Combining Turing Machines

We will define notation that will make it easier to look at more complicated Turing machines.

1. Given Turing Machines M1 and M2
 Notation for
 - Run M1
 - Run M2

 \[
 \begin{array}{ccc}
 M1 & \rightarrow & S \quad H \quad \rightarrow \quad S' \quad H'
 \\
 \end{array}
 \]

 \[
 \begin{array}{ccc}
 M1 \rightarrow M2 & \rightarrow & S \quad H \quad z \quad z, R \quad \rightarrow \quad S' \quad H'
 \\
 \end{array}
 \]

 z represents any symbol in \(M1 \) \(\bigcup \) \(M2 \)

2. Given Turing Machines M1 and M2
 Notation for
 - Run M1
 - If \(x \) is current symbol
 - then Run M2

 \[
 \begin{array}{ccc}
 M1 & \rightarrow & S \quad H \quad \rightarrow \quad S' \quad H'
 \\
 \end{array}
 \]

 \[
 \begin{array}{ccc}
 M1 \times M2 & \rightarrow & S \quad H \quad x \quad x, R \quad \rightarrow \quad S' \quad H'
 \\
 \end{array}
 \]

 z represents any symbol in \(x \) is an element of \(M1 \) \(\bigcup \) \(M2 \)
3. Given Turing Machines M1, M2, and M3

Notation for

- Run M1
- If x is current symbol
 - then Run M2
 - else Run M3

More Notation for Simplifying Turing Machines

Suppose \(\Gamma = \{a, b, c, B\} \)

z is any symbol in \(\Gamma \),

x is a specific symbol from \(\Gamma \),

1. s - start
2. R - move right
3. L - move left
4. x - write x (and don’t move)
5. \(R_a \) - move right until you see an a
6. \(L_a \) - move left until you see an a
7. \(R_{\neq a} \) - move right until you see anything that is not an a
8. \(L_{\neq a} \) - move left until you see anything that is not an a
9. h - halt in a final state
10. \[\{a, b\} \rightarrow \] 5

If the current symbol is a or b, let \(w \) represent the current symbol.
Example

Assume input string $w \in \Sigma^+$, $\Sigma = \{a, b\}$.

If $|w|$ is odd, then write a b at the end of the string. The tape head should finish pointing at the leftmost symbol of w.

input: bab, output: babb

input: ba, output: ba

What is the running time?

Example

Assume input string $w \in \Sigma^+$, $\Sigma = \{a, b\}$, $|w| > 0$

For each a in the string, append a b to the end of the string.

input: abbabb, output: abbabbb

The tape head should finish pointing at the leftmost symbol of w.

Turing’s Thesis Any computation that can be carried out by a mechanical means can be performed by a TM.

Definition: An algorithm for a function $f: D \rightarrow \mathbb{R}$ is a TM M, which given input $d \in D$, halts with answer $f(d) \in \mathbb{R}$.
Example: \(f(x + y) = x + y, x \) and \(y \) unary numbers.

\[
\begin{align*}
\text{start with:} & \quad 111+1111 \\
\uparrow & \\
\text{end with:} & \quad 111111 \\
\uparrow &
\end{align*}
\]

Example: Copy a String, \(f(w) = w0w, w \in \Sigma^*, \Sigma = \{a, b, c\} \)

Denoted by \(C \)

\[
\begin{align*}
\text{start with:} & \quad abac \\
\uparrow & \\
\text{end with:} & \quad abac0abac \\
\uparrow &
\end{align*}
\]

Algorithm:

- Write a 0 at end of string
- For each symbol in string
 - make a copy of the symbol
Example: Shift the string that is to the left of the tape head to the right,
denoted by S_R (shift right)

Below, “ba” is to the left of the tape head, so shift “ba” to the right.

\[
\begin{align*}
\text{start with:} & \quad \text{aaBbabca} \\
\text{end with:} & \quad \text{aaBBbaca}
\end{align*}
\]

Algorithm:

- remember symbol to the right and erase it
- for each symbol to the left do
 - shift the symbol one cell to the right
- replace first symbol erased
- move tape head to appropriate position

\[
\begin{align*}
\text{Example:} & \quad \text{Shift the string that is to the right of tape head to the left,} \\
& \quad \text{denote by S_L (shift left)}
\end{align*}
\]

\[
\begin{align*}
\text{start with:} & \quad \text{babcaBba} \\
\text{end with:} & \quad \text{bacaBBba}
\end{align*}
\]

(similar to S_R)
Example: Add unary numbers

This time use shift.

Example: Multiply two unary numbers, \(f(x\cdot y) = x\cdot y \), \(x \) and \(y \) unary numbers. Assume \(x, y > 0 \).

- **start with:** 1111*11
 - ↑

- **end with:** 11111111
 - ↑