Power of Machines

<table>
<thead>
<tr>
<th>automata</th>
<th>Can do?</th>
<th>Can’t do?</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA</td>
<td>integers</td>
<td>arith expr</td>
</tr>
<tr>
<td>PDA</td>
<td>arith expr</td>
<td>compute expr</td>
</tr>
<tr>
<td>TM</td>
<td>compute expr</td>
<td>decide if halts</td>
</tr>
</tbody>
</table>

Applications

Compiler

- Question: C++ program - is it valid?
- Question: language L, program P - is P valid?
Stages of a Compiler

C++ program

lexical analysis

tokens

syntax analysis

parse tree

code generation

assembly language program

Set Theory - Read Chapter 1

A Set is a collection of elements.

\[A = \{1,4,6,8\}, \quad B = \{2,4,8\}, \quad C = \{3,6,9,12,\ldots\}, \quad D = \{4,8,12,16,\ldots\} \]

- (union) \(A \cup B = \)
- (intersection) \(A \cap B = \)
- \(C \cap D = \)
- (member of) \(42 \in C? \)
- (subset) \(B \subset C? \)
- \(B \cap A \subseteq D? \)
- (product) \(A \times B = \)
- \(|B| = \)
- \(\emptyset \in B \cap C? \)
- (powerset) \(2^B = \)

Example

Prove: Set \(S \) has \(2^{|S|} \) subsets.

| \(|S|\) | number of subsets |
|-------|------------------|
| 0 | |
| 1 | |
| 2 | |
| 3 | |
| 4 | |

Technique: Proof by Induction
1. Basis: P(1)? Prove smallest instance is true.
2. Induction Hypothesis - I.H.
 Assume P(n) is true for 1,2,...,n
3. Induction Step - I.S.
 Show P(n+1) is true (using I.H.)

Proof of Example:

1. Basis:
2. I.H. Assume
3. I.S. Show

Definition: An infinite set is *countable* if its elements have 1-1 correspondence with the positive integers.

Examples:

- S = \{ positive odd integers \}
- S = \{ real numbers \}
- S = \{(i,j) | i,j>0, are integers\}

Theorem Let S be an infinite countable set. Its powerset 2^S is not countable.

Proof - Diagonalization

- S is countable, so it’s elements can be enumerated.
 $S = \{s_1, s_2, s_3, s_4, s_5, s_6 \ldots \}$
 An element $t \in 2^S$ can be represented by a sequence of 0’s and 1’s such that the ith position in t is 1 if s_i is in t, 0 if s_i is not in t.

3
Example, \(\{s_2, s_3, s_5\} \) represented by

Example, set containing every other element from \(S \), starting with \(s_1 \) is \(\{s_1, s_3, s_5, s_7, \ldots \} \) represented by

Suppose \(2^S \) countable. Then we can enumerate all its elements: \(t_1, t_2, \ldots \)

<table>
<thead>
<tr>
<th></th>
<th>(s_1)</th>
<th>(s_2)</th>
<th>(s_3)</th>
<th>(s_4)</th>
<th>(s_5)</th>
<th>(s_6)</th>
<th>(s_7)</th>
<th>(\ldots)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(t_2)</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(t_3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(t_4)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(t_5)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(t_6)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(t_7)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(\ldots)</td>
</tr>
</tbody>
</table>

| \(\ldots \) | | | | | | | | |

3 Major Concepts

- languages
- grammars
- automata

Languages

- \(\Sigma \) - set of symbols, alphabet
- string - finite sequence of symbols
- language - set of strings defined over \(\Sigma \)

Examples

- \(\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \)
 \(L = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, \ldots \} \)
- \(\Sigma = \{a, b, c\} \)
 \(L = \{ab, ac, cabb\} \)
- \(\Sigma = \{a, b\} \)
 \(L = \{a^n b^n \mid n > 0\} \)

Notation

- symbols in alphabet: \(a, b, c, d, \ldots \)
- string names: \(u, v, w, \ldots \)
Definition of concatenation

Let \(w = a_1 a_2 \ldots a_n \) and \(v = b_1 b_2 \ldots b_m \)

Then \(w \circ v \) or \(wv = \)

See book for formal definitions of other operations.

String Operations

strings: \(w = abbc, v = ab, u = c \)

- size of string
 \[|w| + |v| = \]
- concatenation
 \[v^3 = vvv = v \circ v \circ v = \]
- \(v^0 = \)
- \(w^R = \)
- \(|v^Rw| = \)
- \(ab \circ \epsilon = \)

Definition

\(\Sigma^* = \) set of strings obtained by concatenating 0 or more symbols from \(\Sigma \)

Example

\(\Sigma = \{a, b\} \)

\(\Sigma^* = \)

\(\Sigma^+ = \)

Examples

\(\Sigma = \{a, b, c\}, L_1 = \{ab, bc, aba\}, L_2 = \{c, bc, bcc\} \)

- \(L_1 \cup L_2 = \)
- \(L_1 \cap L_2 = \)
- \(\overline{L_1} = \)
- \(\overline{L_1} \cup \overline{L_2} = \)
- \(L_1 \circ L_2 = \{xy \mid x \in L_1 \text{ and } y \in L_2\} = \)

Definition

\(L^0 = \{\epsilon\} \)

\(L^2 = L \circ L \)
\[L^3 = L \circ L \circ L \]
\[L^* = L^0 \cup L^1 \cup L^2 \cup L^3 \ldots \]
\[L^+ = L^1 \cup L^2 \cup L^3 \ldots \]

Example Is \(L \) a countable set?

\(S = \{ w \in \Sigma^+ \}, \Sigma = \{a, b\} \)

Regular Expressions

Method to represent strings in a language

+ union (or)
\(\circ \) concatenation (AND) (can omit)
\(\ast \) star-closure (repeat 0 or more times)

Example:

\((a + b)^* \circ a \circ (a + b)^* \)

Example:

\((aa)^* \)

Definition Given \(\Sigma \),

1. \(\emptyset, e, a \in \Sigma \) are R.E.
2. If \(r \) and \(s \) are R.E. then
 - \(r+s \) is R.E.
 - \(rs \) is R.E.
 - \(r^* \) is R.E.
3. \(r \) is a R.E. iff it can be derived from (1) with a finite number of applications of (2).

Definition: \(L(r) = \) language denoted by R.E. \(r \).

1. \(\emptyset, \{ \varepsilon \}, \{a\} \) are L denoted by a R.E.
2. if \(r \) and \(s \) are R.E. then
 - (a) \(L(r+s) = L(r) \cup L(s) \)
 - (b) \(L(rs) = L(r) \circ L(s) \)
 - (c) \(L((r)^*) = (L(r)^*) \)

Precedence Rules

- * highest
 - \(\circ \)
 - +
Example:

\[ab^* + c = \]

Examples:

1. \(\Sigma = \{a, b\}, \{w \in \Sigma^* \mid w \text{ has an odd number of } a\text{'s followed by an even number of } b\text{'s}\}. \)

2. \(\Sigma = \{a, b\}, \{w \in \Sigma^* \mid w \text{ has no more than 3 } a\text{'s and must end in } ab\}. \)

3. Regular expression for positive and negative integers

Grammars

```
grammar for english

<sentence> -> <subject><verb><d.o.>

<subject> -> <noun> | <article><noun>

<verb> -> hit | ran | ate

<d.o.> -> <article><noun>

<noun> -> Fritz | ball

<article> -> the | an | a
```

Examples

Fritz hit the ball.

```
<sentence> -> <subject><verb><d.o.>
  -> <noun><verb><d.o.>
  -> Fritz <verb><d.o.>
  -> Fritz hit <d.o.>
  -> Fritz hit <article><noun>
  -> Fritz hit the <noun>
  -> Fritz hit the ball
```

The ball hit Fritz.

The ball ate the ball

Syntactically correct?

Semantically correct?
Grammar

G=(V,T,S,P) where

- V - variables (or nonterminals)
- T - terminals
- S - start variable (S∈V)
- P - productions (rules)
 x→y “means” replace x by y
 x∈(V∪T)+, y∈(V∪T)*
 where V, T, and P are finite sets.

Definition

w ⇒ z w derives z
w ⇒* z derives in 0 or more steps
w ⇓ z derives in 1 or more steps

Definition

G=(V,T,P,S)
L(G)={w∈T* | S ⇒ w}

Example

G={S, {a,b}, S, P}
P={S→ aaS, S→ b}
L(G)=

Example

L(G) = {a^nab^n | n > 0}
G =

Automata

Abstract model of a digital computer