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Abstract

In this paper we show that if the input points to the geometric closest pair problem are given

with limited precision (each coordinate is speci�ed with O(logn) bits), then we can compute the

closest pair in O(n log logn) time. To make use of the limited precision of the input points, we

use a reasonable machine model that allows \bit shifting" in constant time | we believe that

this model is realistic, and provides an interesting way of beating the 
(n logn) lower bound

that exists for this problem using the more typical algebraic RAM model.

1 Introduction

Closest pair problems play a prominent role in computational geometry and have been studied from

many di�erent perspectives. These studies have led to important insights and results in such diverse

areas as lower bounds for geometric problems, randomized algorithms, dynamic data structures,

and parallel algorithms. This paper continues the study of closest pair problems by considering

the e�ect of input representation, and in particular limited precision input representation, on the

complexity of closest pair problems.

The standard model used in computational geometry problems is that of algebraic computation:

point coordinates can be manipulated by the standard algebraic operations (addition, subtraction,

multiplication, etc.), but no particular representation is assumed for these coordinates. One large

bene�t of this approach is that strong lower bound techniques can be used to lower bound the

number of algebraic operations required for certain geometric problems. In particular, for deter-

ministic computation it is known that �nding the closest pair of points from among n supplied
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points requires 
(n logn) time in this model (see, for example, Theorem 5.2 from the book by

Preparata and Shamos [7]).

While any deterministic algebraic algorithm must take 
(n logn) time in the worst case, faster

algorithms can be obtained using di�erent models of computation. In particular, by removing

the \deterministic" part of the model, a classic result of Rabin shows that there exists a random-

ized algebraic algorithm that has worst-case expected complexity O(n) [8], thus beating the best

possible deterministic algebraic algorithm. Randomization allows operations such as hashing to

be performed in constant expected time, and in fact this is a key element of Rabin's algorithm.

To demonstrate this dependence, Fortune and Hopcroft gave an O(n log log n) time deterministic

algorithm by augmenting their model with an operation that is essentially hashing in constant

time [3].

In this paper, we consider only deterministic algorithms, but assume that input points are

represented as �xed point binary values with O(logn) bits. In addition, we augment our model

with the oor function; equivalently, we could allow constant time binary shift and mask operations.

Both of these assumptions seem reasonable given today's computing hardware, and in fact seem

more realistic than the algebraic model's assumption that arbitrary precision real numbers can be

stored and manipulated. Under such a model, we show that the simple nearest neighbor and k-

nearest neighbors problems can be solved in O(n log logn) time. This is currently the only algorithm

to beat the �(n log n) bound that does not use either randomization or the strongly augmented

model of Fortune and Hopcroft that allows constant time hashing.

Improved time complexity based on input representation is not a new concept. This idea has

produced results such as radix sort, which beats the 
(n logn) lower bound for sorting, and the

priority queue data structure of van Emde Boas, Kaas, and Zijlstra, which beats the 
(logn) lower

bound on priority queue operations [11]. In fact, our algorithm uses a data structure that draws from

the priority queue of van Emde Boas et al. to compute a spatial decomposition in time O(n log logn)

time. This algorithm is then incorporated into the closest pair work of Callahan and Kosaraju [1].

Our improved decomposition was in fact devised while inventing new algorithms for the n-body

problem, which was also discussed by Callahan and Kosaraju, and we give in this paper a simple

application of our decomposition to the n-body problem. A more in-depth treatment, including

greatly improved algorithms for the n-body problem itself, is given in a separate paper [9].
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2 Creating the Decomposition Tree

Our initial goal will be to construct a hierarchical space decomposition and a corresponding de-

composition tree that has certain properties. The decomposition techniques we describe work for

arbitrary dimension d, and in this section we treat d as a variable so that the dependence on dimen-

sion of our decomposition algorithm is apparent from the complexity estimates. In later sections,

where we apply our decomposition techniques to several problems, we will treat d as a constant,

as is usual for these problems. We �x an enumeration of dimensions d1; d2; � � � ; dd, and we refer to

dimensions by their position in this sequence (\dimension i" refers to di, for example).

Let R denote a rectilinear region of d-dimensional space, and let li(R) denote the length of this

region along dimension i. We use max(R) to denote the dimension number of the longest side1 of

R, and use lmax(R) as short-hand for lmax(R)(R).

Our spatial decomposition works in a fairly standard manner: it starts with an \initial region"

containing all of the input points (in our case, the initial region will always be a d-cube), and then

produces non-overlapping subregions that cover all the input points. Next, these subregions may

be similarly subdivided. A tree naturally corresponds to such a decomposition, where there is a

one-to-one mapping between tree nodes and spatial regions, and a region/node is the parent of all

of the subregions produced when it was subdivided.

The decomposition we're interested in has some additional restrictions. In particular, all regions

are rectilinear and have exactly two non-empty subregions. Furthermore, dimensions are always

divided in half (or a larger power of two) in order to subdivide them, and the regions have to

be \almost square". More speci�cally, every region in the spatial decomposition must satisfy the

following properties:

� For each dimension i, either li(R) = lmax(R) or li(R) =
1
2
lmax(R).

� Every subdivided region contains exactly two subregions.

� Every region contains at least one input point.

If the input points were perfectly uniformly distributed, we could construct such a decomposition

very easily: simply split the initial region along dimension 1, and then the resulting regions along

1In cases of a tie, we can disambiguate the term \longest side" to refer to minimum dimension number among the

maximum-length sides.
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dimension 2, and then dimension 3, etc. Eventually, we split along dimension d, and start over with

dimension 1. We stop subdividing when we reach regions with just one input point, or when the

input precision is exhausted so that we can no longer distinguish between points. In two dimensions,

this is essentially a quad-tree, except that we split in the two dimensions separately. We call this

decomposition technique the standard decomposition sequence. If we stop after k steps, then this

is the k-level standard decomposition.

If the points are not uniformly distributed, then the standard decomposition sequence will

produce an invalid decomposition. To understand why, consider an input in which half of the

points are clustered together in one corner of the initial region, and the other half are at the

opposite corner. The �rst split, as described above, works to separate the two halves; however,

when we make the second split, we end up with regions containing no points, violating one of our

requirements.

One modi�cation to the above procedure allows us to �nd the desired decomposition tree:

rather than blindly splitting a region along a dimension and using the two resulting regions, we

keep splitting along the sequence of dimensions until a split results in two non-empty regions. These

two regions (the union of which may be much smaller than the region we are subdividing) form

the subregions of the current region, and are the children of the current node in the decomposition

tree. Notice that not all of the space of the current node will necessarily be covered by subregions

| in other words, our decomposition is not a partitioning. However, all of the input points are

covered by the subregions, which is all that we required of our decomposition.

The decomposition tree resulting from this procedure is exactly the decomposition tree we would

obtain by naively using the standard decomposition sequence and then trimming out all leaves that

contain no input points, along with their parents (this is similar to the \rake" operation in tree

contraction [6]). Given this correspondence, we refer to this trimmed tree as simply the standard

decomposition tree; furthermore, we can stop this procedure after a �xed number k of dimension

splits (also counting those that produce no tree nodes) which we refer to as the k-level standard

decomposition tree. Since each internal tree node has exactly two non-empty children, this tree

clearly has O(n) nodes.

Figure 1 shows an example of ten points in two dimensions, and shows the standard decompo-

sition and corresponding tree.
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Figure 1: Example decomposition tree. Near-by box borders should actually coincide, but are

shown separate to emphasize the hierarchy of regions.

The only remaining problem with this decomposition technique is that if the above decompo-

sition technique is used directly, and if the dimensions are given to arbitrary precision, then the

procedure could take a large amount of time (if the input coordinates are given to p bits, then it

could require �(ndp) time). If this input is given to O(logn) bits, as assumed in this paper, we

still require �(dn logn) time in order to decompose a region containing n points. In the next sec-

tions, we describe a method for constructing such a decomposition tree for input points which are

expressed with O(logn) bits of precision, and accomplishes this using only O(d2n log logn) time.

2.1 Partial Decomposition Trees

In this subsection, we consider the problem of constructing a decomposition tree for m points in

d-dimensional space, where the coordinates of each point are given using b1
d
lognc bits2. The tree

we will compute is exactly the db1
d
log nc-level standard decomposition tree described above.

Essentially what we need is a way of constructing the standard decomposition tree with all long

single-child paths contracted out of the tree. Since such paths can have length �(logn), we need

some way of building the decomposition tree without having to consider all nodes on these paths.

The basic idea is this: Starting with a leaf node, do a binary search on the tree levels in order

2All logarithms in this paper are base 2.
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to �nd the lowest two-child ancestor of this leaf | everything between this ancestor and the leaf

must be a single-child path, so can be ignored. Since there are O(logn) levels to the tree, a binary

search on the levels will require O(log logn) time per search, giving us the improved time bounds

that we need.

Unfortunately, while this idea is easy to state, the reality of the implementation is a bit messy.

We need to build up and use an auxiliary data structure that we call the \support tree" which

will allow us to perform binary search on tree levels. The support tree is largely inspired by the

e�cient priority queue data structure of van Emde Boas, Kaas, and Zijlstra (using what they call

a \strati�ed tree structure") [11, 10].

The support tree is actually a full h = db1
d
lognc-level binary tree, and the nodes of the tree

correspond exactly with the full standard decomposition sequence described in the preceding sec-

tion; however, only a subset of those nodes will be \active" (i.e., non-empty) at any given time. In

particular, we will show that in a support tree for points that occupy m leaves of the tree, at most

O(m log log n) nodes will be active.

Since the support tree is a full binary tree, we can use standard techniques (usually used in

conjunction with heaps) to map the tree nodes into an array with indices 1::2h � 1; however, the

ordering of the nodes within a level of this array requires further explanation, and is discussed in

the following section.

2.1.1 Mapping regions to support tree nodes

We �rst consider how to take an arbitrary input point and �nd the region containing that point on

any given level of the tree. As is standard practice, tree levels are numbered from 0 (corresponding

to the root) to level h � 1 (corresponding to the level containing the leaves). On level k, we have

divided the original root region k times. The number of times we have subdivided in dimension i

is exactly the same as the number of most signi�cant bits we use from the dimension i coordinate

to determine the region at level k; we can de�ne the function bits(i; k) to represent this value as

follows.

bits(i; k) =

(
bk=dc+ 1 if i � k � dbk=dc;

bk=dc otherwise.

Since our machine model allows us to strip out arbitrary bit positions and to shift by arbitrary

amounts within a single cycle, we can build up an array index (giving a support tree node) as
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follows, which we call procedure LevelIndex: For each dimension i (with 1 � i � d) strip out the

most signi�cant bits(i; k) bits from that coordinate. Next, concatenate these bit sequences together

into one word, with a single bit with value 1 concatenated into the most signi�cant position. This

procedure gives the desired index into our array representation of the tree, and has time complexity

�(d).

2.1.2 Support tree de�nitions

As mentioned above, operations on the support tree work by doing a binary search on levels of the

tree. In a binary search of levels, you are initially given two levels, a lower bound lo and an upper

bound hi, and depending on the outcome of a computation involving level mid = b(lo+ hi)=2c the

process either stops or continues with a smaller range of either lo::mid� 1 or mid + 1::hi. This

process de�nes what we refer to as \valid ranges":

� Range 0::h� 2 is a valid range.

� If range lo::hi is valid, and mid = b(lo+ hi)=2c, then lo::mid� 1 and mid+1::hi are valid (if

they are non-empty).

Notice that for any level k, it is the \mid level" for exactly one valid range, which we denote by

lok::hik (this implies that k = b(lok+hik)=2c), and we refer to this range as the \range for level k".

Given any support tree node x, we can also talk about the range for that node, written lox::hix,

which simply means the range corresponding to node x's level.

Now we can de�ne exactly what the support tree is. Each active node x of the support tree

contains the following information:

� An unordered list of references to all non-empty support tree descendants on level hix + 1,

and a count of how many items are on this list.

� An additional counter and pointer to a decomposition tree node (not a support tree node),

which will be used by later processing routines.

In addition to this per-node information, we keep track of a global list of all active nodes for each

level of the tree.

We have referred several times to \active nodes" in the tree, but have not described how a node

becomes active. The non-empty nodes that are active are closely tied to positions of \branchings"
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(internal nodes in the compete tree that have more than one child). The conditions required for a

node to be active can be easily described and are called the support tree conditions.

Speci�cally, any leaf node corresponding to a non-empty region is active, and a non-empty

internal node x is active if and only if either

(a) lox = 0,

or (b) there is a branching in the subtree of levels lox � 1::hix that includes x.

In the remainder of this discussion we assume we are given an initialized, empty support tree

at the beginning. More will be said about this assumption in a later section.

2.1.3 Building the support tree

To build the support tree, we sequentially step through all input points performing the following

actions for each point x: we �rst determine which support tree leaf this point belongs in by

calling procedure LevelIndex (outlined in section 2.1.1). Next, we add this point to the list

of points maintained by that leaf node. Finally, if this was the �rst point in this leaf node we

call AddPoint(node; nil; 0; h� 2), where procedure AddPoint adjusts the internal nodes of the

support tree, and is de�ned in Figure 2.

Lemma 2.1 Given m points whose coordinates are given to b1
d
lognc bits of precision, Algorithm

AddPoint creates a support tree whose active nodes satisfy the support tree conditions in time

O(dm log logn).

Proof : In order to prove the correctness of the algorithm, we introduce some terminology dealing

with steps in the algorithm. An \update" is the response to a request to add a new point to the

support tree, including all recursive calls made to satisfy this request. A \step" is a single call of

the code in AddPoint(excluding recursive calls); therefore, an update is made up of many steps.

We prove the correctness of the algorithm by verifying the following invariant: at the beginning of

any step, all levels outside of the range lo::hi are properly updated with the current update request.

At the last step of an update, the lo::hi range vanishes, and so all levels of the tree are properly

updated.

For any step of the algorithm, one of �ve conditions are satis�ed (labeled as (1) through (5) in

Figure 2), and corresponding actions are taken that cause a recursive call on a smaller range. We
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Algorithm AddPoint(node; alt; lo; hi):

Input: References to two support tree nodes, node and alt, and level numbers lo and hi.

Output: Updated support tree to include new node node.

if lo � hi then

mid 
j
lo+hi
2

k
;

midnode LevelIndex(mid; node);

Add node to reference list of midnode;

if alt = nil then

if midnode reference list contains 1 item (which must be node) then

(1) AddPoint(midnode; nil; lo;mid� 1);

else if midnode reference list contains 2 items then

(2) alt reference other than node in midnode list;

AddPoint(node; alt;mid+ 1; hi);

else

(3) AddPoint(node; nil;mid+ 1; hi);

else

midalt LevelIndex(mid; alt);

Add alt to reference list of midalt;

if midnode = midalt then

(4) AddPoint(node; alt;mid+ 1; hi);

else

(5) AddPoint(midnode;midalt; lo;mid� 1);

Figure 2: Algorithm AddPoint (labels on the left are for reference in the text).

will show that in each case all nodes that newly satisfy one of the support tree conditions and are

on a level that is excluded from the smaller range are properly updated, thereby proving that the

invariant is maintained.

Case (1): Our new node is the only reference in midnode, and so there are no branchings in levels

mid::hi, and no node y on any level in mid+ 1::hi can newly satisfy support tree condition

(b). Furthermore, no node y on any level in mid + 1::hi can have loy = 0, so no nodes on

these levels have newly satis�ed support tree condition (a). In conclusion, the only place on

levels mid::hi where a node may newly satisfy a support tree condition is on level mid, and

the only change on that level is node midnode, which is activated. Therefore, all nodes on
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levels excluded from the next recursive call are properly updated in this case.

Case (2) or (3): Ifmidnode contains references to two or more nodes, including the new one, then

midnode was active before this update and there are no new structural changes in the full tree

above level mid. This means that there are no branchings introduced on levels lo::mid� 1,

and hence no node on levels lo::mid� 1 newly satis�es condition (b). Furthermore, since any

node y on levels lo::mid� 1 that has loy = 0 and is non-empty after this update must have

been non-empty before the update also, no nodes on levels lo::mid�1 newly satisfy condition

(a). Finally, the only node on level mid that changes is midnode, which was in fact previously

activated, and so all nodes on the excluded levels lo::mid are properly updated before the

end of this step.

Case (4): In this case, midnode = altnode and so the entire path from midnode up to its ancestor

on level lo�1 was non-empty before this update, and this hasn't changed due to this update.

Since the empty/non-empty status of no nodes on levels lo::mid � 1 have changed due to

this update, and no new branchings have been introduced on those levels, there can be no

nodes that newly satisfy either condition (a) or condition (b). There must be a branching

somewhere in the range lo � 1::hi, and so midnode is activated by algorithm AddPoint,

as required by the support tree conditions. Therefore, in case (4), all nodes in the excluded

levels lo::mid are properly updated by this step.

Case (5): Notice that whenever alt is non-nil, there are exactly two non-empty regions on level

hi+1 that are descendants of the current subtree. Since midnode 6= altnode, each ofmidnode

and altnode must have exactly one active descendant on level hi + 1. This means that no

new branchings are introduced in levels mid::hi, and hence no nodes in mid + 1::hi newly

satisfy support tree condition (b). Furthermore, none of these nodes y have loy = 0, and so

no nodes on levels mid+1::hi can satisfy condition (a). Since the only two non-empty nodes

on level mid are activated by this step, all nodes on the excluded levels mid::hi are properly

updated by the end of the step.

Since all cases lead to the conclusion that all nodes on excluded levels are properly updated, we

see that the invariant is maintained and the algorithm correctly constructs the support tree with

all nodes satisfying the support tree conditions being active.
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For the time complexity, notice that all operations in AddPoint are constant time except for

the call to LevelIndex and the recursive call. Since LevelIndex takes time O(d) and there

are at most O(log h) levels of recursion, the total time for procedure AddPoint is O(d logh) =

O(d log logn). The total time to add all m inputs points is therefore O(dm log log n).

2.1.4 Building the partial decomposition tree

In order to use our support tree to build the desired decomposition tree, we �rst must compute for

each active internal node the number of active leaves that are descendants. Notice that each node

already holds the number of active leaves in its canonical subtree, but we do not know the number

of active leaves for the entire subtree rooted at that node. Fortunately, this is easy to compute: For

range lo::hi we assume that the number of active leaves in subtrees at level hi+1 has already been

computed and using this information we can easily compute the number of active leaves for each

active node on level mid = b(lo+hi)=2c (simply walk through each node's reference list and add up

the number of active leaves for each referenced node). Next we recursively call this procedure for

ranges lo::mid� 1 and mid+ 1::hi. With an initial call for range 0::h� 2 this procedure correctly

computes the number of active leaves for each node, and the time is proportional to the combined

size of all reference lists in the support tree. Since the tree was computed in time O(dm log logn),

this clearly bounds the size of the reference lists, and hence also bounds the size of this procedure.

We will refer to the computed number of active leaves for a node x by the notation x:count.

Using these values, given any node x we can �nd the lowest node in the full decomposition tree

that is above x and has more than one active child (one of which will be an ancestor of x). This

node corresponds to the parent of node x in the standard decomposition tree, and so we de�ne a

procedure FindParent as shown in Figure 3. For a node x this procedure is initially called as

FindParent(x; 0; h� 2).

Lemma 2.2 FindParent(x; 0; h � 2) correctly returns node x's desired ancestor (i.e., the parent

of region x in the standard decomposition tree), or nil if such an ancestor doesn't exist. The time

complexity of FindParent is O(d log h) = O(d log log n).

Proof : The correctness of FindParent follows from the following easily veri�ed invariant: If the

desired ancestor is on level `, then at all times (and in all recursive calls) in this procedure we have
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Algorithm FindParent(x; lo; hi):

Input: Support tree node x and level numbers lo and hi.

Output: Parent node of x in reduced tree.

if lo > hi then

par level hi ancestor of x (nil if hi < 0);

else

mid 
j
lo+hi
2

k
;

if level(x) � mid then

par FindParent(x; lo;mid� 1);

else

midnode level mid ancestor of x;

if midnode:count � x:count then

par FindParent(x; lo;mid� 1);

else

par FindParent(x;mid+ 1; hi);

return par;

Figure 3: Algorithm FindParent.

lo� 1 � ` � hi. Since this level ` ancestor is a branching, this implies that midnode for this lo::hi

range is active (by the support tree conditions), and so the algorithm only queries active nodes.

Furthermore, at the very last recursive call, we must have lo = hi+1, so we have lo�1 = hi � ` � hi,

which means that the ` must be the same as hi at this stage. The algorithm returns the ancestor

of x on this level, so the correctness follows.

For the time complexity, notice that every operation except for the recursive calls and the line

midnode level mid ancestor of x;

takes constant time. This line uses procedure LevelIndex to �nd the appropriate ancestor in

O(d) time, and due to the binary search on levels there are only O(logh) recursive calls. Thus the

time complexity of FindParent is O(d logh) = O(d log log n).

Since FindParent can determine, for any node in the decomposition tree, its parent in the

standard decomposition tree, we can build the entire procedure by repeatedly calling FindParent.

This is shown explicitly in Figure 4.

12



Algorithm PartialTree:

Input: Set of m points in d-dimensions. Each coordinate is b1
d
lognc bits.

Output: The db1
d
log nc-level standard decomposition tree for these points.

Build support tree;

h db1
d
lognc;

for each x 2 level h� 1 active list do

v  New decomposition tree node;

x:dtreenode v;

Put x in queue Q;

while Q is non-empty do

x Dequeue(Q);

v  x:dtreenode;

p FindParent(x; 0; h� 1);

if p:dtreenode = nil then

u New decomposition tree node;

p:dtreenode u;

else

u p:dtreenode;

Add p to queue Q;

Set appropriate child of u to reference v;

v:parent u;

Clear support tree;

Figure 4: Algorithm PartialTree.

Lemma 2.3 Given an initially cleared support tree, algorithm PartialTree correctly computes the

db1
d
lognc-level decomposition tree for m points in O(dm log logn) time, and leaves the support tree

cleared.

Proof : The correctness follows directly from the discussion of properties of the support tree. To

determine the time complexity, consider the individual pieces: building and clearing the support

tree both take O(dm log log n) time, as discussed in previous sections. Each iteration of the main

loop in PartialTree consists of a call to FindParent (O(d log logn) time), and the remainder

are constant-time operations. This loop is executed once per node of the constructed standard de-
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composition tree (to �nd its parent), and since there are O(m) nodes of the standard decomposition

tree, the total time for all loop iterations is O(dm log logn). Putting all this together, the total

time complexity of PartialTree is O(dm log logn).

Note: By requiring an initially cleared support tree and leaving the support tree cleared, we can

re-use the same support tree structure over and over for arbitrarily many calls to PartialTree.

Avoiding the otherwise �(n) time initialization of the support tree is important when, as in the

next section, there may be many calls with m� n.

2.2 Putting It Together

The algorithm of the previous section works when the number of bits used to specify each coordinate

is b1
d
lognc, but we would like to be able to compute the decomposition tree when the number of

bits in each coordinate is c logn (for an arbitrary constant c). Unfortunately, simply scaling up

PartialTree is not e�cient, since the obvious technique would require �(nc) space (and �(nc)

time to initialize this space, although this can be avoided). We avoid this problem by making

repeated calls to PartialTree, rather than scaling it up. We begin with a high-level description

of our full decomposition algorithm, and then �ll in the details.

Let b = b1
d
lognc, which is the number of bits that can be handled by algorithm PartialTree.

The main idea is to make several passes over the data, each pass processing b bits of each coordinate.

We begin by sending all points to PartialTree, but sending only their most signi�cant b bits.

When PartialTree is �nished, it will have produced a decomposition tree for this data and we

will have easy access to all the leaves of the tree and their associated lists of points.

All points that are located in any single leaf of this tree must have the most signi�cant b bits

in common, and so we can send these points back to algorithm PartialTree, but now using the

second most signi�cant block of b bits. The tree that this produces can be linked into the tree from

the �rst call to PartialTree, in place of the leaf that contained all those input points. We repeat

this process for every leaf that contains more than one input point. Eventually, we reach a point

where either every leaf has one input point or we run out of bits in the input coordinates. The �nal

result is a single tree that contains the full spatial decomposition of the input points.

Pseudo-code for this algorithm is given in Figure 5. We make use of a queue of \sets", where each

set contains a subset of input points, and some associated data referred to in the algorithm as the
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Algorithm Decompose:

Input: Set of points in d-dimensions. Each coordinate is c logn bits.

Output: Decomposition tree for these points.

b b1
d
lognc;

m d c logn
b
e;

Divide input coordinates into m blocks of b bits each.

Blocks are numbered 1::m, with 1 being the most signi�cant block.

Make new set S with: S:block 0;

S:parent nil;

S:list List of all input points;

Add S to queue Q;

while Q not empty do

S  Dequeue(Q);

T  PartialTree(S:list using coordinate bits from block S:block);

Link root of T to S:parent;

if S:block < m then

for each leaf ` of T containing more than 1 point do

Make new set R with: R:block S:block + 1;

R:parent `;

R:list List of points in `;

Add R to queue Q;

Figure 5: Algorithm Decompose.

\block" and the \parent" of the set. Initially, the only set is the set of all input points, with the block

�eld set to zero and the parent �eld set to \nil" (representing a non-existent parent value). Further

decompositions of this set correspond to passing the data through algorithm PartialTree to

produce part of the decomposition tree. Each of these produced sets has its block �eld set to the

number of the last block of coordinate bits that were sent to PartialTree and its parent �eld

set to the leaf node containing these input points in the full decomposition tree (a node which was

created in a preceding call to PartialTree.

The algorithm makes use of a queue of sets. It should be noticed that by keeping the points in

linked lists, every operation except the call to PartialTree requires only constant time. In order

to satisfy this, the queue will only contain references to sets, rather than copies of the sets.
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Theorem 2.1 Given n points in d dimensions, where the coordinates of each point are given using

c logn bits, AlgorithmDecompose computes the decomposition tree for these points in O(d2n log logn)

time.

Proof : The correctness of the algorithm is obvious. We will show that the complexity of the

algorithm is O(d2n log logn).

Consider block i of coordinate bits, where 0 � i < m. During the execution of algorithm

Decompose say that there are n(i) di�erent sets R created that have R:block = i, and let

k1; k2; � � � ; kn(i) be the number of particles in each of these sets. Each input point can be in at

most one of these sets, and so k1+k2+ � � �+kn(i) � n. For a set with kj points, Lemma 2.3 showed

that the amount of time required to process this set is O(dkj log logn) for the call to PartialTree,

and O(kj) for everything else (there can be at most kj leaves in the tree produced by this call to

PartialTree, and it takes a constant amount of time to process each leaf). This simpli�es to just

O(dkj log logn) time. Combining all this, we see that the amount of work required to process all

of the sets R with R:block = i is

O(dk1 log logn + dk2 log logn + � � �+ dkn(i) log logn) = O(d(k1+ k2 + � � �+ kn(i)) log log n)

= O(dn log log n):

Finally, there are O( c logn
b

) = O(cd) blocks of bits, and so the overall time complexity of

Decompose is O(d2n log logn).

3 Applications

In this section, we show how to use the decomposition tree constructed by AlgorithmDecompose in

order to solve two problems: geometric closest pair, and n-body potential �eld evaluation. The

uni�ed approach to these two problems is largely due to Callahan and Kosaraju [1], and we begin by

making explicit the connection between our decomposition tree and their algorithms. As mentioned

earlier, we now treat d as a constant, as is typical for these problems | in both cases the dependence

on d is exponential, and so our new decomposition algorithm of the previous section has much

smaller dependence on d than these applications.
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3.1 Closest Pair and k-Nearest Neighbors

For any node v of the decomposition tree, let R(v) denote the region corresponding to that node.

Recall that in the standard decomposition tree produced by Algorithm Decompose the region

R(v) is subdivided into exactly two subregions. The two subregions do not necessarily cover region

R(v), but have the following two properties: they are exactly the same size, and they are separated

by a single hyperplane that is adjacent to both subregions.

For any tree node v we can de�ne a slightly di�erent region bR(v) corresponding to this node as

follows:

� If v is the root of the decomposition tree, then bR(v) is the entire initial d-cube.
� If v is not the root, and p(v) is the parent of v, then bR(v) is obtained by splitting bR(p(v))
using the same hyperplane that separates v from its sibling, and taking the side that includes

R(v).

Note that for any node v the region corresponding to that tree node is included in bR(v). The main
di�erence between these \ bR regions" and the actual regions corresponding to the tree nodes is that

the \ bR regions" do not leave any uncovered space | the sub- bR-regions do in fact cover the parent

region.

Finally, we de�ne one last region for each tree node v. De�ne Q(v) to be the smallest rectilinear

region that includes all the inputs points contained by R(v). This is some contraction of R(v) to

the smallest possible size, and so we note that of the three di�erent regions de�ned we can say that

Q(v) � R(v) � bR(v).
The �rst step in the decomposition-based algorithms of Callahan and Kosaraju [1] is the de�-

nition of what is called a \fair split tree". Given an internal node v in a decomposition tree, they

call the split that produces that node's children a fair split if the hyperplane that separates the two

children of v is at a distance of at least lmax(Q(v))=3 from each of the two boundaries of bR(v) that
are parallel to it. A fair split tree is one in which every internal node corresponds to a fair split.

Lemma 3.1 Algorithm Decompose produces a fair split tree.

Proof : Consider any internal node v of our tree. If a and b are the children of node v, then

it was remarked before that R(a) and R(b) have identical size. Furthermore, we know that the
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hyperplane separating a and b exactly splits in half the region R(a)[R(b), and that this split was

along a maximum length dimension of R(a) [R(b). Since Q(v) must be entirely contained within

R(a)[R(b), it then follows that the distance from the separating hyperplane and either of the two

parallel sides of bR(v) is at least
lmax(R(a)[R(b))=2 � lmax(Q(v))=2 > lmax(Q(v))=3;

which shows that the split at node v is a fair split. Since v was chosen arbitrarily, all internal nodes

must correspond to fair splits, and so the decomposition tree produced by AlgorithmDecompose is

a fair split tree.

Finding a fair split tree is the �rst and most important step in the algorithms of Callahan and

Kosaraju. The following lemma summarizes how this fair split tree is important, and is evident

from the work of Callahan and Kosaraju [1]. In particular, refer to Theorem 4.3, the paragraph

below the proof of Lemma 8.1, and Theorem 8.4 of the cited paper [1].

Lemma 3.2 [1] Given a fair split tree, the closest pair of points can be computed in O(n) time, and

the k nearest neighbors can be computed in O(kn) time.

Finally, combining this lemma with our algorithm Decompose (see Theorem 2.1) gives the

following theorem, which is our main result.

Theorem 3.1 Given n points, where the coordinates of each point are given using c logn bits, we

can compute the closest pair of this pointset in O(n log logn) time, and can compute the k nearest

neighbors of each point in O(n log log n+ kn) time.

3.2 n-Body Potential Field Evaluation

The n-body potential �eld evaluation problem, or simply the \n-body problem" is as follows. Given

n point charges and their associated charge strengths, compute the value of the potential �eld (or the

induced force) generated by these charges at each of the point charge locations. A breakthrough

in this problem was made by Greengard and Rokhlin [4, 2, 5] who gave an algorithm for the

two-dimensional n-body problem that ran in time O(np log p) when the input points met certain

uniform-distribution constraints and with the condition that p � logn. Callahan and Kosaraju [1]
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gave an algorithm for this same problem that had time complexity O(n logn+np log p), and removed

all of the assumptions and requirements imposed by the algorithm of Greengard and Rokhlin.

Similar to the results of the previous section, we can apply our decomposition tree to the

problem of evaluating n-body potential �elds using the techniques of Callahan and Kosaraju [1].

Our main result for the n-body problem is stated in the following theorem.

Theorem 3.2 Given n point charges whose coordinates are expressed using c logn bits, and whose

charge strengths are given, let T (p; n) be the time required to compute the n-body potential to p bits

of accuracy given a fair split tree for the point charges. Then we can compute all the potentials required

by the n-body problem in time O(n log logn+ T (p; n)).

Using direct application of the algorithms of Greengard and Rokhlin [4, 2, 5] and Callahan

and Kosaraju [1] gives T (p; n) = O(np log p), for an overall complexity of O(n log log n+ np log p).

However, this is not the best possible result for the n-body problem under our limited input precision

restrictions! Using improved techniques for the actual potential �eld evaluation developed by the

authors of this paper, it is possible to reduce T (p; n) to O(n log2 p), and hence solve the n-body

problem for limited precision inputs in time O(n log logn + n log2 p) time. As this result requires

substantial modi�cations of the well-known n-body algorithm due to Greengard and Rokhlin, we

describe this result in a separate paper that looks deeply into n-body potential �eld evaluation [9].

4 Conclusion

In the paper, we have shown how to exploit the input representation of certain geometric prob-

lems, under the realistic assumption that the points are give to a precision of O(logn) bits. We

developed a new spatial decomposition technique, and applied this decomposition to show how to

solve closest pair problems and n-body potential �eld evaluation problems more e�ciently than is

possible using the algebraic RAM model with no use of input representation. In particular, we give

an O(n log logn) algorithm for �nding the closest pair of a pointset, beating the �(n log n) time

algorithms which are optimal under the algebraic RAM model. Similar improvements are given for

the n-body potential �eld evaluation problem.
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