Section 3.5

Which of the following languages are CFL?

- \(L = \{a^n b^n c^j \mid 0 < n \leq j \} \)
- \(L = \{a^n b^i a^n b^j \mid n > 0, j > 0 \} \)
- \(L = \{a^n b^i a^k b^p \mid n + j \leq k + p, n > 0, j > 0, k > 0, p > 0 \} \)

Pumping Lemma for Regular Languages: Let \(L \) be a regular language. Then there is a constant \(m \) such that \(w \in L \mid |w| \geq m \implies w = xyz \) such that

- \(|xy| \leq m \)
- \(|y| \geq 1 \)
- for all \(i \geq 0 \), \(xy^iz \in L \)

Pumping Lemma for CFL’s Let \(L \) be any infinite CFL. Then there is a constant \(m \) depending only on \(L \) such that for every string \(w \) in \(L \) with \(|w| \geq m \) we may partition \(w = uvxyz \) such that:

\[
|uvx| \leq m \Gamma \text{(limit on size of substring)}
\]
\[
|vy| \geq 1 \Gamma \text{(} v \text{ and } y \text{ not both empty)}
\]
For all \(i \geq 0 \), \(uv^i xy^iz \in L \)

Proof: (sketch) There is a CFG \(G \) s.t. \(L = L(G) \).
Consider the parse tree of a long string in \(L \).
For any long string, some nonterminal \(N \) must appear twice in the path.
Example: Consider \(L = \{a^n b^n c^n : n \geq 1\} \). Show \(L \) is not a CFL.

- **Proof:** (by contradiction)

 Assume \(L \) is a CFL and apply the pumping lemma.

 Let \(m \) be the constant in the pumping lemma and consider \(w = a^m b^m c^m \). Note \(|w| \geq m \).

 Show there is no division of \(w \) into \(uvxyz \) such that \(|vy| \geq 1, |vxy| \leq m \) and \(uv^i xy^i z \in L \) for \(i = 0, 1, 2, \ldots \).

 Case 1: Neither \(v \) nor \(y \) can contain 2 or more distinct symbols. If \(v \) contains \(a \)'s and \(b \)'s then \(uv^2 xy^2 z \notin L \) since there will be \(b \)'s before \(a \)'s.

 Thus \(v \) and \(y \) can be only \(a \)'s, \(b \)'s, or \(c \)'s (not mixed).

 Case 2: \(v = a^t \Gamma \) then \(y = a^{t_2} \) or \(b^{t_3} (|vxy| \leq m) \)

 If \(y = a^{t_2} \Gamma \) then \(uv^2 xy^2 z = a^{m+t_1+t_2} b^m c^m \notin L \) since \(t_1 + t_2 > 0 \Gamma n(a) > n(b)'s \) (number of \(a \)'s is greater than number of \(b \)'s)

 If \(y = b^{t_3} \Gamma \) then \(uv^2 xy^2 z = a^{m+t_1+t_3} b^{t_2} c^m \notin L \) since \(t_1 + t_3 > 0 \Gamma n(a) > n(c)'s \) or \(n(b) > n(c)'s \).

 Case 3: \(v = b^{t_3} \Gamma \) then \(y = b^{t_2} \) or \(c^{t_3} \)

 If \(y = b^{t_3} \Gamma \) then \(uv^2 xy^2 z = a^{m+t_2+t_3} b^m c^m \notin L \) since \(t_1 + t_3 > 0 \Gamma n(b) > n(a)'s \).

 If \(y = c^{t_3} \Gamma \) then \(uv^2 xy^2 z = a^{m_3} b^{t_1+t_3} c^m \notin L \) since \(t_1 + t_3 > 0 \Gamma n(b) > n(a)'s \) or \(n(c) > n(a)'s \).

 Case 4: \(v = c^{t_3} \Gamma \) then \(y = c^{t_2} \)

 then \(uv^2 xy^2 z = a^{m} b^{t_1+t_3} c^{t_2} \notin L \) since \(t_1 + t_2 > 0 \Gamma n(c) > n(a)'s \).

 Thus there is no breakdown of \(w \) into \(uvxyz \) such that \(|vy| \geq 1, |vxy| \leq m \) and for all \(i \geq 0 \), \(uv^i xy^i z \) is in \(L \). Contradiction \(\Gamma \) thus \(L \) is not a CFL. Q.E.D.
Example Why would we want to recognize a language of the type \(\{ a^n b^n c^n : n \geq 1 \} \)?

Example: Consider \(L = \{ a^n b^n c^p : p > n > 0 \} \). Show \(L \) is not a CFL.

- **Proof**: Assume \(L \) is a CFL and apply the pumping lemma. Let \(m \) be the constant in the pumping lemma and consider \(w = \ldots \). Note \(|w| \geq m \).

 Show there is no division of \(w \) into \(uvxyz \) such that \(|vy| \geq 1 \Gamma |xy| \leq m \Gamma \) and \(uv^i xy^i z \in L \) for \(i = 0, 1, 2, \ldots \).

Thus there is no breakdown of \(w \) into \(uvxyz \) such that \(|vy| \geq 1 \Gamma |xy| \leq m \) and for all \(i \geq 0 \Gamma uv^i xy^i z \) is in \(L \). Contradiction. Thus \(L \) is not a CFL. Q.E.D.
Example: Consider \(L = \{a^ib^k : k = j^2\} \). Show \(L \) is not a CFL.

- **Proof:** Assume \(L \) is a CFL and apply the pumping lemma. Let \(m \) be the constant in the pumping lemma and consider \(w = \ldots \)

Show there is no division of \(w \) into \(uvxyz \) such that \(|vy| \geq 1 \Gamma |vxy| \leq m \Gamma \) and \(uv^ixy^iz \in L \) for \(i = 0, 1, 2, \ldots \).

Case 1: Neither \(v \) nor \(y \) can contain 2 or more distinct symbols. If \(v \) contains \(a \)'s and \(b \)'s then \(uv^2xy^2z \notin L \) since there will be \(b \)'s before \(a \)'s.

Thus \(v \) and \(y \) can be only \(a \)'s and \(b \)'s (not mixed).

Thus there is no breakdown of \(w \) into \(uvxyz \) such that \(|vy| \geq 1 \Gamma |vxy| \leq m \Gamma \) and for all \(i \geq 0 \Gamma uv^ixy^iz \) is in \(L \). Contradiction. Thus \(L \) is not a CFL. Q.E.D.

Exercise: Prove the following is not a CFL by applying the pumping lemma. (answer is at the end of this handout).

Consider \(L = \{a^{2n}b^pe^n : n, p \geq 0\} \). Show \(L \) is not a CFL.
Example: Consider $L = \{w\tilde{w}w : w \in \Sigma^+\}$ where \tilde{w} is the string w with each occurrence of a replaced by b and each occurrence of b replaced by a. For example, $w = baaa \tilde{w} = abbb \tilde{w} = baaaabbb$. Show L is not a CFL.

- **Proof:** Assume L is a CFL and apply the pumping lemma. Let m be the constant in the pumping lemma and consider $w = \underline{}$. Show there is no division of w into $uvwxyz$ such that $|vy| \geq 1I|vxy| \leq mI$ and $uv^ixy^iz \in L$ for $i = 0, 1, 2, \ldots$.

Thus, there is no breakdown of w into $uvwxyz$ such that $|vy| \geq 1I|vxy| \leq mI$ and for all $i \geq 0Iuv^ixy^iz$ is in L. Contradiction; thus L is not a CFL. Q.E.D.
Example: Consider \(L = \{a^n b^m b^n a^m\} \). \(L \) is a CFL. The pumping lemma should apply!

Let \(m \geq 4 \) be the constant in the pumping lemma. Consider \(w = a^m b^m b^n a^n \).

We can break \(w \) into \(uvxyz \) with:

\[
uv^nxy^2z
\]

If you apply the pumping lemma to a CFL then you should find a partition of \(w \) that works!

Chap 8.2 Closure Properties of CFL’s

Theorem CFL’s are closed under union, concatenation, and star-closure.

- **Proof:**

 Given 2 CFG \(G_1 = (V_1, T_1, R_1, S_1) \) and \(G_2 = (V_2, T_2, P_2, S_2) \)

 - **Union:**

 Construct \(G_3 \) s.t. \(L(G_3) = L(G_1) \cup L(G_2) \).

 \(G_3 = (V_3, T_3, R_3, S_3) \)

 - **Concatenation:**

 Construct \(G_3 \) s.t. \(L(G_3) = L(G_1) \circ L(G_2) \).

 \(G_3 = (V_3, T_3, R_3, S_3) \)
Theorem CFL’s are NOT closed under intersection and complementation.

• Proof:

 – Intersection:

 – Complementation:
Theorem: CFL’s are closed under regular intersection. If \(L_1 \) is CFL and \(L_2 \) is regular then \(L_1 \cap L_2 \) is CFL.

- **Proof:** (sketch) This proof is similar to the construction proof in which we showed regular languages are closed under intersection. We take a NPDA for \(L_1 \) and a DFA for \(L_2 \) and construct a NPDA for \(L_1 \cap L_2 \).

\[
M_1 = (Q_1, \Sigma, \Gamma, \Delta_1, q_0, z, F_1) \]

is an NPDA such that \(L(M_1) = L_1 \).

\[
M_2 = (Q_2, \Sigma, \delta_2, q'_0, F_2) \]

is a DFA such that \(L(M_2) = L_2 \).

Example of replacing arcs (NOT a Proof!):
Note this is not a proof but sketches how we will combine the DFA and NPDA. We must formally define Δ_3. If

then

Must show

if and only if

Must show:

$w \in L(M_3)$ iff $w \in L(M_1)$ and $w \in L(M_2)$.

QED.
Questions about CFL:

1. Decide if CFL is empty?

2. Decide if CFL is infinite?

Example: Consider $L = \{a^{2^n}b^{2m}c^n d^m : n, m \geq 0\}$. Show L is not a CFL.

- **Proof:** Assume L is a CFL and apply the pumping lemma. Let m be the constant in the pumping lemma and consider $w = a^{2^m}b^{2m}c^m d^m$.

Show there is no breakdown of w into $uvxyz$ such that $|vy| \geq 1, |vxy| \leq m$ and $uv^i xy^iz \in L$ for $i = 0, 1, 2, \ldots$

Case 1: Neither v nor y can contain 2 or more distinct symbols. If v contains a's and b's or y then $uv^2 xy^2 z \notin L$ since there will be b's before a's.

Case 2: $v = a^i \Gamma$ then $y = b^t$ or $b^t \Gamma$ ($|xy| \leq m$)
If $y = a^s \Gamma$ then $uv^2 xy^2 z = a^{2^{m+1}+t^2} b^{2m} c^m d^m \notin L$ since $t_1 + t_2 > 0$ the number of a's is not twice the number of c's.

If $y = b^t \Gamma$ then $uv^2 xy^2 z = a^{2m+t^2} b^{2m+t^2} c^m d^m \notin L$ since $t_1 + t_3 > 0$ either the number of a's (denoted $n(a)$) is not twice $n(c)$ or $n(b)$ is not twice $n(d)$.

Case 3: $v = b^i \Gamma$ then $y = b^t$ or c^s
If $y = b^s \Gamma$ then $uv^2 xy^2 z = a^{2m+2m^2+t^2} b^{2m} c^m d^m \notin L$ since $t_1 + t_2 > 0$ either $n(b) > 2n(d)$. or $2n(c) > n(a)$.

If $y = c^s \Gamma$ then $uv^2 xy^2 z = a^{2m+t^2} b^{2m+t^2} c^m d^m \notin L$ since $t_1 + t_3 > 0$ either $n(b) > 2n(d)$ or $2n(c) > n(a)$.

Case 4: $v = c^i \Gamma$ then $y = c^t$ or d^s
If $y = c^s \Gamma$ then $uv^2 xy^2 z = a^{2m+2m^2+t^2} b^{2m} c^m d^m \notin L$ since $t_1 + t_2 > 0$ either $2n(c) > n(a)$.

If $y = d^s \Gamma$ then $uv^2 xy^2 z = a^{2m+t^2} b^{2m+t^2} c^m d^m \notin L$ since $t_1 + t_3 > 0$ either $2n(c) > n(a)$ or $2n(d) > n(b)$.

Case 5: $v = d^i \Gamma$ then $y = d^t$
then $uv^2 xy^2 z = a^{2m+t^2} b^{2m} c^m d^{m+t^2} \notin L$ since $t_1 + t_2 > 0$ either $2n(d) > n(c)$.

Thus there is no breakdown of w into $uxyvz$ such that $|vy| \geq 1, |vxy| \leq m$ and for all $i \geq 0$ $uv^i xy^iz$ is in L. Contradiction, thus L is not a CFL. Q.E.D.