e(n)

)(2−c)
)

since for all n > 1, e(n) > e

= 2−c + ε(n) since e = lim
n→∞

e(n),

where ε(n) goes to 0 as n goes to ∞. Thus the expected number of hash conflicts is
less than

n(2−c + ε(n)),

and by the Chernoff bound it follows that the probability that there are more than
εn hash conflicts is

<

(
ε

e(2−c + ε(n))

)−εn
.

948 JAMES A. STORER AND JOHN H. REIF

For any constant d > 1, this expression can be made less than d−εn if c is made
sufficiently large (by choosing n sufficiently large).

Given that the probability of more than εn hash conflicts can be made arbitrarily
low, a simple approach is the conservative strategy of “throwing out” all indices that
correspond to a hash conflict (even though many or all of these entries may not
cause any problems for the decoder). This construction adds c extra bits to each
pointer, which can be made to have an insignificant effect on compression by using
a very large dictionary (and hence a very large pointer size) but will most likely be
significant for dictionary sizes that are used in practice. However, this effect may
not be unacceptable. For example, if we take |Dmax| = 216 (a common and practical
choice for data compression) and ε = 0.1 (again, a reasonable value in practice), then
we must choose c ≥ 5; taking c ≥ 5 and computing the error term ε(n), we see that
the probability that there are more than ε(n) hash conflicts is < 2−1,500. However, the
cost for this security against many hash conflicts is an extra five bits for every 16-bit
pointer. If we consider a typical example for lossless compression using a dictionary
of size 216, we might expect the compressed data to be 30 percent of the size of the
original data, but now with the extra five bits per pointer, the compressed size will
be 21

1630 ≈ 39 percent of the original size. Although this cost might be reasonable in
practice, it would be nice to avoid it. We conjecture that this cost can be reduced by
a tighter analysis that does not throw out all indices with hash conflicts but rather
throws out only those that delay the dictionary-filling process due to “racing” and
“thrashing” of counts. We leave such analysis (as well as the effect of hash conflicts
on application-dependent performance issues such as compression ratio) as a subject
for future research.

Appendix. Constant-redundant parsings are optimal. The UC heuristic
is exactly the algorithm shown to be optimal in Ziv and Lempel [1978]; a nice proof
appears in Cover and Thomas [1991]. The essence of this proof is to show that any
method that parses the input stream into distinct phrases (and sends a number of
bits equal to log2 of the current number of phrases to the decoder) must be optimal.
This appendix notes how this notion can be generalized and still maintain optimality.

DEFINITION. A τ -redundant parsing of the input stream is one with at most τ
copies of any given phrase.

LEMMA. τ -redundant parsings give optimal data compression for the UC model.
Proof. We refer to the presentation in section 12.10 of Cover and Thomas [1991]

and describe how slight modifications can be made to the formulas. Note that here
c(n) denotes the total number of phrases (with repetition), whereas in the original
presentation phrases are not repeated. Lemmas 12.10.1 and 12.10.2 do not change if
the parsing is τ -redundant. Lemma 12.10.3 (Ziv’s inequality) gets a factor of τ inside
the log on the right side. (The proof is essentially unchanged except that the 1 in
the log on the right side in equation (12.286) becomes τ .) Theorem 12.10.1 (the main
theorem) still holds for a τ -redundant parsing; the proof is essentially the same, with
the following small changes: A factor of τ goes in the denominator inside the log on
the right side of equation (12.288), which is equivalent to adding the term τ log(ρ) to
the right side of equation (12.288). This term of c log(τ) is added to the right side
of equation (12.292) and subtracted from the right side of equation (12.293). Finally,
the error term εk(n) in equation (12.300) is changed to have (c/n) log(τ) added to
it; since c is O(n/ log(n)) by Lemma 12.10.1, the error term still goes to 0 as n goes
to ∞.

ERROR-RESILIENT OPTIMAL DATA COMPRESSION 949

COROLLARY. The lemma holds for the FC and NC heuristics as well.
Proof. These heuristics can use a phrase at most τ |Σ| times.

REFERENCES

J. L. Carter and M. N. Wegman [1979], Universal classes of hash functions, J. Comput. System
Sci., 18, pp. 143–154.

T. M. Cover and J. A. Thomas [1991], Elements of Information Theory, John Wiley, New York.
R. G. Gallager [1968], Information Theory and Reliable Communication, John Wiley, New York.
T. Hagerup and C. Rub [1989], A guided tour of Chernoff bounds, Inform. Process. Lett., 33,

pp. 305–308.
A. Lempel and J. Ziv [1976], On the complexity of finite sequences, IEEE Trans. Inform. Theory,

22, pp. 75–81.
A. Lempel and J. Ziv [1990], private communication.
V. S. Miller and M. N. Wegman [1985], Variations on a theme by Lempel and Ziv, in Combi-

natorial Algorithms on Words, A. Apostolico and Z. Galil, eds., Springer-Verlag, Berlin,
pp. 131–140.

J. Reif and J. A. Storer [1990], A parallel architecture for high speed data compression, in Proc.
3rd Symposium on the Frontiers of Massively Parallel Computation, College Park, MD,
IEEE Press, Los Alamitos, CA, pp. 238–243.

J. Reif and J. A. Storer [1992], A parallel architecture for high speed data compression, J.
Parallel Distrib. Comput., 13, pp. 222–227.

D. M. Royals, T. Markas, N. Kanapoulos, J. H. Reif, and J. A. Storer [1993], On the
design and implementation of a lossless data compression and decompression chip, IEEE
J. Solid-State Circuits, 28, pp. 948–953.

J. B. Seery and J. Ziv [1977], A universal data compression algorithm: Description and prelimi-
nary results, Technical Memorandum 77-1212-6, Bell Laboratories, Murray Hill, NJ.

J. B. Seery and J. Ziv [1978], Further results on universal data compression, Technical Memo-
randum 78-1212-8, Bell Laboratories, Murray Hill, NJ.

J. A. Storer [1988], Data Compression: Methods and Theory, Computer Science Press, Rockville,
MD.

J. A. Storer and T. G. Szymanski [1978], The macro model for data compression, in Proc. 10th
Annual ACM Symposium on the Theory of Computing, ACM, New York, pp. 30–39.

T. A. Welch [1984], A technique for high-performance data compression, IEEE Comput., 17,
pp. 8–19.

J. Ziv and A. Lempel [1977], A universal algorithm for sequential data compression, IEEE Trans.
Inform. Theory, 23, pp. 337–343.

J. Ziv and A. Lempel [1978], Compression of individual sequences via variable-rate coding, IEEE
Trans. Inform. Theory, 24, pp. 530–536.

