Review Regular Expressions

Method to represent strings in a language

+ union (or)
⊙ concatenation (AND) (can omit)
∗ star-closure (repeat 0 or more times)

Example:

\[(a + b)^* \circ a \circ (a + b)^* = (a + b)^*a(a + b)^*\]

Closure Properties

A set is closed over an operation if

\[L_1, L_2 \in \text{class} \]
\[L_1 \circ L_2 = L_3 \]
\[\Rightarrow L_3 \in \text{class}\]

Example

\[L_1 = \{x | x \text{ is a positive even integer}\}\]

\[L\] is closed under

addition?
multiplication?
subtraction?
division?

Example

\[L_2 = \{x | x \text{ is a positive odd integer}\}\]

\[L\] is closed under

addition?
multiplication?
subtraction?
division?
Closure of Regular Languages

Theorem 2.3.1 If L_1 and L_2 are regular languages, then

\[
\begin{align*}
L_1 \cup L_2 \\
L_1 L_2 \\
L_1^* \\
\bar{L}_1 \\
L_1 \cap L_2
\end{align*}
\]

are regular languages.

Proof (sketch)

Union \ $M_1 = (K_1, \Sigma, \Delta_1, s_1, F_1)$, \ $M_2 = (K_2, \Sigma, \Delta_2, s_2, F_2)$

Construct M, $L(M) = L(M_1) \cup L(M_2)$

Concatenation \ $M_1 = (K_1, \Sigma, \Delta_1, s_1, F_1)$, \ $M_2 = (K_2, \Sigma, \Delta_2, s_2, F_2)$

Construct M, $L(M) = L(M_1) \circ L(M_2)$

Kleene Star

$M_1 = (K_1, \Sigma, \Delta_1, s_1, F_1)$

Construct M, $L(M) = L(M_1)^*$

Complementation:

$M_1 = (K_1, \Sigma, \Delta_1, s_1, F_1)$

Construct M, $L(M) = L(\bar{M}_1)$

Intersection

$M_1 = (K_1, \Sigma, \Delta_1, s_1, F_1)$, \ $M_2 = (K_2, \Sigma, \Delta_2, s_2, F_2)$

Construct M, $L(M) = L(M_1) \cap L(M_2)$
Regular languages are closed under

- reversal \(L^R \)
- difference \(L_1 - L_2 \)
- right quotient \(L_1 / L_2 \)

Right quotient

Definition \(L_1 / L_2 = \{ x | xy \in L_1 \text{ for some } y \in L_2 \} \)

Example:

\[
L_1 = \{ a^* b^* \cup b^* a^* \} \\
L_2 = \{ b^n | n \text{ is even, } n > 0 \} \\
L_1 / L_2 = \]

Equivalence of DFA and R.E.

Definition A language \(L \) is regular if it can be described by a regular expression.

Theorem 2.3.3 A language is regular if and only if it is accepted by a finite automaton.

- Proof Part 1 (\(\Rightarrow \)):
 - Let \(r \) be a R.E., then \(\exists \) NFA \(M \) s.t. \(L(M) = L(r) \).
 - \(\emptyset \)
 - \(\{ \lambda \} \)
 - \(\{ a \} \)
 - Suppose \(r \) and \(s \) are R.E.
 - 1. \(r + s \)
 - 2. \(rs \)
 - 3. \(r^* \)

Example

\(ab^* + a \)
Proof Part 2 (⇐):
Given an NFA M ∋ R.E. r s.t. L(M) = L(r).

Example:

Grammar $G = (V, \Sigma, R, S)$

- V variables (nonterminals)
- Σ terminals
- R rules (productions)
- S start symbol

Right-linear grammar:

all productions of form

- $A \rightarrow xB$
- $A \rightarrow x$

where $A, B \in V$, $x \in \Sigma^*$

Left-linear grammar:

all productions of form

- $A \rightarrow Bx$
- $A \rightarrow x$

where $A, B \in V$, $x \in \Sigma^*$

Definition:

A regular grammar is a right-linear or left-linear grammar.
Example 1:

\[G = (\{S\}, \{a, b\}, R, S), R = \]
\[S \rightarrow abS \]
\[S \rightarrow \lambda \]
\[S \rightarrow S \]

Example 2:

\[G = (\{S, B\}, \{a, b\}, R, S), R = \]
\[S \rightarrow aB | bS | \lambda \]
\[B \rightarrow aS | bB \]

Theorem: \(L \) is a regular language iff \(\exists \) regular grammar \(G \) s.t. \(L = L(G) \).

Outline of proof:

\[(\Leftarrow) \) Given a regular grammar \(G \)
\[\quad \) Construct NFA \(M \)
\[\quad \) Show \(L(G) = L(M) \)
\[(\Rightarrow) \) Given a regular language
\[\quad \) \(\exists \) DFA \(M \) s.t. \(L = L(M) \)
\[\quad \) Construct reg. grammar \(G \)
\[\quad \) Show \(L(G) = L(M) \)

Proof of Theorem:

\[(\Leftarrow) \) Given a regular grammar \(G \)
\[G = (V, \Sigma, R, S) \]
\[V = \{V_0, V_1, \ldots, V_p\} \]
\[\Sigma = \{v_0, v_1, \ldots, v_z\} \]
\[S = V_0 \]

Assume \(G \) is right-linear
\[\) (left-linear case similar). \]
\[\) Construct NFA \(M \) s.t. \(L(G) = L(M) \)
\[\) If \(w \in L(G), w = \prod v_i \) \]

\[M = (V, \Sigma, \delta, V_0, F) \]
\[V_0 \) is the start (initial) state \]
\[\) For each production, \(V_i \rightarrow aV_j \),
For each production, \(V_i \rightarrow a, \)

Show \(L(G) = L(M) \)

Thus, given \(R, G, G, \)

\(L(G) \) is regular

\(\implies \) Given a regular language \(L \)

\(\exists \) DFA \(M \) s.t. \(L = L(M) \)

\(M = (K, \Sigma, \delta, q_0, F) \)

\(K = \{ q_0, q_1, \ldots, q_n \} \)

\(\Sigma = \{ a_1, a_2, \ldots, a_m \} \)

Construct \(R, G, G \) s.t. \(L(G) = L(M) \)

\(G = (K, \Sigma, R, q_0) \)

if \(\delta(q_i, a_j) = q_k \) then

if \(q_k \in F \) then

Show \(w \in L(M) \iff w \in L(G) \)

Thus, \(L(G) = L(M) \).

QED.

Example

\[G = (\{ S, B \}, \{ a, b \}, R, S), R = \]

\(S \rightarrow aB \mid bS \mid \lambda \)

\(B \rightarrow aS \mid bB \)

Example: