Parsing

Parsing: Deciding if $x \in \Sigma^*$ is in $L(G)$ for some CFG G.

Review

Consider the CFG G:

$$
S \rightarrow Aa \\
A \rightarrow AA \mid ABa \mid \epsilon \\
B \rightarrow BBa \mid b \mid \epsilon
$$

Is ba in $L(G)$? Running time?

Remove ϵ-rules, then unit productions, and then useless productions from the grammar G above. New grammar G' is:

$$
S \rightarrow Aa \mid a \\
A \rightarrow AA \mid ABa \mid Aa \mid Ba \mid a \\
B \rightarrow BBa \mid Ba \mid a \mid b
$$

Is ba in $L(G)$? Running time?
Top-down Parser:

- Start with S and try to derive the string.

\[S \rightarrow aS \mid b \]

- Examples: LL Parser, Recursive Descent

Bottom-up Parser:

- Start with string, work backwards, and try to derive S.

- Examples: Shift-reduce, Operator-Precedence, LR Parser
We will use the following functions FIRST and FOLLOW to aid in computing parse tables.

The function FIRST:

Some notation that we will use in defining FIRST and FOLLOW.

\[
G=(V,T,R,S) \\
w,v \in (V \cup T)^* \\
a \in T \\
X,A,B \in V \\
X_\epsilon \in (V \cup T)^+
\]

Definition: \(\text{FIRST}(w) = \) the set of terminals that begin strings derived from \(w \).

- If \(w \Rightarrow av \) then \(a \) is in FIRST\((w)\)
- If \(w \Rightarrow \epsilon \) then \(\epsilon \) is in FIRST\((w)\)

To compute FIRST:

1. FIRST\((a) = \{a\}\)
2. FIRST\((X)\)
 - (a) If \(X \rightarrow aw \) then \(a \) is in FIRST\((X)\)
 - (b) IF \(X \rightarrow \epsilon \) then \(\epsilon \) is in FIRST\((X)\)
 - (c) If \(X \rightarrow Aw \) and \(\epsilon \in \text{FIRST}(A) \) then Everything in FIRST\((w)\) is in FIRST\((X)\)
3. In general, \(\text{FIRST}(X_1X_2X_3..X_K) =\)
 - \(\text{FIRST}(X_1) \)
 - \(\cup \text{FIRST}(X_2) \) if \(\epsilon \) is in FIRST\((X_1)\)
 - \(\cup \text{FIRST}(X_3) \) if \(\epsilon \) is in FIRST\((X_1)\) and \(\epsilon \) is in FIRST\((X_2)\)
 - ... \(\cup \text{FIRST}(X_K) \) if \(\epsilon \) is in FIRST\((X_1)\) and \(\epsilon \) is in FIRST\((X_2)\)...
 - and \(\epsilon \) is in FIRST\((X_{K-1})\)
 - \(\cup \{-\epsilon\} \) if \(\epsilon \notin \text{FIRST}(X_J) \) for all \(J \)
Example: \(L = \{a^n b^m c^n : n \geq 0, 0 \leq m \leq 1\} \)

\[
\begin{align*}
S & \rightarrow aSc \mid B \\
B & \rightarrow b \mid \epsilon
\end{align*}
\]

FIRST(B) =
FIRST(S) =
FIRST(Sc) =

Example

\[
\begin{align*}
S & \rightarrow BCD \mid aD \\
A & \rightarrow CEB \mid aA \\
B & \rightarrow b \mid \epsilon \\
C & \rightarrow dB \mid \epsilon \\
D & \rightarrow cA \mid \epsilon \\
E & \rightarrow e \mid fE
\end{align*}
\]

FIRST(S) =
FIRST(A) =
FIRST(B) =
FIRST(C) =
FIRST(D) =
FIRST(E) =
Definition: \(\text{FOLLOW}(X) = \) set of terminals that can appear to the right of \(X \) in some derivation.

If \(S \Rightarrow wAav \) then
\[a \text{ is in } \text{FOLLOW}(A) \]

(where \(w \) and \(v \) are strings of terminals and variables, \(a \) is a terminal, and \(A \) is a variable)

To compute FOLLOW:

1. $ is in FOLLOW(S)
2. If \(A \rightarrow wBv \) and \(v \neq \epsilon \) then
 \[\text{FIRST}(v) - \{ \epsilon \} \text{ is in FOLLOW}(B) \]
3. If \(A \rightarrow wB \) OR
 \[A \rightarrow wBv \text{ and } \epsilon \text{ is in } \text{FIRST}(v) \text{ then} \]
 \[\text{FOLLOW}(A) \text{ is in FOLLOW}(B) \]
4. $ is never in FOLLOW
Example:

\begin{align*}
 S & \rightarrow aSc \mid B \\
 B & \rightarrow b \mid \epsilon
\end{align*}

\text{FOLLOW}(S) = \\
\text{FOLLOW}(B) =

Example:

\begin{align*}
 S & \rightarrow BCD \mid aD \\
 A & \rightarrow CEB \mid aA \\
 B & \rightarrow b \mid \epsilon \\
 C & \rightarrow dB \mid \epsilon \\
 D & \rightarrow cA \mid \epsilon \\
 E & \rightarrow e \mid fE
\end{align*}

\text{FOLLOW}(S) = \\
\text{FOLLOW}(A) = \\
\text{FOLLOW}(B) = \\
\text{FOLLOW}(C) = \\
\text{FOLLOW}(D) = \\
\text{FOLLOW}(E) =