Through Visualization and Interaction, Computer Science Concepts Come Alive

Susan H. Rodger Duke University

March 29, 2022

Purdue University

Outline

- My Path
- CS Concepts Come Alive
- Alice Programming Language
- Algorithm Visualization
- Automata Theory with JFLAP
- Solving Problems with Seven Steps
- Diversity Efforts

A long time ago, back in 1979....

B.S. Computer Science and Mathematics

- My first semester, my first course in programming - PL/I Hello2: proc options(main); put list ('Hello, world!') end Hello2;

Decisions? Industry? Grad School?

- Systems Programmer
- NCSU, University Systems Control Center
- Undergraduate Research
- Cleanup data from buoys in the water
- Wasn't thinking about grad school
- Be sure to encourage students to think about graduate school!
- Started in 1983
- Teaching Assistant for intro programming in Fortran
- Punch cards...
- In trouble with email...

Finished Graduate School!

- PhD Purdue University 1989
- Computational Geometry
- Parallel Scheduling Algorithms
- New Data Structure
- Dynamic contour search tree

Rensselaer Assistant Professor

- Continued research in algorithms
-CAREER CHANGE....
- Got more interested in education

Started developing education tools Changed area to Visualization Tools and CS Education

- Tool - NPDA
- to
experiment with
pushdown automata

1994 - Moved to Duke University Professor of the Practice

- Position focuses on Education in the Discipline

About Me - Hobby - Baking Shape cakes

The Wiggles ${ }^{\circ}$ magazine
Issue No. 42

How do you make those cakes?

Outline

- My Path
- CS Concepts Come Alive
- Alice Programming Language
- Algorithm Visualization
- Automata Theory with JFLAP
- Solving Problems with Seven Steps
- Diversity Efforts

CS Concepts Coming Alive

- What data structure is this?

2D-range tree

- Search in x-y plane
- Main tree organized by x-values
- Subtree organized by y values
y-range

x-range

Binary Search tree of points in the plane - sorted by X-value

Each subtree organized by y-value
In the x-range
Search each subtree by y-value

Outline

- Introduction
- CS Concepts Come Alive
- Alice Programming Language
- Algorithm Visualization
- Automata Theory with JFLAP
- Solving Problems with Seven Steps
- Diversity Efforts Sprinkled in...

Alice Programming Language

- Create interactive stories or games
- Learn programming in an easy way, drag-and-drop your code
- Problem solving with visual feedback - Objects are visual!
- Alice is free: www.alice.org
- Developed by Randy Pausch

More on ... Alice Programming Language

- Has libraries of 3D objects

- Keeps Track of objects you select

Objects Have Multiple Parts that are moveable

Alice Code is Easy to Learn

Select Code, Drag-and-Drop code in program

Play Alice Animation

- Chicken rises, cow turns head and talks

Computer Science Concepts come alive with Alice - Examples

- Objects - visible
- Variables - see how they are changing
- Inheritance - visual
- Lists/Arrays - visual

Objects are visible

Variables - Timer and Score

Example - Inheritance

- Start with a chicken object
- Rename it to TalentedChicken
- Change its color
- Resize it larger
- Add new methods (jump, fly, scurry)

- Add events for this chicken
- Save this new class TalentedChicken that inherits from the Chicken class

Example list

Example - Arrays Shuffle, then Selection Sort

 Sort by height

Outline

- Introduction
- CS Concepts Come Alive
- Alice Programming Language
- Algorithm Visualization
- Automata Theory with JFLAP
- Additional Ways to Engage with CS
- Diversity Efforts

Algorithm Visualization/Animation

 Software/Aps/Videos- Tango, Xtango, Samba, JSamba - Stasko (Georgia Tech)
- AnimalScript - Roessling (Darmstadt Univ of Tech, SIGCSE 2001)
- JHAVE - Naps (U. Wisc. Oshkosh, SIGCSE 2000)
- TRAKLA2 - Software Visualization Group - TKK Finland
- JAWAA - Rodger et al (Duke, SIGCSE 2003)
- Lots of animations and systems on the web!
- Lots of videos of algorithm animations on the web!

Use of Algorithm Animation in CS 1/2

- Instructor
- Make/Use animations for lecture
- Stop/Pause - ask what will happen next
- must be interactive
- Student
- Create animations
- Replay animations from lecture with same or new inputs

Lots of other software/programs for algorithm animation

- Red Black Tree - animation on web page

Student must have graduated. Link no longer works!

Python Tutor Compute reverse of a list

Python 2.7

```
def reverse(numbers):
    answer = []
    for num in numbers:
            answer.insert(0, num)
    return answer
myList = [4, 7, 8, 3]
>8 reversed = reverse(myList)
```

Edit code

Python Tutor Compute reverse of a list

Python 2.7
$\Rightarrow 1$ def reverse(numbers):
answer $=$ []
for num in numbers:
answer.insert(0, num)
return answer
myList $=[4,7,8,3]$
$\Rightarrow 8$ reversed $=$ reverse (myList)

Frames Objects

Edit code

Python Tutor Compute reverse of a list

Python 2.7

```
1 def reverse(numbers):
    answer = []
    for num in numbers:
            answer.insert(0, num)
        return answer
myList = [4, 7, 8, 3]
    reversed = reverse(myList)
```


Edit code

Frames

Python Tutor Compute reverse of a list

Python 2.7

```
def reverse(numbers):
    answer = []
    for num in numbers:
        answer.insert(0, num)
    return answer
myList = [4, 7, 8, 3]
reversed = reverse(myList)
```

Edit code

Frames

Python Tutor Compute reverse of a list

Python 2.7

```
    1 def reverse(numbers):
        answer = []
        for num in numbers:
        answer.insert(0, num)
        return answer
myList = [4, 7, 8, 3]
reversed = reverse(myList)
```


Edit code

Frames

Python Tutor Compute reverse of a list

Python 2.7

```
def reverse(numbers):
    answer = []
    for num in numbers:
        answer.insert (0, num)
    return answer
myList = [4, 7, 8, 3]
reversed = reverse(myList)
```


Edit code

Frames Objects

Python Tutor Compute reverse of a list

Python 2.7

```
def reverse(numbers):
    answer = []
    for num in numbers:
        answer.insert(0, num)
    return answer
myList = [4, 7, 8, 3]
reversed = reverse(myList)
```

Edit code

Frames

Python Tutor Compute reverse of a list

Python 2.7

```
    def reverse(numbers):
        answer = []
        for num in numbers:
        answer.insert(0, num)
        return answer
    mylist = [4, 7, 8, 3]
    8 reversed = reverse(myList)
```


Edit code

Electronic Textbooks (ebooks) engage students

- OpenDSA (Shaffer, Virgina Tech)
- Algorithm animations built in
- runestoneinteractive.org (Brad Miller)
- Several books (Python)
- Python - try and run code built in
- Quizzes
- ZyBooks - interactive textbooks
- Track student progress
- Requirements and design strategies for open source interactive computer science eBooks
- ITiCSE 2013 Working Group (Korhonen, Naps, et al)

How to Think Like a Computer Scientist

Learning with Python: Interactive Edition 2.0

Index Operator: Working with the Characters of a String

The indexing operator (Python uses square brackets to enclose the index) selects a single character from a string. The characters are accessed by their position or index value. For example, in the string shown below, the 14 characters are indexed left to right from postion 0 to position 13.
0
0 1

It is also the case that the positions are named from right to left using negative numbers where -1 is the rightmost index and so on. Note that the character at index 6 (or -8) is the blank character.


```
1 school = "Luther College"
2 m = school[2]
3 \text { print (m)}
4
5 lastchar = school[-1]
6 \text { print (lastchar)}
```

7

Run and edit code in the book

Integrates in Python Tutor

It is also the case that the positions are named from right to left using negative numbers where rightmost index and so on. Note that the character at index 6 (or -8) is the blank character.

Save

Hide Codelens

```
1 school = "Luther College"
```

$2 \mathrm{~m}=$ school[2]
3 print (m)
4
5 lastchar = school[-1]
6 print (lastchar)
7

Python 2.7

```
school = "Luther College"
m = school[2]
print(m)
lastchar = school[-1]
print(lastchar)
```

< Back

Program terminated

Forward >

\Rightarrow line that has just executed
\Rightarrow next line to execute
Visualized using Online Python Tutor by Philip Guo
Program output:
t
e

```
s = "python rocks"
print(s[3])
```


Questions for

feedback
(a) t

○
c
Error, you cannot use the [] operator with a string.

Check Me
 Compare me

Incorrect. Index locations do not start with 1, they start with 0 .
strings-4-2: What is printed by the following statements?

```
s = "python rocks"
print(s[2] + s[-5])
```

(a) tr

- ps
nn
- Error, you cannot use the [] operator with the + operator.

```
Check Me
Compare me
```


Outline

- Introduction
- CS Concepts Come Alive
- Alice Programming Language
- Algorithm Visualization
- Automata Theory with JFLAP
- Solving Problems with Seven Steps
- Additional Ways to Engage with CS
- Diversity Efforts

How does a compiler work? Determining if a Java program is syntactically correct

- Finite state machine (or determinisitic finite automaton - DFA) - to identify the words or tokens of the program
- Context-free grammar - to write the rules of the programming language
- LR Parsing determining if the program fits the rules - trying to derive the program. (modelled using a pushdown automaton)
- This area is known as Formal languages and Automata theory

Formal Languages and Automata Theory

- Traditionally taught
- Pencil and paper exercises
- No immediate Feedback!
- More mathematical than programming
- Less hands-on than most CS courses

Why Develop Tools for Automata?

Textual	$\begin{aligned} & \left(\left\{q_{0}, q_{1}, q_{2}\right\},\left\{a, b_{\}}, \delta, q_{0},\left\{q_{\}}\right\}\right)\right. \\ & \delta=\left\{\left\{q_{0}, b, q_{0}\right),\left(q_{0}, a, q_{1}\right),\left(q_{1}, a, q_{0}\right),\left(q_{1}, b, q_{2}\right),\left(q_{2}, a_{2}, q_{1}\right)\right\} \end{aligned}$
Tabular	
Visual	
Interactive	$x^{\circ} \div(a)=\text { (a) }$

Overview of JFLAP

- Java Formal Languages and Automata Package
- Instructional tool to learn concepts of Formal Languages and Automata Theory
- Topics:
- Regular Languages
- Context-Free Languages
- Recursively Enumerable Languages
- Lsystems
- With JFLAP your creations come to life!

Thanks to Students - Worked on JFLAP and Automata Theory Tools

- NPDA - 1990, C++, Dan Caugherty Over 30 years!
- FLAP - 1991, C++, Mark LoSacco, Greg Badros
- JFLAP - 1996-1999, Java version Eric Gramond, Ted Hung, Magda and Octavian Procopiuc
- Pâté, JeLLRap, Lsys

Anna Bilska, Jason Salemme, Lenore Ramm, Alex Karweit, Robyn Geer

- JFLAP 4.0 - 2003, Thomas Finley, Ryan Cavalcante
- JFLAP 6.0 - 2005-2008 Stephen Reading, Bart Bressler, Jinghui Lim, Chris Morgan, Jason Lee
- JFLAP 7.0-2009 Henry Qin, Jonathan Su
- JFLAP 8.0Beta - 2011-14 Julian Genkins, Ian McMahon, Peggy Li, Lawrence Lin, John Godbey
- JFLAP in OpenDSA - 2015 Sung-Hoon Kim and Martin Tamayo
- Yu and Pester (2016), Yeh and Fang (2017), Patel (2018)

DFA Example

- Build a deterministic finite automaton(DFA) to recognize even binary numbers with an even number of 1 s .
- Only use symbols 0 and 1
- Binary numbers: $0,1,10,11,100,101,110$, 111, ...
-When is a binary number an even number?
- Ends in 0
- Which strings should be accepted?
- 11010, 10010, 1111, 10100

No, odd no. of 1's	Yes	No, ends ln 1	Yes

Simulation on

1101010

(42)

$$
1101010
$$

Step	Reset	Freeze	Thaw	Trace
Remove				

Accepts Input! 1101010

(g4)
1101010

Step	Reset	Freeze	Thaw	Trace
Remove				

Test Multiple Inputs

Example: Build an NFA for valid integers

- Example:
- Valid integers $\{-3,8,0,456,13,500, \ldots\}$
- Not valid: \{006, 3-6, 4.5, ...\}

Example: NFA for all valid integers

NFA annotated and shortcut

- Shortcut: [1-9] on labels

Another Example: Grammar

- Grammar - set of replacement rules to define a language
- Grammar for $a^{n} b^{n} c^{n}$
- Why look at such a grammar?
- Consider representing underlined words in a text file (to be interpreted later):
- cookie\&\&\&\&\&\& $\&=$ go back one

Grammar for $a^{n} b^{n} c^{n}$

- Unrestricted grammar

S	$\rightarrow \mathrm{AX}$
A	$\rightarrow \mathrm{ABbc}$
A	$\rightarrow \mathrm{aBbc}$
B X	$\rightarrow \lambda$
B b	$\rightarrow \mathrm{b}$ B
B c	$\rightarrow \mathrm{D}$
D X	$\rightarrow \mathrm{EXc}$
D b	$\rightarrow \mathrm{b}$
D c	$\rightarrow \mathrm{c}$ D
a E	$\rightarrow \mathrm{aB}$
b E	$\rightarrow \mathrm{E} \mathrm{b}$
c E	\rightarrow E c

- Generates strings with an equal number of a's, b's, c's
- a's first, then b's, then c's
- Example strings can derive: abc aabbcc aaabbbccc aaaabbbbcccc aaaaabbbbbccccc

Example Derivation for aabbcc

$S \rightarrow A X$

 rule: S-> AX
Example Derivation for aabbcc

$S \rightarrow A X$

\rightarrow aAbcX
rule: S-> AX
rule: A -> aAbc

Example Derivation for aabbcc

$S \rightarrow$ AX
\rightarrow aAbcX
\rightarrow aaBbcbcX

rule: S -> AX rule: A -> aAbc rule: A -> aBbc

NOTE: We have generated the correct symbols, aabcbc, but they are in the wrong order!

Example Derivation for aabbcc

$S \rightarrow A X$
\rightarrow aAbcX
\rightarrow aaBbcbcX
\rightarrow aabBcbcX
rule: S -> AX
rule: A -> aAbc
rule: A -> aBbc rule: Bb -> bB

Example Derivation for aabbcc

$S \rightarrow A X$
\rightarrow aAbcX
\rightarrow aaBbcbcX
\rightarrow aabBcbcX
\rightarrow aabDbcX
rule: S -> AX
rule: A -> aAbc
rule: A -> aBbc
rule: Bb -> bB
rule: Bc -> D

Note: the D absorbed the c!

Example Derivation for aabbcc

$S \rightarrow A X$
\rightarrow aAbcX
\rightarrow aaBbcbcX
\rightarrow aabBcbcX
\rightarrow aabDbcX
\rightarrow aabbDcX
rule: S -> AX
rule: A -> aAbc
rule: A -> aBbc
rule: Bb -> bB
rule: Bc -> D
rule: Db -> bD

Example Derivation for aabbcc

$S \rightarrow A X$
\rightarrow aAbcX
\rightarrow aaBbcbcX
\rightarrow aabBcbcX
\rightarrow aabDbcX
\rightarrow aabbDcX
\rightarrow aabbcDX
rule: S -> AX
rule: A -> aAbc
rule: A -> aBbc
rule: Bb -> bB
rule: Bc -> D
rule: Db -> bD
rule: Dc -> cD

Example Derivation for aabbcc

$S \rightarrow A X$
\rightarrow aAbcX
\rightarrow aaBbcbcX
\rightarrow aabBcbcX
\rightarrow aabDbcX
\rightarrow aabbDcX
\rightarrow aabbcDX
\rightarrow aabbcEXc
rule: S -> AX
rule: A -> aAbc
rule: A -> aBbc
rule: $\mathrm{Bb}->\mathrm{bB}$
rule: $\mathrm{Bc}->\mathrm{D}$
rule: Db -> bD
rule: Dc -> cD
rule: DX -> EXc

Note the c spit out on right end!

Eventually...\rightarrow aabbcc

We could have done this derivation of aabbcc with JFLAP．

Now let＇s see how JFLAP visualizes this derivation with a＂风象织見炏双＂

Parse DAG
Editor Brute Parser

Table Text Size

Start	Pause	Step	Noninverted Tree

Input aabbcc
String accepted! 51 nodes generated.

LHS	
RHS	
S	$\rightarrow \mathrm{AX}$
A	$\rightarrow \mathrm{aAbc}$
A	$\rightarrow \mathrm{aBbc}$
Bb	$\rightarrow \mathrm{bB}$
Bc	$\rightarrow \mathrm{D}$
Dc	$\rightarrow \mathrm{cD}$
Db	$\rightarrow \mathrm{bD}$
DX	$\rightarrow \mathrm{EXc}$
BX	$\rightarrow \lambda$
cE	$\rightarrow \mathrm{Ec}$
bE	$\rightarrow \mathrm{Eb}$
aE	$\rightarrow \mathrm{aB}$

Editor Brute Parser

Table Text Size

Start Pause Step Noninverted Tree
Inputaabbcc
String accepted！ 51 nodes generated．

LHS		RHS
S	$\rightarrow \mathrm{AX}$	
A	$\rightarrow \mathrm{aAbc}$	
A	$\rightarrow \mathrm{aBbc}$	
Bb	$\rightarrow \mathrm{bB}$	
Bc	$\rightarrow \mathrm{D}$	
Dc	$\rightarrow \mathrm{cD}$	
Db	$\rightarrow \mathrm{bD}$	
DX	$\rightarrow \mathrm{EXc}$	
BX	$\rightarrow \lambda$	
cE	$\rightarrow \mathrm{Ec}$	
bE	$\rightarrow \mathrm{Eb}$	
aE	$\rightarrow \mathrm{aB}$	

Editor Brute Parser
－Table Text Size

| Start | Pause | Step |
| :--- | :--- | :--- | Noninverted Tree

Input aabbcc
String accepted！ 51 nodes generated．

LHS	
	RHS
S	$\rightarrow \mathrm{AX}$
A	$\rightarrow \mathrm{aAbc}$
A	$\rightarrow \mathrm{aBbc}$
Bb	$\rightarrow \mathrm{bB}$
Bc	$\rightarrow \mathrm{D}$
Dc	$\rightarrow \mathrm{cD}$
Db	$\rightarrow \mathrm{bD}$
DX	$\rightarrow \mathrm{EXc}$
BX	$\rightarrow \lambda$
cE	$\rightarrow \mathrm{Ec}$
bE	$\rightarrow \mathrm{Eb}$
aE	$\rightarrow \mathrm{aB}$

String accepted！ 51 nodes generated．

Editor Brute Parser
-Table Text Size

Start Pause Step Noninverted Tree
Input aabbcc
String accepted! 51 nodes generated.

LHS	
	RUS
S	$\rightarrow \mathrm{AX}$
A	$\rightarrow \mathrm{aAbc}$
A	$\rightarrow \mathrm{aBbc}$

What's happening? $\mathrm{Bb} \longrightarrow \mathrm{bB}$

Editor Brute Parser
－Table Text Size

Start Pause Step Noninverted Tree
Input aabbcc
String accepted！ 51 nodes generated．

Absorb the＂c＂

Editor Brute Parser

Table Text Size

Start	Pause	Step	Noninverted Tree

Inputaabbcc
String accepted! 51 nodes generated.

LHS		RUS
S	\rightarrow	AX
A	$\rightarrow \mathrm{aAbc}$	
A	$\rightarrow \mathrm{aBbc}$	
Bb	$\rightarrow \mathrm{bB}$	
Bc	$\rightarrow \mathrm{D}$	
Dc	$\rightarrow \mathrm{cD}$	
Db	$\rightarrow \mathrm{bD}$	
DX	$\rightarrow \mathrm{EXc}$	
BX	$\rightarrow \lambda$	
cE	$\rightarrow \mathrm{Ec}$	
bE	$\rightarrow \mathrm{Eb}$	
aE	$\rightarrow \mathrm{aB}$	

 Editor Brute Parser

- Table Text Size

Start Pause Step Noninverted Tree
Inputaabbcc
String accepted! 51 nodes generated.

LBS	
RHS	
S	$\rightarrow \mathrm{AX}$
A	$\rightarrow \mathrm{aAbc}$
A	$\rightarrow \mathrm{aBbc}$
Bb	$\rightarrow \mathrm{bB}$
Bc	$\rightarrow \mathrm{D}$
Dc	$\rightarrow \mathrm{cD}$
Db	$\rightarrow \mathrm{bD}$
DX	$\rightarrow \mathrm{EXc}$
BX	$\rightarrow \lambda$
cE	$\rightarrow \mathrm{Ec}$
bE	$\rightarrow \mathrm{Eb}$
aE	$\rightarrow \mathrm{aB}$

Editor Brute Parser
-Table Text Size

Start	Pause	Step	Noninverted Tree

Inputaabbcc
String accepted! 51 nodes generated.

Spit out the "c" at the right end

－Table Text Size

Start	Pause	Step	Noninverted Tree

Inputaabbcc
String accepted！ 51 nodes generated．

LAS	
RUS	
S	$\rightarrow \mathrm{AX}$
A	$\rightarrow \mathrm{aAbc}$
A	$\rightarrow \mathrm{aBbc}$
Bb	$\rightarrow \mathrm{bB}$
Bc	$\rightarrow \mathrm{D}$
Dc	$\rightarrow \mathrm{cD}$
Db	$\rightarrow \mathrm{bD}$
DX	$\rightarrow \mathrm{EXc}$
BX	$\rightarrow \lambda$
cE	$\rightarrow \mathrm{Ec}$
bE	$\rightarrow \mathrm{Eb}$
aE	$\rightarrow \mathrm{aB}$

（a）

－Table Text Size

Start	Pause	Step	Noninverted Tree

Inputaabbcc
String accepted！ 51 nodes generated．

Editor Brute Parser
-Table Text Size

Start Pause Step Noninverted Tree
Inputaabbcc
String accepted! 51 nodes generated.

Editor Brute Parser

- Table Text Size
$\sqrt{2}$
Start Pause Step Noninverted Tree
Input aabbcc
String accepted! 51 nodes generated.

Editor Brute Parser
- Table Text Size

| Start | Pause | Step |
| :--- | :--- | :--- | Noninverted Tree

Input aabbcc
String accepted! 51 nodes generated.

LHS	
RHS	
S	$\rightarrow \mathrm{AX}$
A	$\rightarrow \mathrm{aAbc}$
A	$\rightarrow \mathrm{aBbc}$
Bb	$\rightarrow \mathrm{bB}$
Bc	$\rightarrow \mathrm{D}$
Dc	$\rightarrow \mathrm{cD}$
Db	$\rightarrow \mathrm{bD}$
DX	$\rightarrow \mathrm{EXc}$
BX	$\rightarrow \lambda$
cE	$\rightarrow \mathrm{Ec}$
bE	$\rightarrow \mathrm{Eb}$
aE	$\rightarrow \mathrm{aB}$

Editor Brute Parser

- Table Text Size

| Start | Pause | Step |
| :--- | :--- | :--- | Noninverted Tree

Input aabbcc
String accepted! 51 nodes generated.

LHS	
RHS	
S	$\rightarrow \mathrm{AX}$
A	$\rightarrow \mathrm{aAbc}$
A	$\rightarrow \mathrm{aBbc}$
Bb	$\rightarrow \mathrm{bB}$
Bc	$\rightarrow \mathrm{D}$
Dc	$\rightarrow \mathrm{cD}$
Db	$\rightarrow \mathrm{bD}$
DX	$\rightarrow \mathrm{EXc}$
BX	$\rightarrow \lambda$
cE	$\rightarrow \mathrm{Ec}$
bE	$\rightarrow \mathrm{Eb}$
aE	$\rightarrow \mathrm{aB}$

-Table Text Size
()

Start	Pause	Step	Noninverted Tree

Input aabbcc
String accepted! 51 nodes generated.

Absorb second " c "

Editor Brute Parser
Table Text Size
,

Start	Pause	Step	Noninverted Tree

Inputaabbcc
String accepted! 51 nodes generated.

Spit the "c" out at right end

-Table Text Size

Start Pause Step Noninverted Tree
Inputaabbcc
String accepted! 51 nodes generated.

-Table Text Size

Start Pause Step Noninverted Tree
Inputaabbcc
String accepted! 51 nodes generated.

Editor Brute Parser

Table Text Size
$\sqrt{7}$
Start Pause Step Noninverted Tree
Input aabbcc
String accepted! 51 nodes generated.

Editor Brute Parser

Table Text Size
$\sqrt{7}$

| Start | Pause | Step |
| :--- | :--- | :--- | Noninverted Tree

Input aabbcc
String accepted! 51 nodes generated.

Derived bB from Bb.
-Table Text Size

Start Pause Step Noninverted Tree
Inputaabbcc
String accepted! 51 nodes generated.

Derived bB from Bb.

Editor Brute Parser

-Table Text Size
()

Start	Pause	Step	Noninverted Tree

Inputaabbcc
String accepted! 51 nodes generated.

Derived Λ from BX. Derivations complete.

What else can JFLAP do?

- Create other machines
- Moore and Mealy
- Pushdown Automaton
- Turing machine

Step Reset Freeze

- Parsing of grammars
- regular, context-free grammars
- Unrestricted grammar
- Conversions for proofs
- NFA to DFA to minimal DFA
- NFA $\leftrightarrow \rightarrow$ regular expression
- NFA $\leftrightarrow \rightarrow$ regular grammar
- CFG $\leftarrow \rightarrow$ NPDA

JFLAP - L-Systems
- L-Systems may be used to model biological systems and create fractals.
- Similar to Chomsky grammars, except all variables are replaced in each derivation step, not just one!
- Commonly, strings from successive derivations are interpreted as strings of render commands and are displayed graphically.

			${ }^{-}$
	File Edit Input Help		
	LSystem		
	$n{ }^{\text {n }}$		
	Axiom: R ~ \#\# B		
Add	LHS	RHS	
	$\mathrm{B} \quad \rightarrow[\sim \# \#$	$\mathrm{B}++\mathrm{B}]$	
second T rule	$\mathrm{L} \quad \rightarrow$ [angl	\{-g++g\%--g \}	
	R \rightarrow ! @@		
	$\mathrm{T} \quad \rightarrow \mathrm{Tg}$		
	$\mathrm{T} \quad \rightarrow \mathrm{T}$		
	Name	Parameter	P
	angle	15	
	color	brown	
	polygonColor	forestGreen	
	L-System $=(\mathrm{A}, \Sigma, \mathrm{R}) \longrightarrow$		
	Table Text size	\square	

L-Systems

The same stochastic L-system, rendered
3 different times all at the 9th derivation.

Students like L-systems

- Duke

Two-year JFLAP Study 2005-2007
Fourteen
Faculty Adopter Participants

-small, large

- public, private
- includes minority institutions
- UNC-Chapel Hill
- Emory
- Winston-Salem State University
- United States Naval Academy
- Rensselaer Polytechnic Institute
- UC Davis
- Virginia State University
- Norfolk State University
- University of Houston
- Fayetteville State University
- University of Richmond
- San Jose State University
- Rochester Institute of Technology

Conclusions From Study

- Results of Study showed
- All the faculty used JFLAP in their courses, mostly for homework, some in lecture
- Students had a high opinion of JFLAP
- Majority of students felt access to JFLAP
- Made learning course concepts easier
- Made them feel more engaged
- Made the course more enjoyable
- Over half the students used JFLAP to study for exams
- Over half the students thought time and effort using JFLAP helped them get a better grade.

Now a few tips if you ever write educational software...

Make your tool as interactive as possible - but not too tedious!

- User shouldn't type everything
- Sometimes select
- Example: DFA to regular expression in JFLAP

Allow user to proceed on if they got it

JFLAP : <untitled3>
JFLAP : <untitled3>

File Input Test Comvert Help

Editor NFA to DFA

- Complete the rest for them
- Complete parts for them

Avoid Too Many Pop up windows

- OLD JFLAP LR PARSE TOOL

Return Print Quit Help

reducing using the production
$\mathrm{A} \rightarrow \mathrm{Ha}$
there are errors in your parse table please correct then before continuing

Add Pause/Checkpoint questions

- Allow for pause to think about what comes next
- Undo/go back
- Pop up a quiz question to see if the user understands what he/she just did
- JHAVE tool does this
- Can integrate into ebooks

What can make the tool more

useable?

- Annotations on states
- Multiple run window
- Develop test data
- Easier for grading
- General definitions
- FA - recognize one or more symbols
- NPDA - pop or push 0 or more symbols
- Batch processing

Naming your software

What is a "good" name for your tool?

Jawaa

```
BiTS Goa Campus Internet Porta
Tech or treat! 40 geeky Hallowee..
Jawaa Commands
\(\times+\)
```

(3) mww.csdukeedu/csed//awaa2/commands html

- Algorithm Animation tool

Rectangle

Parameters:

name	a name uniquely identifying this rectangle
x	x-coordinate
y	y-coordinate
width	width of the rectangle
height	height of the rectangle
color	color of the rectangle outline
bkgrd	color of the rectangle's background

Example:

```
rectangle r1 10 20 100 120 black red
```

rectangle r2 1502018060 cyan yellow

The first example will create a rectangle with its upper left corner at $(10,20)$ and rectangle will be red with a black outline, as shown in the figure below on the lef The second example will create a rectangle with its upper corner at $(150,20)$ and rectangle will be yellow with a cyan outline. This is shown in the figure below or

JAWAA name is not unique

FLAP

- Formal Languages and Automata Package
- 1996 - converted to Java
- FLAP -> JFLAP

JFLAP name is unique

Web Videos Images News More - Search tools

About 41,100 results (0.22 seconds)

JFLAP

www.jflap.org/ *
JFLAP. JFLAP is software for experimenting with formal languages topics including nondeterministic finite automata, nondeterministic pushdown automata, .
Get JFLAP - JFLAP Tutorial - JFLAP Version 7.0 ... - JFLAP History

JFLAP SOFTWARE

www.jflap.org/jflaptmp/ *
May 15, 2011 - JFLAP Version 7.0 (with SVG fixed and thinner JFLAP - We now provide one version with SVG and one with the SVG split out into a second .jar ...

JFLAP Tutorial

www.jflap.org/tutorial/ *
Introduction. We provide basic tutorials on many of the concepts in JFLAP to help you get started. If you cannot expand or collapse the index menus, please ...

Much more than Google Analytics Forums, Blogs, Course websites

> Newest 'jflap' Questions - Stack Overflow stackoverflow.com/questions/tagged/jflap v We can use small letters for terminals and caps for Non-terminals in JFLAP while entering grammar. But this restricts to only 26 options. Can we have more

> Blog:Recent posts - JFLAP
> jflap.wikia.com/wiki/Blog:Recent_posts •
> Watchlist Random page Recent changes - Create blog post. Recent posts. Blog posts.
> Retrieved from "http://jflap. wikia.com/wiki/Blog:Recent_posts?oldid=3140" ...

```
CS 301: Using JFLAP
www.cs.colostate.edu/~massey/Teaching/.../JFLAP/gettingstarted.html This course uses the JFLAP package. According to the JFLAP website, JFLAP is a package of graphical tools which can be used as an aid in learning the basic ...
[PDF] JFLAP Startup
www.inf.unibzit/~calvanese/teaching/10-11-fl/.../JFLAP-manual.pdf • Download JFLAP and the files referenced in this book from www . j flap. org to get started. JFLAP is written in Java to allow it to run on a range of platforms.
```


JFLAP is free

www.jflap.org

JFLAP tutorial

Outline

- Introduction
- CS Concepts Come Alive
- Alice Programming Language
- Algorithm Visualization
- Automata Theory with JFLAP
- Solving Problems with Seven Steps
- Diversity Efforts

Stuck on solving a problem? Don't know where to start?

- Use the 7 step process!
- CompEd 2019, Translation from Problem to Code in Seven Steps, Hilton, Lipp and Rodger

Problem Solving to Code - Steps 1-4

1. Work small examples by hand
2. Write down what you did in words (algorithm)
3. Find Patterns (generalize algorithm)
4. Work another example by hand (algorithm work? If not, go back to 3, or 1)

Problem Solving to Code - Steps 5-7

5. Translate to code
6. Test several cases
7. Debug failed test cases

Problem - TxMsg

Problem Statement

Strange abbreviations are often used to write text messages on uncomfortable mobile devices. One particular strategy for encoding texts composed of alphabetic characters and spaces is the following:

- Spaces are maintained, and each word is encoded individually. A word is a consecutive string of alphabetic characters.
- If the word is composed only of vowels, it is written exactly as in the original message.
- If the word has at least one consonant, write only the consonants that do not have another consonant immediately before them. Do not write any vowels.
- The letters considered vowels in these rules are ' a ', 'e', ' i ', ' o ' and ' u '. All other letters are considered consonants.

For instance, "ps i love u " would be abbreviated as "p i lv u " while "please please me" would be abbreviated as "ps ps m ". You will be given the original message in the string parameter original. Return a string with the message abbreviated using the described strategy.

Examples

Examples

1. "text message"
Returns "tx msg"
2. "aeiou bcdfghjklmnpqrstvwxyz" Returns: "aeiou b"

Focus on transforming one word Write helper function transform

- How?
- Use seven steps
- Work an example by hand

Transform word - Step 1: work small example by hand

- Word is "please"
- Letter is ' p ', YES
- answer is " p "
- Letter is 'I', NO
- Letter is 'e', NO
- Letter is 'a', NO
- Letter is 's', YES
- answer is "ps"
- Letter is 'e', NO

Step 2: Describe what you did

- Word is "please", create an empty answer
- Letter is ' p ', consonant, no letter before, YES
- Add ' p ' to answer
- Letter is 'l', consonant, letter before " p ", NO
- Letter is 'e', vowel, letter before ' 1 ', NO
- Letter is 'a', vowel, letter before ' e ', NO
- Letter is ' s ', consonant, letter before ' a ', YES
- Add 's' to answer
- Letter is 'e', vowel, letter before ' s ', NO
${ }^{\circ}$ Answer is "ps"

Step 3: Find Pattern and generalize

Need to initialize letter before, pick "a" answer is empty
for each letter in word If it is a consonant, and the letter before is a vowel, then add the letter to the answer
This letter is now the letter before return answer

Step 4 - Work another example

- Word is message

Use vowel not part of word

- Letter is ' m ', before is ' a ', add ' m ' to answer
- Letter is 'e', before is ' m ', NO
- Letter is ' s ', before is ' e ', add ' s ' to answer
- Letter is ' s ', before is ' s ', NO
- Letter is ' a ', before is ' s ', NO
- Letter is ' g ', before is ' a ', add ' g ' to answer
- Letter is 'e', before is ' g ', NO
- Answer is "msg"

WORKS!!

Step 5: Translate to Code

\# Letter before is "a" \# start with a vowel
\# answer is empty
\# for each letter in word

Step 5: Translate to Code

\# Letter before is "a"
\# start with a vowel
before = 'a'
\# answer is empty
answer = [] \# or this could be an empty string
\# for each letter in word
for ch in word:

Step 5: Translate to Code (code)

\#If it is a consonant, and the letter before is a \#vowel, then add the letter to the answer
\#This letter is now the letter before

Step 5: Translate to Code (code)

\#If it is a consonant, and the letter before is a \#vowel, then add the letter to the answer if !(isVowel(ch)) and isVowel(before): answer += ch
\#This letter is now the letter before before = ch
\# return answer return answer

Student Anecdotes

- From CompSci 101
- "I just want to tell you that I tried the seven step method, and I worked on all of my code for one or two hours before I even looked at the computer. AND IT WORKED! I got all my code right on the first try! For the first time ever, I don't have to go to the help lab ..."

Student Anecdotes

- From Coursera course
- "I have been programming for a couple of years. Learned from so many resources but none said how to write the algorithm, they just say you should write your algorithm first. The steps illustrated here are beautiful and definitely help to understand how to decompose a problem."

Outline

- Introduction
- CS Concepts Come Alive
- Alice Programming Language
- Algorithm Visualization
- Automata Theory with JFLAP
- Solving Problems with Seven Steps
- Diversity Efforts

Success - Alice attracts diverse group

- At Duke
- CompSci 4 Spring 2005
- 22 preregister, 30 enroll (12 female + 3 African Amer.)
- CompSci 4 Fall 2005
- 20 preregister, 31 enroll (17 female +1 African Amer.)
- CompSci 4 Fall 2006-2 sections
- 64 students, 33 female, 7 African Amer.
- CompSci 4 Fall $2007-2$ sections
- 84 students - > 50\% female
- CompSci 4 Fall 2008-2 sections
- 100 students - > 50\% female
- Same for Spring 2009, Fall 2009...
- Advertised in school paper
- picture of ice skater
- Web site of animations
- This course is now CompSci 94

Success - Alice Excites $4^{\text {th }}-6^{\text {th }}$ Grade Girls

- Duke Femmes Event, April 07
- 60 girls - 4 groups of 15
- Taught them Alice for an hour
- Handout to take home
- Event again in 2008 ,almost every year since

Adventures in Alice Programming

 www.cs.duke.edu/csed/alice/aliceInSchools- 2-week Teacher workshops
- Over 500 teachers, middle school, high school, some elementary
- First week Teach Alice, Practice
- Second week - Develop Lesson Plans
- All disciplines: math, science, history, language arts, foreign
 language, art, music, business
- Summers 2008-2017
- Main Sites:
- Duke University, Durham, NC
- Charleston/Columbia, SC
- San Jose, CA
- Lincoln, Nebraska
- THANKS IBM and NSF

CRA-WP Board

- Organize Career Mentoring Workshops for Women and underrepresented groups
- Early Career Workshop
- Asst Prof, PhD students, PostDocs, Industry
- Mid-Career Workshop
- Assoc Prof, Industry Equiv
- Grad Cohort for Women
- For Graduate students in first 3 years

How Visible are Notable Women in Computer Science?

- Pondered this question in early 2012
- Looked at Wikipedia
- The internet encyclopedia
- Who writes those pages?
- Why did some notables have pages and others not?
- Turing Award Winners
- Only two women at that time

Fran Allen

- School teacher - got a job at IBM
- Compilers and Optimization Technology
- IBM Fellow - First Women
- Turing Award (2006) - First Woman
- The Turing Award was announced on Feb. 21, 2007
- Her Wikipedia page was created on...
- Feb. 6, 2007
- On Feb 21, 2007 the Turing Award was added to her Wikipedia page.

Here is that first page for Fran Allen

Article
 Talk

Read Edit View history Search
Q

WikipediA
 The Free Encyclopedia

Main page
Contents
Featured content
Current events
Random article
Donate to Wikipedia
Wikipedia store
Interaction
Help
About Wikipedia
Community portal
Recent changes
Contact page
Tools
What links here
nalatanabmanama

Frances E. Allen

From Wikipedia, the free encyclopedia

Fran Allen has made outstanding contributions to the field of programming languages for more than forty-five years, and her work has significantly influenced the wider computer science community.

Ms. Allen is a pioneer in the field of optimizing compilers. Her achievements include seminal work in compilers, code optimization, and parallelization. In the early 1980s, she formed the Parallel
TRANslation (PTRAN) group to study the issues involved in compiling for parallel machines. The group was considered one of the top research groups in the world working with parallelization issues. Her work on these projects culminated in algorithms and technologies that form the basis for the theory of program optimization and are widely used in today's commercial compilers throughout the industry.

Ms. Allen's influence on the IBM community was recognized by her appointment as an IBM fellow, the first woman to receive this recognition. She was also president of the IBM Academy of Technology. The Academy plays an important role in the corporation by providing technical leadership, advancing the understanding of key technical areas and fostering communications among technical professionals.

In 1997, Ms. Allen was inducted into the WITI Hall of Fame. Ms. Allen retired from IBM in 2002.

Three days later...

Frances E. Allen

From Wikipedia, the free encyclopedia

Main page
Contents
Featured content Current events

Random article
Donate to Wikipedia Wikipedia store

Interaction
Help
About Wikipedia
Community portal
Recent changes
Contact page
Tonls
Fran Allen is a pioneer in the field of optimizing compilers. Her achievements include seminal work in compilers, code optimization, and parallelization.

In the early 1980s, she formed the Parallel TRANslation (PTRAN) group to study the issues involved in compiling for parallel machines. The group was considered one of the top research groups in the world working with parallelization issues. Her work on these projects culminated in algorithms and technologies that form the basis for the theory of program optimization and are widely used in today's commercial compilers throughout the industry.

Ms. Allen's influence on the IBM community was recognized by her appointment as an IBM Fellow, the first woman to receive this recognition. She was also president of the IBM Academy of Technology. The Academy plays an important role in the corporation by providing technical leadership, advancing the understanding of key technical areas and fostering communications among technical professionals.

In 1997, Ms. Allen was inducted into the WITI Hall of Fame es. Ms. Allen retired from IBM in 2002.

Turing Award Announced and added to her page

In 1997, Ms. Allen was inducted into the WITI Hall of Famers. Ms. Allen retired from IBM in 2002.
Early 2007, she became the first woman to win the the A.M. Turing Award.

$V \cdot T \cdot E$

A. M. Turing Award laureates

[hide]
Alan Perlis (1968) • Maurice Vincent Wikes (1967) • Richard Hamming (1968) • Mavin Minsky (1969) • James H. Wilkinson (1970) • John McCarthy (1971) • Edsger W. Dijkstra (1972) • Charles Bachman (1973) • Donald Knuth (1974) • Allen Newell / Herbert A. Simon (1975) • Michael O. Rabin / Dana Scott (1978) • John Backus (1977) • Robert W. Floyd (1978) • Kenneth E. Iverson (1979) • Tony Hoare (1980) • Edgar F. Codd (1981) • Stephen Cook (1982) • Ken Thompson / Dennis Ritchie (1983) • Niklaus Wirth (1984) • Richard Karp (1985) • John Hopcroft/ Robert Tarjan (1986) • John Cocke (1987) • Ivan Sutherland (1988) • William Kahan (1989) • Fernando J. Corbató (1990) - Robin Milner (1991) • Butler Lampson (1992) • Juris Hartmanis / Richard E. Stearns (1993) • Edward Feigenbaum/ Raj Reddy (1994) • Manuel Blum (1995) • Amir Pnueli (1998) • Douglas Engelbart (1997) • Jim Gray (1998) • Fred Brooks (1999) • Andrew Yao (2000) • Ole-Johan Dahl / Kristen Nygaard (2001) • Ron Rivest / Adi Shamir / Leonard Adleman (2002) • Alan Kay (2003) • Vint Cerf/Bob Kahn (2004) • Peter Naur (2005) • Frances E. Allen (2008)

In the next three days

- Over 30 edits, added awards, boards

Awards and honors

Allen is a member of the National Academy of Encineering. a fellow of the IEEE, the
Association for Computing Machinery (ACM) and the American Academy of Arts and Sciences. Whe is currently on the Computer Science and Telecommunications Board, the Computer Research Associates (CRA) board and National Science Foundation's CISE Advisory Board.

In 1997, Allen was inducted into the WITI Hall of Fame ${ }^{[3]}$ She retired from IBM in 2002 and won the Augusta Ada Lovelace Award that year from the Association for Women in Computing. In 2007, she became the first woman to win the A.M. Turing Award. [4]

WIKIPEDIA

The Free Encyclopedia

Main page

Contents
Featured content
Current events
Random article
Donate to Wikipedia
Wikipedia store
Interaction
Help
About Wikipedia
Community portal
Recent changes
Contact page
Tools
What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Wikidata item
Cite this page
Print/export
Create a book
Download as PDF
Printable version
Languages
التربية

Frances E. Allen

From Wikipedia, the free encyclopedia

For the early American nun, see Frances Allen (nun)
Frances Elizabeth "Fran" Allen (born August 4, 1932) is an American computer scientist and pioneer in the field of optimizing compilers. Her achievements include seminal work in compilers, code optimization, and parallelization. She also had a role in intelligence work on programming languages and security codes for the National Security Agency. ${ }^{[2][3]}$

Allen was the first female IBM Fellow and in 2006 became the first woman to win the Turing Award. ${ }^{[4]}$

Contents [hide]
1 Career
2 Awards and honors
3 See also
4 References
5 External links

Career [edit]

Allen grew up on a farm in Peru, New York and graduated from The New York State College for Teachers (now State University of New York at Albany) with a B.Sc. degree in mathematics in 1954. ${ }^{[5]}$ She earned an M.Sc. degree in mathematics at the University of Michigan in 1957 and began teaching school in Peru, New York. [6] Deeply in debt, she joined IBM on July 15, 1957 and planned to stay only until her school loans were paid, but ended up staying for her entire 45-year career.

What about other Notable
 Women in Computer Science?

- ACM Fellows
- Few women
- 1994 first year over 130 Fellows
- 9-12 were women? Less than 10%
- About 20-50 Fellows per year
- 2014-47 fellows, 6-8 women
- Noticed few of Women had Wikipedia pages

Write Wikipedia pages for Notable women in Computing

- How hard is it to write a Wikipedia page?
- Lots of rules you have to follow
- Another area with few women
- 2013 study -16% of Wikipedia writers are female

Some Rules in Writing Wikipedia Biography pages

- You cannot write your own page!
- Neutral point of view
- Person must be notable
- Be careful!
- Must write only facts and reference them
- Must be verifiable
- Do not plagiarize - write in your own words
- Regard for subject's privacy
- NOT A TABLOID!

Wrote a Guide on How to Write Wikipedia Biography www.cs.duke.edu/csed/wikipedia

CRA-W and Anita Borg Institute Wikipedia Project Writing Wikipedia Pages for Notable Women in Computing

MAIN | ABOUT | START | SELECT | CREATE | WRITER | CARDS

About this project

This project started when it was recognized that there are very few notable women (or famous women or leading women) computer scientists who have Wikipedia pages. For example, a large number of women with notable awards such as ACM Fellow, IEEE Fellow, ACM Distinguished Educator, Scientist or Engineer, or other

Our Database of Notable Women in CS

- Over 300 women
- Why notable
- Status of their Wikipedia page
- Forms for adding women and updating status

Title/Position	Web page	Prestigious Award or why notable	Wikipedia page?
Professor of Human-Computer Interaction, CS	http://www.daimi.au.dk/~bodke	Member, CHI Academy	no page
Founder	http://anitaborg.org/about/histor	WITI Hall of Fame, Fellow ACM, EFF Pioneer	has a page
Professor	http://polaris.gseis ucla edu/c br	ACM Fellow	has a page, needs work

To Share These Achievements....

- August 2014, with Katy Dickinson and Jessica Dickinson Goodman....
- Created Notable Women in Computing cards

Vicki Hanson

Had no Wikipedia page, now does

What happens when your hobby and your career collide?

It is now time for engaging students with edible CS

Automata Theory
 Interaction in Class - Props
 Edible Turing Machine

- TM for $f(x)=2 x$ where x is unary
- TM is not correct, can you fix it? Then eat it!
- States are blueberry muffins

Students building DFA with cookies and icing

CS 1
 Sorting Cookies

$$
\begin{array}{lllllll}
25 & 26 & 27 & 28 & 29 & 30 & 31 \\
32 \\
33 & 34 & 35 & 36 & 37 & 38 & 39
\end{array} 40
$$

Cookies for CS 1 - Python

CS 1 had around 300 students

Thank You

- Questions?

