Increasing Engagement in Automata Theory with JFLAP

Susan H. Rodger
Duke University
rodger@cs.duke.edu

SIGCSE 2009
March 7, 2009

Supported by NSF Grant DUE 0442513
Co-Authors

- Evaluators - NCSU
 - Eric Wiebe
 - Kareem Omar
- Undergraduates - Duke
 - Kyung Min Lee
 - Chris Morgan
 - Jonathan Su
Outline

• Introduction and Overview of JFLAP
• JFLAP Two-year Study and Results
• New Items in JFLAP
 – User Control Parser
 – CYK Parser
 – Expanding Pumping Lemma
 – Turing machine to Unrestricted Grammar
 – Others
• Conclusions and Future Work
Formal Languages and Automata Theory

• Traditionally taught
 – Pencil and paper exercises
 – No immediate feedback

• Different
 – More mathematical than most CS courses
 – Less hands-on than most CS courses
 – Programming is in most of their CS courses, not here
Why Develop Tools for Automata?

| Textual | $\{q_0, q_1, q_2\}, \{a, b\}, \delta, q_0, \{q_2\}$
| | $\delta = \{(q_0, b, q_0), (q_0, a, q_1), (q_1, a, q_0), (q_1, b, q_2), (q_2, a, q_1)\}$ |
| Tabular | |
| | \begin{tabular}{c|c|c}
| a & b & \\
| q_0 & q_1 & q_0 \\
| q_1 & q_2 & \\
| q_2 & & \\
| \end{tabular} |
Visual	
	![Visual Diagram](image)
Interactive	
	![Interactive Diagram](image)
Overview of JFLAP

- **Java Formal Languages and Automata Package**
- Instructional tool to learn concepts of Formal Languages and Automata Theory
- **Topics:**
 - Regular Languages
 - Context-Free Languages
 - Recursively Enumerable Languages
 - Lsystems
- **With JFLAP your creations come to life!**
Thanks to Students - Worked on JFLAP and Automata Theory Tools

- NPDA - 1990, C++, Dan Caugherty
- JFLAP - 1996-1999, Java version
 Eric Gramond, Ted Hung, Magda and Octavian Procopiuc
- Pâté, JeLLRap, Lsys
 Anna Bilska, Jason Salemme, Lenore Ramm, Alex Karweit, Robyn Geer
- JFLAP 4.0 – 2003, Thomas Finley, Ryan Cavalcante
- JFLAP 6.0 – 2005-2008 Stephen Reading, Bart Bressler, Jinghui Lim, Chris Morgan, Jason Lee, Jonathan Su
JFLAP – Regular Languages

• Create
 – DFA and NFA
 – Moore and Mealy
 – regular grammar
 – regular expression

• Conversions
 – NFA to DFA to minimal DFA
 – NFA \leftrightarrow regular expression
 – NFA \leftrightarrow regular grammar
JFLAP – Regular languages (more)

• Simulate DFA and NFA
 – Step with Closure or Step by State
 – Fast Run
 – Multiple Run
• Combine two DFA
• Compare Equivalence
• Brute Force Parser
• Pumping Lemma
JFLAP – Context-free Languages

• Create
 – Nondeterministic PDA
 – Context-free grammar
 – Pumping Lemma

• Transform
 – PDA → CFG
 – CFG → PDA (LL & SLR parser)
 – CFG → CNF
 – CFG → Parse table (LL and SLR)
 – CFG → Brute Force Parser
JFLAP – Recursively Enumerable Languages

• Create
 – Turing Machine (1-Tape)
 – Turing Machine (multi-tape)
 – Building Blocks
 – Unrestricted grammar

• Parsing
 – Unrestricted grammar with brute force parser
JFLAP - L-Systems

- This L-System renders as a tree that grows larger with each successive derivation step.
Students love L-Systems
Other Tools for Automata

• Turing’s World (Barwise and Etchemendy)
• Deus Ex Machina (Taylor and Savoiu)
• Theory of Computing Hypertextbook (Ross)
• Many others
 – L-System tools
 – Compiler tools
 – Finite State machine tools
JFLAP Study

• Study of JFLAP’s effectiveness in learning
 – Two year study
 – Fourteen Faculty Adopters
 – Two 2-day faculty Adopter Workshops – June 2005, June 2006
 – Collect data 2005-06 and 2006-07 Academic years
 – Pretest/Posttest
 – Interviews

– Team of three evaluators
 • Eric Weibe – Education
 • Rocky Ross – Computer Science Theory
 • Joe Bergin – Computer Science Tools
Fourteen Faculty Adopter Participants

- small, large
- public, private
- includes minority institutions

- Duke
- UNC-Chapel Hill
- Emory
- Winston-Salem State University
- United States Naval Academy
- Rensselaer Polytechnic Institute
- UC Davis
- Virginia State University
- Norfolk State University
- University of Houston
- Fayetteville State University
- University of Richmond
- San Jose State University
- Rochester Institute of Technology
We hoped to show with this learning approach...

- Students gain a better and deeper understanding of FLA
- Students are happier and more confident in learning FLA
- Students are more interested in using the tools on their own
- Instructors can easily use the tools in class
- Instructors can easily grade electronic submissions
Goals of the JFLAP Study - Formal Languages and Automata (FLA)

• Present FLA in a visual and interactive manner in addition to the more traditional approach
 – Integrated

• Present Applications of FLA

• Provide a tool for allowing students to explore FLA in a computational manner

• Provide Materials for instructors to integrate this approach in their courses
Running a Study is hard!

- Hit by the drop in enrollments in after dot-com burst
- IRBs are different process at every institution
 - One page writeup ok’d (simplest)
 - Full medical IRB (many pages)
- One institution shut down all IRB research projects – we could not use data already collected.
- One University - Control Group – different times means different types of students, different professors.
- Some faculty came to workshop and did not follow through
- There were also some fantastic faculty!
Year One Instructor Interviews

• Used JFLAP in their courses
 – Primary use in class – demonstrations
 – Some used it to generate the graphics for their lecture
 – Extensive use – homeworks – includes electronic submission
 – One used it in office hours
Year One – Software Implementation

<table>
<thead>
<tr>
<th>Question</th>
<th>YES/NO</th>
<th>No.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Did you use JFLAP software to study for inclass exams?</td>
<td>YES</td>
<td>20</td>
<td>55%</td>
</tr>
<tr>
<td></td>
<td>NO</td>
<td>16</td>
<td>45%</td>
</tr>
<tr>
<td>Did you feel you had time to learn how to use the JFLAP software?</td>
<td>YES</td>
<td>33</td>
<td>94%</td>
</tr>
<tr>
<td></td>
<td>NO</td>
<td>2</td>
<td>6%</td>
</tr>
<tr>
<td>Did you feel that using the software took time away from other study activities?</td>
<td>YES</td>
<td>3</td>
<td>8%</td>
</tr>
<tr>
<td></td>
<td>NO</td>
<td>33</td>
<td>92%</td>
</tr>
<tr>
<td>Did the time and effort it took to use JFLAP help you get a better grade in the course?</td>
<td>YES</td>
<td>23</td>
<td>64%</td>
</tr>
<tr>
<td></td>
<td>NO</td>
<td>13</td>
<td>36%</td>
</tr>
<tr>
<td>Was it easier to use JFLAP software or was it easier to draw it out by hand?</td>
<td>software</td>
<td>30</td>
<td>83%</td>
</tr>
<tr>
<td></td>
<td>by hand</td>
<td>6</td>
<td>17%</td>
</tr>
<tr>
<td>Did you feel you would have done as well in the course if you had not used JFLAP?</td>
<td>YES</td>
<td>18</td>
<td>50%</td>
</tr>
<tr>
<td></td>
<td>NO</td>
<td>13</td>
<td>36%</td>
</tr>
<tr>
<td></td>
<td>NA</td>
<td>5</td>
<td>14%</td>
</tr>
</tbody>
</table>
Years 1 and 2: Usability Survey

<table>
<thead>
<tr>
<th>Question</th>
<th>Very Easy</th>
<th>Easy</th>
<th>Neither</th>
<th>Difficult</th>
<th>Very Difficult</th>
</tr>
</thead>
<tbody>
<tr>
<td>How easy was it to use the drawing tool of JFLAP? (134 respondents)</td>
<td>31%</td>
<td>48%</td>
<td>15%</td>
<td>5%</td>
<td>0%</td>
</tr>
<tr>
<td>How easy was it to run the automata you designed in JFLAP? (134 respondents)</td>
<td>33%</td>
<td>47%</td>
<td>12%</td>
<td>6%</td>
<td>2%</td>
</tr>
<tr>
<td>How easy was it to interpret results from the test run in JFLAP? (134 respondents)</td>
<td>23%</td>
<td>45%</td>
<td>19%</td>
<td>10%</td>
<td>3%</td>
</tr>
<tr>
<td>What is your overall assessment of the JFLAP software? (133 respondents)</td>
<td>Very Poor</td>
<td>Poor</td>
<td>Neither</td>
<td>Good</td>
<td>Very Good</td>
</tr>
<tr>
<td></td>
<td>2%</td>
<td>4%</td>
<td>11%</td>
<td>63%</td>
<td>20%</td>
</tr>
</tbody>
</table>
Year 2 – Implementation Survey

<table>
<thead>
<tr>
<th>QUESTION</th>
<th>Time</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>When preparing for exams what percentage of study time involved the use of JFLAP software? (100 responses)</td>
<td>0-20%</td>
<td>68%</td>
</tr>
<tr>
<td></td>
<td>21-40%</td>
<td>16%</td>
</tr>
<tr>
<td></td>
<td>41-60%</td>
<td>11%</td>
</tr>
<tr>
<td></td>
<td>61-80%</td>
<td>3%</td>
</tr>
<tr>
<td></td>
<td>81-100%</td>
<td>2%</td>
</tr>
<tr>
<td>How often did you use JFLAP to do additional practice problems? (99 responses)</td>
<td>Never</td>
<td>46%</td>
</tr>
<tr>
<td></td>
<td>Rarely</td>
<td>25%</td>
</tr>
<tr>
<td></td>
<td>Occasionally</td>
<td>21%</td>
</tr>
<tr>
<td></td>
<td>Often</td>
<td>4%</td>
</tr>
<tr>
<td></td>
<td>Very Often</td>
<td>4%</td>
</tr>
</tbody>
</table>
Year 2 – Usability Survey

<table>
<thead>
<tr>
<th>Question</th>
<th>Strongly Agree</th>
<th>Agree</th>
<th>Neither</th>
<th>Disagree</th>
<th>Strongly Disagree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using JFLAP made the course more enjoyable for me. (98 responses)</td>
<td>12%</td>
<td>51%</td>
<td>25%</td>
<td>6%</td>
<td>4%</td>
</tr>
<tr>
<td>Using JFLAP made me feel more engaged in the course. (98 responses)</td>
<td>13%</td>
<td>59%</td>
<td>15%</td>
<td>9%</td>
<td>3%</td>
</tr>
<tr>
<td>Having access to JFLAP made learning course concepts ... (97 responses)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Much harder</td>
<td>1%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Harder</td>
<td>5%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Neither</td>
<td>26%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Somewhat easier</td>
<td>54%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Much easier</td>
<td>14%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
New Items in JFLAP

- User-Control Parser (UCP)
 - Allows for more exploration
UCP – select rule, select variable, Step
UCP – final parse tree
CYK Parser

• Cocke-Younger-Kasami (CYK)

• How it works in JFLAP
 – Internally, convert to CNF grammar
 – Then map back to original grammar
CYK – substantially faster than Brute Force Parser for many grammars

• Brute Force Parser
 8 secs

• CYK parser
 1 sec
Pumping Lemma Game – Linz Book

Select a Pumping Lemma

First choose who makes the first move.
- You go first
- Computer goes first

Then select a lemma.

\[L = \{a^n b^n : n \geq 0\} \]
\[L = \{w \in \{a, b\}^* : n_a(w) < n_b(w)\} \]
\[L = \{ww^R : w \in \{a, b\}^*\} \]
\[L = \{(ab)^n a^k : n > k, k \geq 0\} \]
\[L = \{a^n b^k c^{n+k} : n \geq 0, k \geq 0\} \]
\[L = \{a^n b^l a^k : n > 5, l > 3, k \leq l\} \]
\[L = \{a^n : n \text{ is even}\} \]
\[L = \{a^n b^k : n \text{ is odd or } k \text{ is even.}\} \]
\[L = \{bba(ba)^n a^{n-l}\} \]
$L = \{ww^R : w \in \{a, b\}^+\}$ Regular Pumping Lemma

Objective: Prevent the computer from finding a valid partition.

My Attempts:

1. $L = \emptyset$
 $w = \emptyset$ $z = aabbabaaaaaa$ $L = 2$ w^a

 1. I have selected a value for m, displayed below.

 5

 2. Please enter a possible value for w and press "Enter".

 aaaaaaaaaabbbbbbbbbbb

 3. I have decomposed w into the following...

 $X = aaa$; $Y = aa$; $Z = aaabaaaaaa$

 4. Please enter a possible value for i and press "Enter".

 $i: 2$
 pumped string: aaaaaaaaaabbbbbbbbbbb

 5. Animation

 x y z
 $w = aaa aa aaabaaaaaa$

 $w^2z = a^{10} b^{2} a = aaaaaaaaaabbbbbbbbaaa$ is NOT in the language. YOU WIN!
Turing Machine to Unrestricted Grammar

```
<table>
<thead>
<tr>
<th></th>
<th>\rightarrow</th>
<th>V(==)S</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td></td>
<td>S\rightarrow S\rightarrow S</td>
</tr>
<tr>
<td>S</td>
<td></td>
<td>T \rightarrow T</td>
</tr>
<tr>
<td>aV(aa)</td>
<td></td>
<td>\rightarrow aa</td>
</tr>
<tr>
<td>aV(=a)</td>
<td></td>
<td>\rightarrow a=</td>
</tr>
<tr>
<td>V(a0a)V(aa)</td>
<td>\rightarrow V(aa)V(a1a)</td>
<td></td>
</tr>
<tr>
<td>V(a1a)</td>
<td></td>
<td>\rightarrow a</td>
</tr>
<tr>
<td>V(aa)a</td>
<td></td>
<td>\rightarrow aa</td>
</tr>
<tr>
<td>V(a0a)V(=a)</td>
<td>\rightarrow V(aa)V(=1a)</td>
<td></td>
</tr>
<tr>
<td>V(aa)=</td>
<td></td>
<td>\rightarrow a=</td>
</tr>
<tr>
<td>V(1a)V(aa)</td>
<td>\rightarrow V(aa)V(1a)</td>
<td></td>
</tr>
<tr>
<td>V(1a)V(=a)</td>
<td>\rightarrow V(aa)V(1a)</td>
<td></td>
</tr>
<tr>
<td>V(0a)V(=a)</td>
<td>\rightarrow V(aa)V(1a)</td>
<td></td>
</tr>
<tr>
<td>V(=0a)V(=a)</td>
<td>\rightarrow V(aa)V(=1a)</td>
<td></td>
</tr>
<tr>
<td>V(=1a)V(aa)</td>
<td>\rightarrow V(aa)V(1a)</td>
<td></td>
</tr>
<tr>
<td>V(=1a)V(=a)</td>
<td>\rightarrow V(aa)V(=1a)</td>
<td></td>
</tr>
<tr>
<td>V(=a)=</td>
<td></td>
<td>\rightarrow =</td>
</tr>
<tr>
<td>V(=1a)</td>
<td></td>
<td>\rightarrow =</td>
</tr>
<tr>
<td>V(=a)a</td>
<td></td>
<td>\rightarrow =a</td>
</tr>
<tr>
<td>V(=0a)V(aa)</td>
<td>\rightarrow V(aa)V(1a)</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td></td>
<td>T \rightarrow V(aa)</td>
</tr>
<tr>
<td>T</td>
<td></td>
<td>\rightarrow V(a0a)</td>
</tr>
<tr>
<td>=V(aa)</td>
<td></td>
<td>\rightarrow =a</td>
</tr>
<tr>
<td>=V(=a)</td>
<td></td>
<td>\rightarrow =</td>
</tr>
<tr>
<td>=</td>
<td></td>
<td>\rightarrow \lambda</td>
</tr>
</tbody>
</table>
```
Other New Items

• Can automatically add a trap state
• Additional graph layout choices
• Can load an input string from a file
 – This is useful for universal Turing machine
• Online JFLAP Tutorial
• JFLAP wiki and listserv
Getting interaction into the automata theory course......

There are lots of ways to get interaction in this course...
Students Work in Groups to Solve Problems – With or W/out JFLAP

- Lecture some, then stop
- Students work on problem with JFLAP
- Bring students back together
Interaction in Class – Props
Edible Turing Machine

- TM for \(f(x) = 2x \) where \(x \) is unary

- TM is not correct, can you fix it? Then eat it!

- States are blueberry muffins
Students building DFA with cookies and icing
JFLAP’s Use Around the World

• JFLAP web page has over 200,000 hits since 1996
• Google Search
 – JFLAP appears on over 9830 web pages
 – Note: search only public web pages
• JFLAP been downloaded in over 160 countries
Conclusions From Study

• Results of Study showed
 – All the faculty used JFLAP in their courses, mostly for homework, some in lecture
 – Students had a high opinion of JFLAP
 – Majority of students felt access to JFLAP
 • Made learning course concepts easier
 • Made them feel more engaged
 • Made the course more enjoyable
 – Over half the students used JFLAP to study for exams
 – Over half the student thought time and effort using JFLAP helped them get a better grade.
Resources/Questions?

JFLAP works well with Linz book

New CD supplement with JFLAP exercises to go with this book

JFLAP book

www.jflap.org

JFLAP tutorial

JFLAP Version 6.4
RELEASED July 13, 2008

JFLAP Manual

Introduction
We provide basic tutorials on many of the concepts in JFLAP to help you get started.

If you cannot expand or collapse the index entries, please ensure Java script is enabled in your Internet browser.

Please send any bugs in the tutorial or JFLAP bug reports to

JFLAP Team

If you wish to download all files used in the tutorial at once, first free to update JFLAP. JFLAP on your computer.

For more information on JFLAP, please visit www.jflap.org.

*NOTE: JFLAP can only be provided by using user interface and set the option to either download a window or terminate programs when you close JFLAP."