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ABSTRACT: DNA circuits have been widely used to develop
biological computing devices because of their high programm-
ability and versatility. Here, we propose an architecture for the
systematic construction of DNA circuits for analog computation
based on DNA strand displacement. The elementary gates in our
architecture include addition, subtraction, and multiplication gates.
The input and output of these gates are analog, which means that
they are directly represented by the concentrations of the input
and output DNA strands, respectively, without requiring a
threshold for converting to Boolean signals. We provide detailed
domain designs and kinetic simulations of the gates to
demonstrate their expected performance. On the basis of these gates, we describe how DNA circuits to compute polynomial
functions of inputs can be built. Using Taylor Series and Newton Iteration methods, functions beyond the scope of polynomials
can also be computed by DNA circuits built upon our architecture.
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Programmability and versatility are essential properties of
deoxyribonucleic acid (DNA).1 On the basis of these

properties, diverse research has been done to develop DNA
systems with designated functions.2−7 One important problem
is to devise DNA circuits to perform designated computation
which can be digital or analog, and excellent work has been
done on constructing DNA circuits for both digital and analog
computation.2,3,7−13

Digital circuits process information encoded by binary bits,
where each bit has two possible values “0” and “1”. These
binary values are decided by a threshold of a physical quantity
(e.g., voltage for electrical analog machines or position for
mechanical analog machines), where if a physical quantity is
above the threshold, it is 1, otherwise, it is 0. Digital circuits
have their advantages. For example, they are less prone to
offsets than analog circuits, and design of error-correction
schemes for digital circuits is better developed.14−17

Remarkable work has been done on digital DNA circuits,2,3,7

and one major achievement is the construction of a digital
DNA circuit in vitro that computes square roots of 4-bit
numbers.3

In contrast, analog circuits process information directly
encoded by a physical quantity. In general, practical analog
computation systems operate within certain ranges of input
analog values (input ranges). Moreover, there generally is a
trade-off between their computation precision versus their
input ranges. These ranges can be tuned to adjust
computation precision. Analog circuits have their advantages
over digital circuits. For example, analog circuits require much
fewer gates to conduct numerical computation up to a given
accuracy compared to their digital counterparts.14 Elementary
arithmetic operations such as addition, subtraction, and

multiplication are computed by single gates in analog circuits,
whereas digital circuits require multiple gates for each
elementary arithmetic operation. It means that analog circuits
consume less resources than corresponding digital circuits14

and this property makes analog circuits useful in resource-
limited environments (e.g., in living cells18). Furthermore, for
some applications, analog circuits can be more robust than
digital circuits.19 Excellent work has been done on inventing
general schemes to implement arbitrary chemical reaction
networks (CRNs) with DNA strand displacement.10,13 Analog
DNA circuits with continuous dynamics (e.g., controllers,
oscillators) have been developed on the basis of these
schemes.8,9,11,12

1.2. Overview of Analog Computation. There is an
extensive history of analog computation.20 In general, an
analog computer has components (arithmetic gates) that
compute basic arithmetic operations such as addition,
subtraction, and multiplication. These operations may be
done by various physical means, such as cog-based mechanical
devices or electrical circuits, etc. Typically, the range of values
(e.g., the range of mechanical positions in a mechanical analog
computer or voltage range in an electrical analog computer)
computed by a given precision by an analog arithmetic gate is
restricted, due to various physical constraints, but typically this
is not a limitation, since the values can be scaled to arbitrary
ranges. Hence the precision of each arithmetic gate is
ultimately limited by underlying physical constraints on the
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devices that implement the arithmetic gate, but the precision
can typically be tuned by adjusting the input ranges. All
known analog computers (including in particular our
proposed DNA-based analog circuits) appear to have some
sort of trade-off between precision of analog values computed
and the operating range of values over which the analog
computations are done. Analog devices can offer some
advantages (such as requiring a smaller number of gates)
over computing devices whose gates can only execute Boolean
operations. The same issues of advantages (e.g., in number of
gates) and limitations (e.g., in the range of values, but
released via rescaling) appear in the DNA-based analog
circuits of this paper. Analog circuits for arithmetic operations
compute the outputs whose values are determined by the
inputs. Analog circuits with continuous dynamics generate
outputs that are designated functions in the time domain.
1.3. Potential Applications of Analog DNA Circuits.

Analog DNA circuits can be used as analog control
devices11,12 in which real values are sensed and analog
computation provides controlling output. For example, control
of chemical reaction networks requires both sensing of
concentrations of input molecules and after analog computa-
tion, controlling concentrations of output molecules. Also, in
applications known as “DNA doctor”,21 in which various
nucleic acid sequence concentrations (e.g., concentrations of
mRNAs) are sensed, and an analog computation can be used
to determine the amount of a drug molecule that should be
released. Prior devices for control of chemical reaction
networks and DNA doctor21 applications have been limited
to finite-state control, and analog DNA circuits will allow
much more sophisticated analog signal processing and control.
DNA robotics have allowed devices to operate autonomously
(e.g., to walk on a nanostructure) but also have been limited
to finite-state control. Analog DNA circuits can allow
molecular robots to include real-time analog control circuits
to provide much more sophisticated control than offered by
purely digital control. Many artificial intelligence systems (e.g.,
neural networks and probabilistic inference) that dynamically
learn from environments require analog computation,14 and
analog DNA circuits can be used for back-propagation
computation of neural networks and Bayesian probabilistic
inference systems.
1.4. Prior Molecular-Scale Analog Computation.

There is considerable excellent prior work on engineering
nucleic acid systems8−12,22−24 (both using enzymes and
enzyme-free) and cells18,25,26 to do complex dynamics. For
example, the following ingenious prior systems have been
demonstrated to compute time-varying cyclic signals: (a) a
nucleic acid system using enzymes,22 (b) a DNA-based system
using only hybridization reactions,8 (c) and a cell-based
system.25 Prior work on analog DNA systems has mainly
focused on developing DNA circuits with continuous
dynamics.8,9,11,12 There is still a need to develop an
architecture to construct analog DNA circuits for arithmetic
computation. In principle, the general schemes to implement
arbitrary chemical reaction networks (CRNs) with DNA
strand displacement10,13 can serve as such an architecture, but
there needs to be more detailed investigation.
1.5. Our Contribution. In this paper, we present an

architecture to construct DNA circuits for arithmetic
computation in an analog fashion. There are three elementary
gates in our architecture: addition, subtraction, and multi-
plication gates. For each gate, we first propose its high-level

chemical reaction network analogy and then give our DNA
implementation. Each gate is evaluated by simulation using
Language for Biochemical Systems (LBS).27 DNA circuits to
compute polynomial functions of inputs can be built on the
basis of these gates. By Taylor Series and Newton Iteration
methods, some functions beyond the scope of polynomials
can also be computed by DNA circuits built upon our
architecture.

2. RESULTS
2.1. Preliminaries of Analog DNA Gates. 2.1.1. Toe-

hold-Mediated Strand Displacement. Toehold-mediated
strand displacement is the primary mechanism for the
proposed architecture. A domain-level illustration of toehold-
mediated strand displacement is shown in Figure 1. We call

the a* domain in G a toehold, where a domain is a sequence
of nucleotides. The arrow in a DNA strand indicates the 3′
end. In reaction 1, the a domain in I hybridizes to the a*
domain in G, where the asterisk symbol means comple-
mentary domain. We call this step toehold binding. Usually, the
toehold domain is short (less than 10 nucleotides), so the
toehold binding reaction is reversible and we call the reverse
reaction toehold unbinding. Once the toehold binding step is
complete, reaction 2 can happen where the x domain in I
(called branch migration domain) competes with the sp5
strand in G on binding to the x* domain. Eventually, strand I
wins and displaces sp5. We call this step branch migration. In
the diagrams of this paper, we may combine these two steps
into a single step for simplicity.

2.1.2. Related Concepts. Here we introduce some basic
concepts to define our analog DNA gates.

Input Range. Each analog gate is assigned an input range,
within which the inputs of a gate should lie if they are to be
computed within the required precision. Hence if one of the
inputs of an arithmetic gate is outside its input range, the
arithmetic operation may not be computed within the
required precision. Specifically, in our DNA-based analog
computation architecture, the input range of an analog DNA
gate is the range of concentration within which its input DNA
strands should occur, in order for the gate to operate
correctly. The input ranges are not particular to our analog
DNA gates, and typically any analog gate has an input range.
Our analog DNA gates have the advantage that the input
range can be tuned easily by programming the concentrations
of components in a gate.

Figure 1. A domain-level illustration of toehold-mediated strand
displacement. Reaction 1 is a reversible reaction, where the forward
reaction and the reverse reaction are called toehold binding and
toehold unbinding, respectively. Reaction 2 is called branch
migration.
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Valid Output Range. Analog gates process continuous
physical quantities as input and provide continuous output.
This makes analog gates suffer more from two things
compared to digital gates: signal fluctuation and signal
degradation. Continuous information is more sensitive to
noise and more difficult to restore than discrete information
encoded by binary bits. Therefore, due to noise, the output of
an analog gate cannot remain at the theoretically correct value
for given inputs. There will always be an error, which usually
tends to grow larger over time due to signal degradation. To
evaluate analog gates, we define the term valid output range:
Given inputs x1 and x2, a gate that conducts arithmetic
operation ⊗, and 0 < r < 1 which describes the error, the
valid output range is ((1 − r)*(x1⊗ x2), (1 + r)*(x1⊗ x2))
for inputs x1 and x2. The output lying within this range is
considered correct. The time that the output stays within the
valid output range is used to quantify the performance of the
gate under these inputs. The value of r does not really
influence the execution of a gate and it is just a parameter for
interpreting the performance.
Note that all known analog systems, like electronic and

mechanical analog systems, have restricted input ranges.
Fluctuation and degradation of output signal is also a
common problem for all known analog systems, which
necessitates a valid output range. These properties are
unavoidable for all analog systems,14 not only for our DNA-
based analog system.
2.2. Abstractions of the Gates. The abstractions in

Figure 2 will be used to describe the functions and

mechanisms of the gates. For example, the addition gate:
The inputs are a1 and a2, and the output is pa. The plus
symbol + denotes addition. To distinguish a1 and a2, different
symbols are assigned to the two input ports: a circle to a1,
and a pentagon to a2. The two inputs need to be
distinguished because they play different roles in the
mechanism of the addition gate. In other words, their
corresponding input DNA strands go through different
reaction pathways during the computation process, as
explained in the following detailed description of the gates.
2.3. Addition Gate. 2.3.1. The Chemical Reaction

Network To Inspire Our Addition Gate. Our addition gate
is inspired by the following chemical reaction network:

+ →Ia1 A1 Oa
k1 (1a)

+ →Ia2 A2 Oa
k2 (1b)

The addition gate computes pa = a1 + a2 (see abstraction in
Figure 2). Ia1 and Ia2 are input chemical species to the gate,
where their initial concentrations [Ia1]0, [Ia2]0 represent the
two inputs a1 and a2, respectively, which means a1 = [Ia1]0
and a2 = [Ia2]0. The addition gate is composed of chemical

species A1 and A2. To have an input range of (0, ra) which
means a1,a2 ∈ (0,ra), we let the initial concentrations be [A1]0
= [A2]0 = ra. Oa is the output chemical species of this gate
and its concentration at equilibrium [Oa]∞ represents pa. As
shown in reactions 1a and 1b, all Ia1 and Ia2 will eventually
be transformed to Oa and then [Oa]∞ = [Ia1]0 + [Ia2]0
which means pa = a1 + a2. There are no constraints on rate
constants k1 and k2.

2.3.2. DNA Implementation of Our Addition Gate. As
shown in Figure 3, Ia1 and Ia2 are two input DNA strands.

Their initial concentrations [Ia1]0 and [Ia2]0 represent a1 and
a2, respectively. Oa, which is the DNA strand composed of
domains y1−a−x3 (5′ to 3′ direction) is the output DNA
strand and its concentration at equilibrium [Oa]∞ represents
pa. Each of A1 and A2 is implemented by three DNA species,
where a DNA species is a DNA strand or complex. The DNA
reactions in the addition gate are shown in Figures 4 and 5.
The relationship between the original chemical reaction
network and DNA reactions is shown in Table 1. The
simulation to demonstrate this DNA implementation is in
section 2.7.

2.4. Subtraction Gate. 2.4.1. The Chemical Reaction
Network To Inspire Our Subtraction Gate. Our subtraction
gate is inspired by the following chemical reaction network:

+ → ′Is2 S S
k1 (2a)

+ ′ → ⌀Is1 S
k2 (2b)

The subtraction gate computes ps = s1 − s2, where s1 > s2 is
required (see abstraction in Figure 2). Is1 and Is2 are input
chemical species to the gate, where their initial concentrations
[Is1]0, [Is2]0 represent the two inputs s1 and s2, respectively,
which means s1 = [Is1]0 and s2 = [Is2]0. The subtraction gate
is composed of chemical species S. To have an input range of
(0, rs) which means s1,s2 ∈ (0,rs), we let the initial
concentrations be [S]0 = rs. S′ is an intermediate product.
The concentration of Is1 at equilibrium [Is1]∞ represents ps.
As shown in reactions 2a and 2b, Is2 and Is1 cancel each
other in pairs which leaves [Is1]∞ = [Is1]0 − [Is2]0
concentration of Is1, and then we have ps = s1 − s2. If s1 ≤

Figure 2. Abstractions of our analog DNA gates: (left) addition gate;
(middle) subtraction gate; (right) multiplication gate.

Figure 3. DNA design of our addition gate. Each of A1 and A2 in
the original chemical reaction network is implemented by three DNA
species (e.g., A1 is implemented by Fa, Ga1 and Da1). Initial
concentrations are [Ga1]0 = [Da1]0 = [Ga2]0 = [Da2]0 = ra, and
[Fa]0 = 2ra because it is in both A1 and A2, where (0,ra) is the input
range. The gray domains are branch migration domains of twenty
nucleotides in length. The color domains are toeholds of five
nucleotides in length. All DNA figures are drawn by Visual DSD28 in
this paper.
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s2, all Is1 will be consumed and the result is just 0. There are
no constraints on rate constants k1 and k2.

2.4.2. DNA Implementation of Our Subtraction Gate. As
shown in Figure 6, Is1 and Is2 are two input DNA strands.

Figure 4. DNA reactions diagram in the addition gate. Each reaction is assigned a number. Edges without arrows represent reactants. Edges with
hollow arrows represent products. In reversible reactions, hollow arrows represent the products of the forward reactions and solid arrows
represent the products of the reverse reactions.

Figure 5. A list of the DNA reactions in the addition gate. Each reaction is assigned a number, which is consistent with Figure 4. The rate
constants in such lists in this paper are discussed in section 4.
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Their initial concentrations [Is1]0 and [Is2]0 represent s1 and
s2, respectively. The concentration of Is1 at equilibrium [Is1]∞
represents ps. S in the original chemical reaction network is
implemented by two DNA complexes Gs and Ds. The DNA
reactions in the subtraction gate are shown in Figures 7 and 8.
The relationship between the original chemical reaction
network and DNA reactions is shown in Table 2. The
simulation to demonstrate this DNA implementation is in
Section 2.7.
2.5. Multiplication Gate. 2.5.1. The Chemical Reaction

Network To Inspire Our Multiplication Gate. Our multi-
plication gate is inspired by the following chemical reaction
network:

+ →Im1 M1 Im1a
ks (3a)

+ → +Im2 M2 Im2a Im2b
kf (3b)

+ → ′Im2a M3 G m3
k1 (3c)

+ → ⌀Im2b Gm4
k2 (3d)

+ → ⌀Im1a Gm4
k3 (3e)

+ ′ →Im1a G m3 Om1
k3 (3f)

+ → + + +  Om1 amplifier Om Om .. Om
k

r Om

4

m (3g)

The multiplication gate computes pm = m1m2 (see abstraction
in Figure 2). Im1 and Im2 are input chemical species to the
gate, where their initial concentrations [Im1]0, [Im2]0
represent the two inputs m1 and m2, respectively, which
means m1 = [Im1]0 and m2 = [Im2]0. The multiplication gate
is composed of chemical species M1, M2, M3, Gm4 and
“amplifier”. To have an input range of (0, rm) which means
m1,m2 ∈ (0,rm), we let the initial concentrations be [M1]0 =
[M2]0 = [M3]0 = [Gm4]0 = [amplifier]0 = rm. Om is the
output chemical species of this gate and its concentration at
equilibrium [Om]∞ represents pm. All other chemical species
are intermediate products. For the reaction rate constants, we
have a requirement that ks ≪ kf, k1, k2.
We now describe how the chemical reaction network will

perform multiplication in the ideal situation. Note that all the
following description is not a mathematical proof for the
performance of the chemical reaction network, and we just
expect or conjecture that the chemical reaction network in the
ideal situation will perform this way. There is no explicit
solution to the ordinary differential equations of this chemical
reaction network. To demonstrate our design, we will do a
stochastic model-checking for fixed numbers of molecules for
this chemical reaction network. Also, in section 2.7, we will
show the simulation results of the DNA implementation of
our multiplication gate.
The ideal situation is an extreme case of the requirement ks

≪ kf, k1, k2, where reactions 3b, 3c and 3d finish first, then
reaction 3a starts to produce Im1a, and then reactions 3e and
3f start to work. It means that before reactions 3a, 3e, and 3f
start to work, reactions 3b, 3c, and 3d have finished and made
the concentration ratio between G′m3 and Gm4 be

′ =
−

=
−r
m

r m
[G m3]
[Gm4]

[Im2]
[Im2]

0

m 0

2

m 2

Let the reaction volume be V. Reaction 3b produces [Im2]0V
amount of Im2a, and then reaction 3c produces [Im2]0V
amount of G′m3. Reaction 3b also produces [Im2]0V amount
of Im2b, and then reaction 3d consumes [Im2]0V amount of
Gm4, which means that [Gm4]0V − [Im2]0V amount of Gm4
is left. Therefore, the concentration ratio between G′m3 and

Gm4 will be =
− −

V
V V

m
r m

[Im2]
[Gm4] [Im2]

0

0 0

2

m 2
.

Given that reactions 3e and 3f have the same rate constant,
we expect that the Im1a produced by reaction 3a will be
distributed to reactions 3e and 3f according to the
concentration ratio between Gm4 and G′m3 that we
calculated above. This means that

+ −
m

m r m( )
2

2 m 2
portion of

Table 1. Relationship between the Original Chemical
Reaction Network and DNA Reactions in the Addition
Gatea

abstract chemical reaction DNA reactions

1a 1, 2, 3, and 4
1b 5, 6, 7, and 8

aEach abstract chemical reaction is implemented by several DNA
reactions. The DNA reactions corresponding to the numbers are
shown in Figures 4 and 5.

Figure 6. DNA design of subtraction gate. S in the original chemical
reaction network is implemented by two DNA complexes Gs and Ds.
Initial concentrations are [Gs]0 = [Ds]0 = rs, where (0,rs) is the input
range. The gray domains are branch migration domains of twenty
nucleotides in length. The color domains are toeholds of five
nucleotides in length.

Figure 7. DNA reactions in the subtraction gate. Each reaction is
assigned a number.
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Im1a will be consumed by reaction 3f and then the
concentration of Om1 at equilibrium is

=
+ −

=∞ m
m

m r m
m m

r
[Om1]

( )1
2

2 m 2

1 2

m

if we ignore reaction 3g. By adding an amplification reaction,
3g, we have the concentration of Om at equilibrium be

= = =∞ r
m m

r
m m[Om] [Im1] [Im2]m

m

1 2
1 2 0 0

where we use [Om]∞ to represent the output of our
multiplication gate.
To support our design, we conducted a stochastic model-

checking for fixed numbers of molecules for the chemical
reaction network in the ideal situation. To simplify the
simulation, we ignore reactions 3b, 3c, and 3d (also 3g).

Instead, we directly set up the concentration ratio ′[G m3]
[Gm4]

0

0
and

check how Im1a is distributed between reactions 3e and 3f.
Here we use the same notation for the number of molecules
as the notation for concentration. There is no constraint on
the relationship between ks and k3, and then we just let ks =
k3 = 0.01 s−1. Note that in stochastic simulation of chemical
reaction networks, s−1 is the unit of rate constants in
bimolecular reactions. The simulation is done by Language for
Biochemical Systems (LBS)27 in a beta version of Visual
GEC.29

First, we check the expected number of Om1 molecules at
equilibrium, and we expect that

=
′

′ +∞E[[Om1] ] [Im1]
[G m3]

[G m3] [Gm4]0
0

0 0

where E[] denotes expectation. Let [M1]0 be 30 (number of
molecules), [Im1]0 be 10. We vary [G′m3]0 and [Gm4]0. The
numbers (of molecules) we choose here do not have special

meanings, and it is just that we have to give specific numbers
for a stochastic model check. To speed up the simulation, we
choose small numbers. The simulation results are shown in
Table 3. In all cases, the results show that E[[Om1]∞] is as

expected. We believe that E[[Om1]∞] in this stochastic
model is the value of [Om1]∞ in the deterministic model
when there are large number of molecules in the system.

Next, we check ∞

∞E
Var[[Om1] ]

[[Om1] ]
, where Var[] denotes variance.

Let [M1]0 be 30. Let both [G′m3]0 and [Gm4]0 be 30. We

vary [Im1]0 and expect that ∞

∞E
Var[[Om1] ]

[[Om1] ]
becomes smaller when

[Im1]0 gets larger. The simulation results are shown in Table
4. The results are consistent with what we expect. It implies
that larger inputs to our multiplication gate yield relatively
smaller errors in the outputs.

In a realistic DNA system, we know that we cannot have
the ideal situation which is the extreme case of the
requirement ks ≪ kf, k1, k2, so computation errors are
expected.

2.5.2. DNA Implementation of Our Multiplication Gate.
As shown in Figure 9, Im1 and Im2 are two input DNA
strands. Their initial concentrations [Im1]0 and [Im2]0

Figure 8. A list of the DNA reactions in the subtraction gate. Each reaction is assigned a number, which is consistent with Figure 7.

Table 2. Relationship between the Original Chemical
Reaction Network and DNA Reactions in the Subtraction
Gatea

abstract chemical reaction DNA reactions

2a 1, 2, and 3
2b 4

aEach abstract chemical reaction is implemented by one or several
DNA reactions. The DNA reactions corresponding to the numbers are
shown in Figures 7 and 8.

Table 3. Simulation Results for Checking the Expected
Number of Om1 molecules at equilibrium (E[[Om1]∞])

a

E[[Om1]∞] [G′m3]0 [Gm4]0

7.5 30 10
6.67 20 10
5 10 10
3.33 10 20
2.5 10 30

aIn all cases, the results show that

=
′

′ +∞E[[Om1] ] [Im1]
[G m3]

[G m3] [Gm4]0
0

0 0

Table 4. Simulation Results for Var[[Om1]∞]/E[[Om1]∞]
a

[Im1]0 5 10 15 20 25 30

∞
∞E

Var[[Om1] ]
[[Om1] ] 0.43 0.29 0.23 0.18 0.15 0.13

aThe results show that ∞

∞E
Var[[Om1] ]

[[Om1] ]
becomes smaller when [Im1]0 gets

larger.
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represent m1 and m2, respectively. Om is the output DNA
strand and its concentration at equilibrium [Om]∞ represents
pm. Each of M1, M2, and M3 is implemented by several DNA
species, in which a DNA species is a DNA strand or complex.
The design of the amplifier is shown in Figure 15. The DNA
reactions in the multiplication gate are shown in Figures 10,
11, 12, 13, and 14. The relationship between the original
chemical reaction network and DNA reactions is shown in
Table 5.
To make reaction 3a much slower than reactions 3b, 3c,

and 3d (ks ≪ kf, k1, k2), we slow down DNA reaction 1
(forward), in which domain n1 of Im1 is modified such that
there are mismatches when Im1 displaces sp17, and then the
toehold-mediated strand displacement is slowed down. In the
simulation of this paper, we let the strand displacement be
slowed down by 2 orders of magnitude. To make reactions 3e
and 3f have the same rate constant, we let the two toehold-
mediated strand displacement reactions 12 and 13 have the
same toehold g and branch migration domain n5−h (5′ to 3′
direction). The simulation to demonstrate this DNA
implementation is in section 2.7.
2.5.3. Related Work on DNA Multiplication Gate. Zhang

et al.30 proposed a DNA-based amplifier that has fixed gain.
The concentration of the product of their amplifier at
equilibrium is αI0, where I0 is the initial concentration of the
input DNA strand and constant α is the gain of the amplifier.
Genot et al.31 also developed a method by which they can
multiply a number (represented by the concentration of a
DNA strand) by a constant. Both their work is a preliminary
step toward designing a multiplication gate. They can multiply
the input by a constant. The input is represented by the
concentration of an input DNA strand and the constant is
encoded by the concentrations of the components of their

amplifiers. Lakin et al.32 developed a two-input multiplier but
their multiplier is not autonomous, which means that, in order
to make the multiplier work as desired, the input DNA
strands to the multiplier need to be separately added into the
solution manually at designated times.

2.6. Leak Reactions. Thus, far, we have only described
the designed reactions of the three gates. Here we discuss
potential leak reactions (unintended reactions). As shown in
Figure 17, the main leak reaction (reaction 1) in the addition
gate is caused by strand Fa, where Fa is able to displace Oa
even in the absence of the input strand Ia1. This kind of leak
reaction also happens between Ga2 and Fa in the addition
gate. The reason why this can happen is that the base pairs in
the circled part of Ga1 can be temporary broken and create a
toehold for Fa. This kind of leak is typical in systems based
on DNA strand displacement. To reduce the leak, we can use
some design techniques such as manipulating sequence
design, incorporating clamps, etc.2−4,6,7,33−35 Both the
subtraction and multiplication gates suffer from the same
leak mechanism. The leak (reaction 2) in the subtraction gate
is that Is1 can invade Gs and displace the v1 domain even if
there is no Is2. The leak in the multiplication gate is caused
by strands Fm1 and Fm2 (reactions 3 and 4). In the amplifier
of the multiplication gate, there is also such leak (reaction 5).
The leak reactions will cause errors for the gates. As we

said in the description of the gates, we use the concentration
of the output strand of a gate at equilibrium to represent the
output of this gate, if we do not consider leaks. If we want to
evaluate the performance of a gate under particular inputs, we
just need to check the percentage difference between the
output of the gate (concentration of the output strand at
equilibrium) and the theoretically correct result.
With leaks, we cannot use the concentration of the output

strand at equilibrium to evaluate the performance of a gate,
because the leak reactions will keep generating output until it
reaches the maximum output value that a gate can provide.
Instead, we use the time that the output stays within the valid
output range (see its definition in section 2.1.2) to quantify
the performance of a gate under particular inputs. In this
paper, we use r = 0.05 to define the valid output range (see
the meaning of r in section 2.1.2).

2.7. Simulation Results of the Gates. For each gate, we
performed the simulation for three input ranges (0,1), (0,2),
and (0,4). Later, we will use gates within these input ranges to
build analog DNA circuits to compute polynomials. The
model of simulation is discussed in section 4.
Figures 18, 19, and 20 shows an example for each gate for

input ranges (0,1), (0,2), and (0,4), respectively, to give an
intuitive sense of how our gates execute. The ranges between
the red dotted line and green dotted line are the valid output
ranges. The output stays in the valid output range for a long
period in each case. The summary of the gates’ performance is
shown in Figures 21, 22, and 23, and they show how long the
output stays within the valid output range for each
combination of inputs. We observe that the output stays in
the valid output range for a longer period when the inputs are
larger because the influence of leak is relatively smaller for
larger inputs. The simulated reaction time is 7.2 × 105

seconds (200 h) and “simulated reaction time” is for how
long we predict the reaction by simulation.

2.8. Strategy To Construct Analog DNA Circuits. Our
analog gates are modular, which means that the input and
output strands have the same motif. This property confers

Figure 9. DNA design of our multiplication gate. Each of M1, M2,
and M3 in the original chemical reaction network is implemented by
several DNA species. Initial concentrations are [Fm1]0 = [Gm1]0 =
[Dm1]0 = [Fm2]0 = [Gm2]0 = [Gm3]0 = [Dm3]0 = [Gm4]0 = rm,
where (0,rm) is the input range. The gray domains are branch
migration domains of twenty nucleotides in length. The color
domains are toeholds of five nucleotides in length.
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scalability to circuits built by our gates. The simplest strategy
of building circuits is connecting the gates together by
programming the branch migration domains’ sequences in the
output strands such that these strands can find their
designated downstream gates. The concern for this strategy
is that when we designed and simulated the single gates, we

assumed that the inputs were “static” which means that they
were fully prepared at the moment that the gates started to
work. However, when a gate is part of a circuit, its input may
be “dynamic”, which means that the inputs are dynamically
(or gradually) produced by other gates, and this may
influence the performance of our gates.

Figure 10. DNA reactions in the multiplication gate. Each reaction is assigned a number.

Figure 11. A list of the DNA reactions in the multiplication gate (part 1). Each reaction is assigned a number, which is consistent with Figure 10.
Reaction 1 (forward) is slowed down by modifying domain n1 of Im1 such that there are mismatches when Im1 displaces sp17.
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Figure 12. A list of the DNA reactions in the multiplication gate (part 2). Each reaction is assigned a number, which is consistent with Figure 10.

Figure 13. A list of the DNA reactions in the multiplication gate (part 3). Each reaction is assigned a number, which is consistent with Figure 10.

Figure 14. A list of the DNA reactions in the multiplication gate (part 4). Each reaction is assigned a number, which is consistent with Figure 10.

Figure 15. Design of a 2 × amplifier, where one Om1 strand
generates two Om strands. We can choose rm as a power of 2. For rm
= 2n, we just need to connect n layers of such 2× amplifiers in series
to get a 2n× amplifier. The maximum possible input of layer-0
(represented by [Om1]) is = =r 2r r

r
n

m
m m

m
as the calculation in

section 2.3.1 with m1 = m2 = rm. Therefore, the maximum possible
input of layer i is 2n+i (0 ≤ i ≤ n − 1). In layer i, we let the initial
concentrations of the DNA strand F and the DNA complex A be
2n+i, such that the amplifier can afford the maximum possible input.
The reactions in the amplifier are shown in Figure 16. The two Om
strands are identical in terms that only the i−n7 (5′ to 3′ direction)
part in the two strands matters in further reactions.

Figure 16. DNA reactions in a 2× amplifier.
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This concern is common for all kinds of analog systems.
Analog systems have the property that they do not restore the
signal for each stage and only the output signal is robust. We
have some methods to mitigate this problem in our
architecture. The addition gate is not influenced much by
this issue because it is essentially just a transducer and it does
not matter much how the inputs arrive. For the subtraction
gate, if either input comes earlier, it can simply wait for the
other one. Eventually, the cancellation between Is1 and Is2
will be finished, and the remaining Is1 will serve as output
strands. For the multiplication gate, we make input strand
Im2 be prepared in a “static” fashion such that the desired
concentration ratio between G′m3 and Gm4 is formed as
early as possible. Im1 can be prepared in a “dynamic” fashion
by another gate, and this also gives more time to the
formation of the concentration ratio. For example, in Figure
25, for all multiplication gates, the Im2 input strands (the
input on the right) are prepared in a “static” fashion, not
dynamically (or gradually) produced by another gate.
Note that one issue for the subtraction gate is that input

strand Is1 can skip this gate to react with a downstream gate
because Is1 serves both as input and output strands (e.g., in
Figure 24). This issue can be solved by using only one
subtraction gate in a circuit and placing it at the output port
of the circuit (e.g., Figure 27), such that its output strand

does not interact any downstream gate. For example, a
polynomial function f(x) = 3x4 − 2x3 + 5x − 1 can be
transformed to f(x) = (3x4 + 5x) − (2x3 + 1), which only has
one subtraction operation. Since we require s1 > s2 in our
subtraction gate, circuits constructed by our architecture can
only accept x such that f(x) = (3x4 + 5x) − (2x3 + 1) > 0.
This transformation does not increase the number of gates
needed and the only difference is that the circuit needs two
subtraction gates and one addition gate for the original
polynomial, but it needs one subtraction gate and two
addition gates for the transformed polynomial.
In the following sections, we will first present the

construction of analog DNA circuits to compute polynomial
functions of inputs. We show two examples: a circuit to
compute

= + +
!

+
!

f x x
x x

( ) 1
2 3

2 3

for 0 < x < 1, and a circuit to compute g(x,y) = 2y − y2x, for
x,y ∈ (0,2) and g(x,y) > 0. Then we use these two circuits to
construct circuits that compute nonpolynomial functions by
strategies such as Taylor Series and Newton Iteration.

2.9. An Analog DNA Circuit To Compute f(x) = 1 + x
+ x2/2! + x3/3! for 0 < x < 1. Figure 25 shows an analog
DNA circuit to compute

= + + ! + !f x x x x( ) 1 /2 /32 3

for 0 < x < 1. Each gate is assigned a number for the
convenience to describe the circuit. If the output strand of a
gate serves as the input strand of another gate, we put a wire
to connect the corresponding output and input ports, which
means that we unify the input and output DNA strands such
that these two gates can communicate. Wires that have a gate
only at one end indicate the inputs or the output of the
circuit. Each wire is assigned a formula which describes an
input of the circuit or what the subcircuit under the wire
computes. The input ranges of the gates are chosen according
to the upper bound of the inputs that a gate may encounter
in the circuit.

Table 5. Relationship between the Original Chemical
Reaction Network and DNA Reactions in the
Multiplication Gatea

abstract chemical reaction DNA reactions

3a 1, 2, 3, and 4
3b 5, 6, and 7
3c 8, 9, and 10
3d 11
3e 12
3f 13

aEach abstract chemical reaction is implemented by one or several
DNA reactions. The DNA reactions corresponding to the numbers are
shown in Figures 10, 11, 12, 13, and 14.

Figure 17. Main leak reactions in our DNA gates: reaction 1 in the addition gate; reaction 2 in the subtraction gate; reactions 3, 4, and 5 in the
multiplication gate.
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Figure 18. Examples to show the execution of our gates when the input range is (0,1). The vertical axes represent the concentrations of output
DNA strands. The ranges between the red and green dotted lines are the valid output ranges. We do not show the curves for the whole
simulated period (7.2 × 105 seconds) for the convenience to see the shapes of the curves at the early stage.

Figure 19. Examples to show the execution of our gates when the input range is (0,2). The vertical axes represent the concentrations of output
DNA strands. The ranges between the red and green dotted lines are the valid output ranges. We do not show the curves for the whole
simulated period (7.2 × 105 seconds) for the convenience to see the shapes of the curves at the early stage.

Figure 20. Examples to show the execution of our gates when the input range is (0,4). The vertical axes represent the concentrations of output
DNA strands. The ranges between the red and green dotted lines are the valid output ranges. We do not show the curves for the whole
simulated period (7.2 × 105 seconds) for the convenience to see the shapes of the curves at the early stage.

Figure 21. Performance of the gates when the input range is (0,1). The color represents log2(t) where t is the time (seconds) that the output
stays within the valid output range. log2(t) is used instead of t simply for convenience in plotting.

Figure 22. Performance of the gates when the input range is (0,2). The color represents log2(t) where t is the time (seconds) that the output
stays within the valid output range. log2(t) is used instead of t simply for convenience in plotting.
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2.9.1. Simulation of the Circuit To Compute f(x). The rate
constants used are the same as those for evaluating the gates
(see section 4). The simulation is done for all x ∈ {0.01, 0.02,
..., 0.99}. The benchmark to quantify the performance of the
circuit is the time that the output stays within the valid output
range (between 0.95f(x) and 1.05f(x)) during the 7.2 × 105

seconds that we simulated. Figure 26a shows an example of
how our circuit executes when x = 0.7. The range between
the red dotted line and green dotted line is the valid output
range. The quick growth of the output at the beginning is due
to gate 3 (addition gate) which operates faster than the
multiplication gates. The slow growth later is mainly from the
multiplication gates which operate slower. A summary of our
simulation data is shown in Figure 26b. It is observed that the
output for larger inputs stays in the valid output range for a
longer time because the influence of leak reactions is relatively
smaller for larger inputs.
2.10. An Analog DNA Circuit To Compute g(x,y) = 2y

− y2x for x,y ∈ (0,2) and g(x,y) > 0. Figure 27 shows an
analog DNA circuit to compute g(x,y) = 2y − y2x for x,y ∈
(0,2) and g(x,y) > 0. The simulation is done for all
combinations of x and y, where x,y ∈ {0.1, 0.2, ..., 1.9} and
g(x,y) > 0. The benchmark to quantify the performance of the
circuit is the time that the output stays within the valid output
range (between 0.95g(x,y) and 1.05g(x,y)) during the 7.2 ×
105 seconds that we simulated. Figure 28a shows how the
circuit executes when x = 0.5 and y = 1. The output went up
first because it was produced by a subtraction gate (gate 1)
and the input strands Is1 of gate 1 came sooner than the
input strands Is2, because Is1 was produced by an addition
gate (gate 2) but Is2 was produced by a subcircuit composed
of two multiplication gates (gate 3 and gate 4). The output
eventually went down because of the cancellation reactions in
gate 1. The time that the output stayed in the valid output

range during its growth did not count to the benchmark. A
summary of our simulation data is shown in Figure 28b.

2.11. Analog DNA Circuits for Nonpolynomial
Functions. Here we discuss how to build analog DNA
circuits to compute nonpolynomial functions. The first
strategy is using Taylor Series to approximate nonpolynomial
functions by polynomial functions. For example, by Taylor
Series, we have

≈ = + +
!

+
!

x f x x
x x

exp( ) ( ) 1
2 3

2 3

Figure 23. Performance of the gates when the input range is (0,4). The color represents log2(t) where t is the time (seconds) that the output
stays within the valid output range. log2(t) is used instead of t simply for convenience in plotting.

Figure 24. Is1 can skip gate 1 and go to gate 2.

Figure 25. A circuit to compute f(x) = 1 + x + x2/2! + x3/3! for 0 <
x < 1. Each wire is assigned a formula which describes an input of
the circuit or what the subcircuit under the wire computes. Each gate
is assigned a number for the convenience to describe the circuit
design. The input ranges of gate 2, gate 4, gate 5, gate 6, gate 7, and
gate 8 are (0,1). The input range of gate 1 is (0,4). The input range
of gate 3 is (0,2). The input ranges are chosen according to the
upper bound of the inputs of a gate may encounter in the circuit.
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and the error is small when 0 < x < 1. Therefore, we can use
the circuit in section 2.9 to compute exp(x) with good
approximation when 0 < x < 1.
The second strategy is using the Newton Iteration. For

example, a circuit that computes =r x( )
x
1 for 0.5 < x < 1:

The Newton Iteration formula to compute =r x( )
x
1 is Yn+1 =

2Yn − Yn
2x, where =

→∞
Ylim

n
n x

1 . The circuit for one iteration is

the same as that to compute g(x,y) = 2y−y2x, for x,y ∈ (0,2)
and g(x,y) > 0. Each iteration can work well according to the
simulation results of the circuit to compute g(x,y). The only
issue is to let the iterations happen sequentially. This can be
done by adding the circuit for each iteration sequentially as
shown in Figure 29. Note that the sequence designs for
different iterations are different to prevent the crosstalk
among iterations.

3. DISCUSSION
In this paper, we proposed an architecture for systematic
construction of DNA circuits to perform analog arithmetic
computation. There are three elementary gates in our
architecture. On the basis of these gates, we can build
circuits to compute polynomial functions of inputs. Functions
beyond the scope of polynomials may also be approximately
computed using the techniques that we suggested. Analog
computation has certain advantages over digital computation
for some applications and this motivated our work.
The prior work on analog computation has explored the

computation power of chemical reaction networks
(CRNs).36−40 For example, Chen et al. showed that
semilinear functions can be computed by CRNs. Their work
investigates the computation by CRNs in general from a high-
level perspective, while we propose concrete DNA systems.
These theory works can be very useful in motivating the
design of DNA systems. The current work on analog DNA
systems has mainly focused on developing DNA circuits to
generate continuous dynamics at both theoretical and
experimental aspects.8,9,11,12 These works are mainly based
on some general schemes to implement arbitrary chemical
reaction networks (CRNs) with DNA strand displacement
circuits.10,13 There is still a need of detailed exploration on
analog arithmetic computation by DNA circuits.
To improve the performance of our DNA gates, the main

work that should be done is leak reduction. The errors caused
by the leak reactions keep growing over time until the gates

Figure 26. (a) Execution of the circuit to compute f(x) when x =
0.7. We do not show the curve for the whole simulated period (7.2
× 105 seconds) for the convenience to see the shape of the curve at
the early stage. (b) Performance of the circuit to compute f(x),
where t is the time (seconds) that the output stays in the valid
output range. log2(t) is used for the vertical axis instead of t simply
for convenience in plotting.

Figure 27. A circuit to compute g(x, y) = 2y − y2x for x, y ∈ (0,2)
and g(x, y) > 0. Each wire is assigned a formula which describes an
input of the circuit or what the subcircuit under the wire computes.
Each gate is assigned a number for the convenience to describe the
circuit design. The input range of gate 1 and gate 3 is (0,4). The
input range of gate 2 and gate 4 is (0,2). The input ranges are
chosen according to the upper bound of the inputs of a gate may
encounter in the circuit.

Figure 28. (a) Execution of the circuit to compute g(x,y) when x =
0.5, y = 1. We do not show the curve for the whole simulated period
(7.2 × 105 seconds) for the convenience to see the shape of the
curve at the early stage. (b) Performance of the circuit to compute
g(x,y). The color represents log2(t) where t is the time (seconds)
that the output stays within the valid output range. log2(t) is used
instead of t simply for convenience in plotting. The unplotted part at
the upper-right corner is where g(x,y) > 0 is not satisfied.

Figure 29. Assume that the circuit for iteration n (Cn) starts to work
at time tn. At tn′, the output Yn+1 is already in the desirable range and
we add fanout gate Fn to the reaction tube to prepare the inputs for
Cn+1. At tn+1, the Yn+1 outputs from Fn are ready and we add Cn+1
with input x. Each time we add fanout gate or circuit for the next
iteration to the reaction tube, it should be a tiny volume of
concentrated solution to minimize dilution. We want to reduce
dilution because it will cause error if we want circuits for all
iterations to perform at roughly the same concentration. The time
points, e.g., tn′, tn+1, can be estimated by simulation.
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are used up. This is not particular for our DNA gates. Leak is
a common issue for DNA strand displacement circuits. The
slow-down mechanism in reaction 1 (forward) (see Figure
11) is important to the performance of our multiplication
gate, because it decides the extent that the DNA
implementation fulfills the requirement of ks ≪ kf, k1, k2 in
the high-level chemical reaction network of our multiplication
gate.

4. METHODS
We simulated our gates by Language for Biochemical Systems
(LBS).27 To speed up the simulation, we used MATLAB
(MathWorks) to run the code produced from LBS by Visual
GEC.29 We also used MATLAB to visualize our simulation
data. The simulation of stochastic model-checking is done by
Language for Biochemical Systems (LBS)27 in a beta version
of Visual GEC.29 All DNA figures are drawn by Visual DSD.28

Analog gates process continuous signals, and we cannot
perform simulations for all the possible inputs. The sampling
scheme, using the example of the addition gate, picks all
combinations of a1 and a2, where a1,a2 ∈ {0.1, 0.2, ..., ra −
0.1} where (0, ra) is the input range. It is the same scheme for
the subtraction and multiplication gates. For the subtraction
gate, we also require s1 > s2. The benchmark to quantify the
performance of a gate is the time that the output stays within
the valid output range.
The rate constant of toehold binding is 2 × 10−3 nM−1 s−1

for toeholds that are five nucleotides long.3 The rate constant
of toehold unbinding is 10 s−1 for toeholds that are five
nucleotides long.3 The rate constant of branch migration is
8000/x2 s−1,41 where x is the length of branch migration
domain. Using mismatches, we can tune the speed of DNA
strand displacement in a wide range.42 We assume that, by
modifying the n1 domain of Im1 of the multiplication gate
such that there are mismatches when Im1 displaces sp17, the
rate constant of the branch migration is reduced by 2 orders
of magnitude, which is

×
| |

= −

n
0.01

8000
1

0.2s2
1

where |n1| is the length of domain n1. The leak rate constant
is 5 × 10−9 nM−1 s−1.8 We choose 5 nM as the unit for
concentration in the simulation.
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