Computability A function f with domain D is *computable* if there exists some TM M such that M computes f for all values in its domain.

Decidability A problem is *decidable* if there exists a TM that can answer yes or no to every statement in the domain of the problem.

The Halting Problem

Domain: set of all TMs and all strings w.

Question: Given coding of M and w, does M halt on w? (yes or no)

Theorem The halting problem is undecidable.

Proof: (by contradiction)

- Assume there is a TM H (or algorithm) that solves this problem.
 - TM H has 2 final states: q_y represents yes and q_n represents no.
 - TM H has input the coding of TM M (denoted w_M) and input string w and ends in state q_y (yes) if M halts on w and ends in state q_n (no) if M doesn’t halt on w.

Construct TM H' from H such that H' halts if H ends in state q_n and H' doesn't halt if H ends in state q_y.

Construct TM \hat{H} from H' such that \hat{H} makes a copy of w_M and then behaves like H'. (simulates TM M on the input string that is the encoding of TM M applies M_w to M_w).

So $\hat{H}(w_M)$ runs $H'(w_M, w_M)$.

Theorem If the halting problem were decidable, then every recursively enumerable language would be recursive. Thus the halting problem is undecidable.

- **Proof**: Let L be an RE language over Σ.
 Let M be the TM such that $L=L(M)$.
 Let H be the TM that solves the halting problem.
A problem A is reduced to problem B if the decidability of B follows from the decidability of A. Then if we know B is undecidable then A must be undecidable.

State-entry problem Given TM $M = (KΣ, Γ, δ, q_0, □)^F$ state $q ∈ KΓ$ and string $w ∈ Σ^*$ is state q ever entered when M is applied to w?

This is an undecidable problem!

- **Proof:** We will reduce this problem to the halting problem.

 Suppose we have a TM E to solve the state-entry problem.

 TM E takes as input the coding of a TM M (denoted by w_M) a string w and a state q. TM E answers yes if state q is entered and no if state q is not entered.

 Construct TM E' which does the following. On input w_M and w E' first examines the transition functions of M. Whenever $δ$ is not defined for some state q_i and symbol a add the transition $δ(q_i, a) = (q, a, R)$. Let this new state q be the only final state. Let M' be the modified TM. Next $Γ$ simulate $TM E$ on input $w_M, Γw$ and q.

 TM E' determines if M halts on w. If M halts on w then $TM E'$ will enter state q in M' and answer yes. If M doesn’t halt on w then $TM E'$ will not enter state $qΓ$ so it will answer no. Since the state-entry problem is decidable E always gives an answer yes or no.

 But the halting problem is undecidable. Contradiction! Thus the state-entry problem must be undecidable. QED.

There are some more examples of undecidability in section 5.4.