Through Visualization and Interaction, Computer Science Concepts Come Alive

Susan H. Rodger
Duke University
rodger@cs.duke.edu

CWIC 2012
Columbia, SC
Feb. 17, 2012

Supported by NSF Grants DUE-0442513, ESI-0624642, DRL-1031351, DUE 10441-91, CRA, and IBM Faculty Awards

About Me - Research Interests

• Computer Science Education
• Visualization and Interaction
 – Instructional Tools for Theoretical concepts
 • Automata theory and formal languages
 – Teaching Introductory Computer Science
• Algorithm Animation

Outline

• Introduction
• CS Concepts Come Alive with Software
 – Automata Theory with JFLAP
 – Algorithm Animation software – JAWAA and others
 – Pre-CS 1 with Alice
 – CS Concepts Come Alive in other ways
• Challenges in Designing Educational Software
• Integrating Computer Science into K-12
Intro - Why Use Interaction and Visualization?

• Learning Styles
 – Visual Learners
 • Learn through seeing
 • Learn best from visual displays
 – Auditory Learners
 • Learn through listening
 • Learn best through verbal lectures, discussions
 – Kinesthetic Learners
 • Learn through moving, doing and touching
 • Learn best through hands-on approach

How do you reach all three types?

• You must do all three!
 – Provide pictures, diagrams
 – Discuss what you are doing
 – Provide activities for trying it

Outline

• Introduction
• CS Concepts Come Alive with Software
 – Automata Theory with JFLAP
 – Algorithm Animation software – JAWAA and others
 – Pre-CS 1 with Alice
 – CS Concepts Come Alive in other ways
• Challenges in Designing Educational Software
• Integrating Computer Science into K-12

Formal Languages and Automata Theory

• Traditionally taught
 – Pencil and paper exercises
 – No immediate feedback
 – More mathematical than most CS courses
 – Less hands-on than most CS courses
Why Develop Tools for Automata?

<table>
<thead>
<tr>
<th>Textual</th>
<th>$\delta = {(q_0, b, q_0), (q_0, a, q_1), (q_1, a, q_0), (q_0, b, q_2), (q_2, a, q_1)}$</th>
</tr>
</thead>
</table>

| Tabular |
|---------|---------|
| q_0 | q_1 |
| q_1 | q_0 |
| q_2 | q_2 |

<table>
<thead>
<tr>
<th>Visual</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Interactive</th>
</tr>
</thead>
</table>

Overview of JFLAP

- **Java Formal Languages and Automata Package**
- Instructional tool to learn concepts of Formal Languages and Automata Theory
- Topics:
 - Regular Languages
 - Context-Free Languages
 - Recursively Enumerable Languages
 - Lsystems
- With JFLAP your creations come to life!

Thanks to Students - Worked on JFLAP and Automata Theory Tools

- NPDA - 1990, C++, Dan Caugherty
- Pâté, JeLLRap, Lsys Anna Bilska, Jason Salemme, Lenore Ramm, Alex Karweit, Robyn Geer
- JFLAP 4.0 – 2003, Thomas Finley, Ryan Cavalcante
- JFLAP 6.0 – 2005-2008 Stephen Reading, Bart Bressler, Jinghui Lim, Chris Morgan, Jason Lee
- JFLAP 7.0 - 2009 Henry Qin, Jonathan Su
- JFLAP 8.0? – 2011-12 Julian Genkins

Example

- Build a deterministic finite automaton (DFA) to recognize binary numbers with an even number of 1s that are an even number.
- Only use symbols 0 and 1
- Binary numbers: 0, 1, 10, 11, 100, 101, 110, 111, ...
- When is a binary number an even number?
 - Ends in 0
- Which strings should be accepted?
 - 11010, 10010, 1111, 10100
 - no yes no yes
A solution

Give meaning to states

Comes to Life!

Comes to Life!
What are DFAs useful for?

- When you write a program – you compile it before you run it
- How does it identify syntax errors?
- First phase of a compiler is a DFA that models and identifies every word in your program
 - 7648 is an integer
 - if is a keyword
 - + is an operator
 - item is a variable name
- Write one big DFA that identifies every word

What does this DFA recognize?

What else can JFLAP do?

- Create other machines
 - Moore and Mealy
 - Pushdown Automaton
 - Turing machine
- Parsing of grammars
 - regular, context-free grammars
 - Unrestricted grammar
- Conversions for proofs
 - NFA to DFA to minimal DFA
 - NFA ↔ regular expression
 - NFA ↔ regular grammar
 - CFG ↔ NPDA
JFLAP - L-Systems

• L-Systems may be used to model biological systems and create fractals.
• Similar to Chomsky grammars, except all variables are replaced in each derivation step, not just one!
• Commonly, strings from successive derivations are interpreted as strings of render commands and are displayed graphically.

L-Systems

• L-systems may also be stochastic.
• The $T \rightarrow Tg$ rule adds g to the derivation, which draws a line segment.
• We add another rewriting rule for T, $T \rightarrow T$.
• With two rewriting rules for T, the rule chosen is random, leading to uneven growth!

The same stochastic L-system, rendered 3 different times all at the 9th derivation.

JFLAP - L-Systems

• This L-System renders as a tree that grows larger with each successive derivation step.
Using JFLAP during Lecture

• Use JFLAP to build examples of automata or grammars
• Use JFLAP to demo proofs
• Load a JFLAP example and students work in pairs to determine what it does, or fix it if it is not correct.

JFLAP’s use Outside of Class

• Homework problems
 – Turn in JFLAP files
 – OR turn in on paper, check answers in JFLAP
• Recreate examples from class
• Work additional problems
 – Receive immediate feedback

JFLAP’s Use Around the World

• JFLAP web page has over 250,000 hits since 1996
• Google Search
 – JFLAP appears on over 39,000 web pages
 – Note: search only public web pages
• JFLAP now used in several textbooks – JFLAP exercises
• JFLAP been downloaded in over 160 countries

Two-year JFLAP Study 2005-2007

Fourteen Faculty Adopter Participants

• Duke
• UNC-Chapel Hill
• Emory
• Winston-Salem State University
• United States Naval Academy
• Rensselaer Polytechnic Institute
• UC Davis
• Virginia State University
• Norfolk State University
• University of Houston
• Fayetteville State University
• University of Richmond
• San Jose State University
• Rochester Institute of Technology
Conclusions From Study

- Results of Study showed
 - All the faculty used JFLAP in their courses, mostly for homework, some in lecture
 - Students had a high opinion of JFLAP
 - Majority of students felt access to JFLAP
 - Made learning course concepts easier
 - Made them feel more engaged
 - Made the course more enjoyable
 - Over half the students used JFLAP to study for exams
 - Over half the student thought time and effort using JFLAP helped them get a better grade.

Outline

- Introduction
- CS Concepts Come Alive with Software
 - Automata Theory with JFLAP
 - Algorithm Animation software – JAWAA and others
 - Pre-CS 1 with Alice
 - CS Concepts Come Alive in other ways
- Challenges in Designing Educational Software
- Integrating Computer Science into K-12
Related Work

- Samba, Jsamba - Stasko (Georgia Tech)
- AnimalScript – Roessling (Darmstadt Univ of Tech, SIGCSE 2001)
- TRAKLA2 – Software Visualization Group – TKK Finland
- AlgoViz portal – lots of animations!
- Lots of animations and systems on the web!

JAWAA Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>circle cl 30 20 60 blue red</td>
<td>move right</td>
</tr>
<tr>
<td>moveRelative c1 60 0</td>
<td>move down</td>
</tr>
<tr>
<td>moveRelative c1 0 50</td>
<td></td>
</tr>
<tr>
<td>changeParam c1 bkgrd blue</td>
<td></td>
</tr>
</tbody>
</table>

JAWAA Primitives

<table>
<thead>
<tr>
<th>Primitive</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>circle</td>
<td></td>
</tr>
<tr>
<td>rectangle</td>
<td></td>
</tr>
<tr>
<td>line</td>
<td></td>
</tr>
<tr>
<td>oval</td>
<td></td>
</tr>
<tr>
<td>polygon</td>
<td></td>
</tr>
<tr>
<td>text</td>
<td></td>
</tr>
</tbody>
</table>

JAWAA Data Structures

Array

array people 25 25 4.2 Owen running Gail boating
Robert toys Susan cakes vert red yellow black
changeParam people index on
changeParam people[1] bkgrd white
changeParam people[0].1 text bubblesort
moveRelative people[2] 30 0
changeParam people[2] swap people[0]
JAWAA Data Structures

• Stack

  ```
  stack s1 200 200 4 Pop The Top Off black red
  pop s1
  pop s1
  ```

• Queue

  ```
  queue q1 200 200 6 A 1 B 2 C 3 red blue
  dequeue q1
  dequeue q2
  ```

Use of JAWAA in CS 1/2

• Instructor
 - Use JAWAA Editor to make quick animations for lecture
 - Show web pages with JAWAA animations in lecture
 - Students replay animations later

• Student
 - Create animation of data structure in an existing program, add JAWAA commands as output

JAWAA Data Structures

• Linked List

• Trees

Instructor Animations for CS 2 Lecture

• Recursion
• Shellsort
• Depth First Search
• Quadratic Collision Resolution
• Build Heap and Heapsort
Lots of other software/programs for algorithm animation

- **Red Black Tree** – animation on web page

 http://aleph0.clarku.edu/~achou/cs102/examples/bst_animation/RedBlackTree-Example.html

- Another red-black tree animation

Outline

- Introduction
- CS Concepts Come Alive with Software
 - Automata Theory with JFLAP
 - Algorithm Animation software – JAWAA and others
 - Pre-CS 1 with Alice
 - CS Concepts Come Alive in other ways
- Challenges in Designing Educational Software
- Integrating Computer Science into K-12
Alice Programming Language

• Create interactive stories or games
• Learn programming in an easy way, drag-and-drop your code
• Problem solving with visual feedback
 – Objects are visual!
• Alice is free: www.alice.org
• Developed by Randy Pausch

Objects Have Multiple Parts that are moveable

Alice Code is Easy to Learn

Select Code, Drag-and-Drop code in program

Alice Programming Language

• Has libraries of 3D objects
• Keeps Track of objects you select
Computer Science Concepts come alive with Alice - Examples

- Objects are visible
- Variables
- inheritance
- List
- Array

Example - Inheritance
- Start with a chicken object
- Rename it to TalentedChicken
 - Change its color
 - Resize it larger
 - Add new methods (jump, fly, scurry)
 - Add events for this chicken
- Save this new class TalentedChicken that inherits from the Chicken class

Variables – Scores/Timers
Game: Eragon

Example - List

4 tasks to win the game
Example – Arrays
Shuffle, then Selection Sort

Sort by height

Interaction in Class – Props
Edible Turing Machine

- TM for f(x) = 2x where x is unary
- TM is not correct, can you fix it? Then eat it!
- States are blueberry muffins

Outline

- Introduction
- CS Concepts Come Alive with Software
 - Automata Theory with JFLAP
 - Algorithm Animation software – JAWAA and others
 - Pre-CS 1 with Alice
 - CS Concepts Come Alive in other ways
- Challenges in Designing Educational Software
- Integrating Computer Science into K-12

Students building DFA with cookies and icing
Red-Black Tree (cookies)

Outline

• Introduction
• CS Concepts Come Alive with Software
 – Automata Theory with JFLAP
 – Algorithm Animation software – JAWAA and others
 – Pre-CS 1 with Alice
 – CS Concepts Come Alive in other ways
• Challenges in Designing Educational Software
• Integrating Computer Science into K-12

Make your tool as interactive as possible – but not too tedious!

• User shouldn’t type everything
• Sometimes select

Allow user to proceed on if they got it

• Complete the rest for them
• Complete parts for them
Avoid Too Many Pop up windows

- OLD JFLAP LR PARSE TOOL

Add Pause/Checkpoint questions

- Allow for pause to think about what comes next
- Undo/go back
- Pop up a quiz question to see if the user understands what he/she just did
 – JHAVE tool does this

What can make the tool more useable?

- Annotations on states
- Multiple run window
 - Develop test data
 - Easier for grading
- General definitions
 - FA – recognize one or more symbols
 - NPDA – pop or push 0 or more symbols
- Batch processing

Naming your software

What is a “good” name for your tool?
JAWAA name is not unique

How popular is JAWAA?

JFLAP name is unique

Outline

- Introduction
- CS Concepts Come Alive with Software
 - Automata Theory with JFLAP
 - Algorithm Animation software – JAWAA and others
 - Pre-CS 1 with Alice
 - CS Concepts Come Alive in other ways
- Challenges in Designing Educational Software
- Integrating Computer Science into K-12

Engaging Middle School Teachers and Students with Alice in a Diverse Set of Subjects

Supported by the National Science Foundation Collaborative Grant ESI-0624642, 0624654, 0624528, NSF Supplement DRL-0826661, two CRA distributed mentor awards, and two Faculty Awards from International Business Machines.
Problem – Few students major in CS

• Students come to college with their mind made up on their career! This choice is based on what they know.
• Students don’t know what computer science is when in middle and high school
• In college, like Alice, but not staying with computer science

Where could Alice help in decisions?

• Students in middle school are starting to form decisions on careers
• They have exposure to Teachers, Doctors, Astronauts, etc.
• They learn about Biology, Physics, Chemistry
 — BUT DON’T KNOW WHAT COMPUTER SCIENCE IS
 — THEIR EXPOSURE is SPREAD SHEETS, POWERPOINT, etc.

Bring on Alice Virtual Worlds!

• Alice is
 — Hands-on!
 — Interactive!
 — Visual!
 — Less Error prone
 — Exciting Results right away!

• Alice has the potential to excite kids about computer science in the same way that experiments excite kids about chemistry, physics and biology!

Adventures in Alice Programming

• Summers 2008-2015
• 3-week Teacher workshops
 • Over 150 teachers, mostly middle school, some high school
 • All disciplines
 • Taught them Alice, Developed Lesson Plans
 — 1-week middle school camps
• Sites:
 — Durham, NC
 — Charleston/Columbia, SC
 — Oxford, Mississippi
How to Use Alice in Middle/High Schools

• Teachers
 – Examples in lecture
 – Make interactive quizzes
 – Make worlds on concepts for students to view

• Students
 – Projects (in place of a poster, a model)
 – To take or build quizzes
 – To view and answer questions about a world
 – Older students can do more with Alice.

Language Arts – Animate a story

Project: Book Report

Examples of integrating Alice into K-12
Science Example
How a volcano is formed

Math Example:
Teacher Lesson Plan on quadrant plane
- Click on lighthouse
- Enter x,y position
- Objects randomly move

Math Example – Rounding Numbers

Our Free Materials
Over 40 Tutorials
1. Getting started tutorials
 - 1-4 hours
2. Tutorials on CS topics
 - Methods, conditionals, lists, etc
 - Variables (timers/scores).
3. Animation tutorials
 - Lights, camera, scene change, billboards, invisible objects,
Web site

- Adventures in Alice Programming
 www.cs.duke.edu/csed/alice/aliceInSchools

Conclusions

- We have shown several ways to visualize CS concepts and make them interactive
 - Software: JAWAA, JFLAP, Alice
 - Props: Food

Questions?