
Automated Control in Cloud Computing:
Challenges and Opportunities

Harold C. Lim † Shivnath Babu † Jeffrey S. Chase † Sujay S. Parekh ‡

Duke University † IBM T.J. Watson Research Center ‡
Durham, NC, USA Hawthorne, NY, USA

{harold, shivnath, chase}@cs.duke.edu sujay@us.ibm.com

ABSTRACT

With advances in virtualization technology, virtual machine ser-
vices offered by cloud utility providers are becoming increasingly
powerful, anchoring the ecosystem of cloud services. Virtual com-
puting services are attractive in part because they enable customers
to acquire and release computing resources for guest applications
adaptively in response to load surges and other dynamic behaviors.
“Elastic” cloud computing APIs present a natural opportunity for
feedback controllers to automate this adaptive resource provision-
ing, and many recent works have explored feedback control poli-
cies for a variety of network services under various assumptions.

This paper addresses the challenge of building an effective con-
troller as a customer add-on outside of the cloud utility service it-
self. Such external controllers must function within the constraints
of the utility service APIs. It is important to consider techniques
for effective feedback control using cloud APIs, as well as how to
design those APIs to enable more effective control. As one exam-
ple, we explore proportional thresholding, a policy enhancement
for feedback controllers that enables stable control across a wide
range of guest cluster sizes using the coarse-grained control offered
by popular virtual compute cloud services.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Design studies, Modeling tech-
niques, Performance attributes; C.2.4 [Computer-Communication

Networks]: Distributed Systems—Distributed applications; D.2
[Software Engineering]: Management

General Terms

Management, Measurement, Performance

Keywords

Automated control, feedback control, cloud computing, data center

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACDC’09, June 19, 2009, Barcelona, Spain.
Copyright 2009 ACM 978-1-60558-585-7/09/06 ...$5.00.

1. INTRODUCTION
Cloud computing derives from a long history of research and de-

velopment on various approaches to IT outsourcing, in which cus-
tomers draw from a utility provider’s pool of capacity on a pay-as-
you-go basis as an alternative to operating their own infrastructure.
Some approaches target specific classes of applications. For exam-
ple, the market for turnkey Application Service Providers (ASPs) is
active in some sectors (e.g., salesforce.com), and MapReduce/Hadoop
middleware is widely used for data-parallel cluster computing clouds.

This paper focuses on cloud computing infrastructure services.
Typically the customer or guest selects or controls the software for
virtual server instances obtained from one or more utility resource
providers. The resource providers own hosting substrate resources
(e.g., servers and storage), and offer them for lease to the guests.
The guests may in turn use their private “slices” of leased resources
to run software that provides a service to a dynamic community of
clients. Virtual computing cloud infrastructure is a common and
flexible example of the utility computing paradigm: recent offer-
ings include Amazon Elastic Compute Cloud (EC2) [1], Aptana
Cloud [3], and Joyent [6]. Advances in virtualization technologies,
such as platform support (e.g., Intel’s VT extensions) and hypervi-
sor software (e.g., Xen [9] and VMware [8]), have made it easier
for resource providers to adopt this paradigm and offer shared pools
of hosting server resources as a service to guests.

Figure 1: A guest, with a control system, running a web service

on a dynamic slice of leased server resources.

Consider a simple motivating scenario in which a small startup
company runs a web application service, e.g., a Tomcat [2] server
cluster that serves dynamic content to clients (see Figure 1). Rather
than purchasing its own infrastructure to run its service, the com-
pany leases a slice of resources from a cloud hosting provider to
reduce capital and operating costs. The application is horizontally
scalable: it can grow to serve higher request loads by adding more
servers. The hosting provider is modeled on Amazon’s EC2 ser-
vice [1]. It bills its guests on a per-instance hour basis for active vir-
tual machines, and offers an API with a fixed set of sizing choices
for each virtual machine instance: small, large, and extra large. The

cloud API also offers support for zones to guide the placement of
VM instances in the network.

The guest company wishes to manage the resources in its slice
so as to maximize the return on its investment, while handling the
stream of client requests with acceptable service quality. One op-
tion is for the guest to simply lease a static set of virtual servers.
This approach works only if there is a single “ideal” size for the
server set: service quality degrades if the slice is underprovisioned,
and the guest pays excess rent if the slice is overprovisioned.

Cloud hosting services offer an opportunity for the customer to
monitor the guest application and modulate the slice resources dy-
namically to balance service quality and cost. The challenge is to
provide a general platform and off-the-shelf feedback control poli-
cies to automate this dynamic adaptation and take advantage of the
natural elasticity of shared resources in cloud computing systems.
The control policies must be stable and effective under the wide
range of conditions that might be encountered in practice. Adaptive
resource provisioning is just one example of the need for feedback-
driven application control.

One premise of this paper is that cloud customers should be em-
powered to operate their own dynamic controllers, outside of the
cloud platform itself, or perhaps as extensions to the cloud plat-
form. Starting from this premise, we focus on the problem of
building external controllers for dynamic applications hosted on
the cloud. We refer to the guest application controllers as slice con-

trollers. Our perspective presents challenges for the design of both
the cloud platform and the guest slice controllers. From the per-
spective of the cloud platform, the challenge is to export a sufficient
set of well-behaved sensors and actuators to enable control policies
to function effectively: Karamanolis et al. [11] suggest that system
builders should focus on designing systems that are amenable to
feedback control using standard off-the-shelf control policies. On
the other hand, the slice controllers must make the best of the sen-
sors and actuators built into the APIs that are actually available, and
these APIs may be constrained in various ways to simplify the plat-
form. For example, the APIs tend to provide a coarse granularity
of control rather than the continuous or approximately-continuous
actuators.

After discussing some of the issues raised by applying previous
work in feedback-controlled services to the cloud computing con-
text, we focus in detail on one example to illustrate the impact of
the shift in perspective on the design of control policies. We out-
line the design of proportional thresholding, a control technique
for systems with coarse-grained actuators and a wide range of ac-
tuator values. It modifies an integral controller by using a dynamic
target range for the reference signal, instead of a target value as
in previous work. The target range adjusts to changes in the ac-
cumulated actuator values. We present a preliminary evaluation
of an external slice controller for a simple horizontally scalable
web service. The prototype service is hosted on a cloud platform
based on Automat [18] and the Open Resource Control Architec-
ture (ORCA) [7]), a control framework for dynamic resource leasing
in a shared network computing infrastructure. Experiments show
that proportional thresholding enhances stability at small cluster
sizes while preserving precise control at large cluster sizes.

2. FEEDBACK CONTROL IN A CLOUD

COMPUTING INFRASTRUCTURE
There have been a number of works on using feedback control

to meet service requirements (e.g., [14, 15, 16, 17]). However, ex-
tending their approaches to the context of cloud computing presents
new challenges. This section expands on the issues for effective
slice controllers in a cloud computing infrastructure.

2.1 Decoupled Control
Cloud hosting platforms export a defined service interface to

their customers (guests). The interface provides a useful separa-
tion of concerns: the guest is insulated from the details of the un-
derlying physical resources, and the provider is insulated from the
details of the application.

Our position is that the controller structure should also reflect
this separation of concerns in the functionalities of the controllers.
A cloud hosting provider runs its own control system (a cloud con-

troller) to arbitrate resource requests, select guest VM placements,
and operate its infrastructure to meets its own business objectives.
But application control should be factored out of the cloud platform
and left to the guest. A clean decoupling of application control pol-
icy from the cloud platform mechanism is a necessary architectural
choice to prevent cloud platforms from becoming brittle as guest
demands change.

One way to facilitate this separation is for guests to select or im-
plement their own (optional) slice controllers, outside of the cloud
hosting platform. A principled layering offers the best potential
for guests to innovate in their control policies and customize their
controllers to the needs of their applications, and for the control
architecture to scale to large numbers of diverse guests. For exam-
ple, this structure is common to Amazon EC2 and Eucalyptus [4].
Both of these providers have their own control policy for arbitra-
tion, which is encapsulated from guests.

The layered approach requires a cloud hosting API that is suf-
ficiently rich to support these interacting controllers. This separa-
tion implies that the guest slice controllers function independently
of one another. Moreover, the cloud controller functions without
direct knowledge of the application performance metrics, or the
impact of allocation and placement choices on the service quality
of the guests: it must obtain any knowledge it requires from the
slice controller through the cloud hosting API. It is an open ques-
tion how advanced control policies should interoperate and coop-
erate across the platform boundary. Note that these controllers are
self-interested and are not mutually trusting: the interacting control
loops have the structure of an economic negotiation.

The ORCA interface is based on resource lease contracts whose
terms are negotiated and expressed through exchanges of property
lists. Each lease object is valid for a stated term (interval), and may
be renegotiated and extended before it expires. The lease terms
define the control interval for active resources (e.g., virtual servers),
although additional resources may be leased for the slice at any
time. The property lists define the parameters of the negotiation:
their structure and interpretation must be agreed by the interacting
controllers.

Many of the previous works on feedback-controlled adaptive re-
source provisioning assume a central controller that combines ap-
plication control and arbitration policy (e.g., [15, 17, 16]). Ur-
gaonkar et al. [17] use queueing theory to model a multi-tier appli-
cation and to determine the amount of physical resources needed by
the application. Soundararajan et al. [16] present control policies
for dynamic provisioning of a database server. These approaches
do not transfer directly to cloud environments with decoupled con-
trol. Padala et al. [14] is suitable for decoupled control, but requires
adjustment for coarse-grained actuators, as discussed below.

2.2 Control Granularity
The control API for the cloud hosting platform is a “tussle bound-

ary”. There may be a gap between the sensors and actuators desired
by slice controllers and those exposed by the resource providers.
Providers may hide useful information to preserve their flexibility,
or hide power to simplify the operation of the cloud controller pol-

icy and the underlying hosting mechanisms. The slice controller
must make the best of whatever sensors and actuators are available,
and whatever control intervals and granularity the provider allows.

For example, in a virtualized environment, resource providers
may choose not to export the access to hypervisor-level actuators
of the cloud computing infrastructure, such as controlling the CPU
and memory allocations of a virtual machine and the location of the
physical host of a virtual machine. EC2 and Eucalyptus discretize
into a small range of predefined sizes, and do not expose these fine-
grained actuators.

It is an open question what granularity is required for effective
control. Many previous works on feedback control for Internet ser-
vices have focused on an integrated control loop with fine-grained
access to the sensors and actuators of the underlying virtualization
platform on a single server. For horizontally scalable clusters, it is
necessary to dampen the control loop at small cluster sizes, when
the control granularity is coarse relative to the allocated resource
(accumulated actuator value). Section 3 discusses a proportional

thresholding technique for slice controllers to function with the
coarse-grained control that is typical of current cloud platforms.

2.3 Other API Constraints
The experiments with proportional thresholding in this paper as-

sume a simple clustered web service. Content is generated by a
CPU-bottlenecked middle tier (a Tomcat cluster), with a front-end
Apache server that balances request load across the middle tier. The
guest runs the Hyperic HQ [5] monitoring system within its slice to
obtain a feedback signal of CPU utilization, which is presumed to
be accurate. The feedback signal drives the control policy, which
modulates the number of virtual machines in the middle tier with
knowledge that the middle tier is automatically request-balanced.

More realistic scenarios raise additional issues for the cloud plat-
form API.

Sensors.
Since the underlying resources are owned by the resource provi-

der, the slice controller depends on the cloud platform for accurate
sensor measurements at the resource level. Choices made by the
cloud provider may have unintended effects on the suitability of
the measurements for a feedback control policy. For example, con-
sider a virtual machine service based on a work-conserving propor-
tional share CPU scheduler in the hypervisors. CPU utilizations
may be reported as a percentage of the VM’s assigned share (enti-
tlement), or as a percentage of the CPU resource actually available
to it, which may be more than the assigned share if the physical
node has surplus resources. A choice made by the hosting provi-
der for more efficient resource usage (a work-conserving scheduler)
may result in a noisy sensor measurement.

One solution is for the cloud platform to expose well-specified
sensors that are suitable for stable control. Another solution is to
design slice controllers that are robust to noisy sensor measure-
ments and/or that rely on application-level measures they can ac-
cess directly (e.g., request load level, queue lengths). Hyperic HQ
provides a range of application-level measures for various appli-
cations. This paper uses CPU utilization reported from the Xen
hypervisor with the CPU allocation bounded at the share size.

Actuators.
Horizontally scalable network services use a variety of means

to direct the flow of requests to servers. Request routing solutions
may involve programmable network elements installed by the host-
ing provider. Cloud platform APIs will need to expose suitable ac-
tuators for the slice controller policy to configure and adapt request
routing or other programmable network elements.

There are many related research questions involving internal sen-
sor/actuator constraints.

• How much internal knowledge does the slice controller need,
in order to be effective?

• How much internal control needs to be exposed for the slice
controller to be effective?

• How do we integrate the internal guest constraints to the
guest control policy?

– In a multi-tier application, how do we design an effec-
tive control that deals with tier interactions?

– How do we factor into the control policy the network
elements and constraints of the guest service, such as
request routing?

– How do we design an effective control policy that takes
into consideration stateful guest services?

3. PROPORTIONAL THRESHOLDING
This section presents proportional thresholding to illustrate the

challenges of coarse-grained control and the means to address it in a
slice controller for a cloud hosting platform. Our control approach
is similar to Padala et al. [14], which dynamically adjusts the CPU
entitlement of a virtual machine to meet Quality of Service (QoS)
goals by empirically modeling the relationship of CPU entitlement
and utilization to tune the parameters of an integral control. The
question is how to adapt the control policy for the case when fine-
grained actuators for adjusting CPU entitlements are not available,
e.g., the slice controller can only request changes to the number
of virtual machines in a cluster. Resizing the number of virtual
machines changes the capacity of the slice in coarse discrete incre-
ments. At small cluster sizes this may cause the control system to
oscillate around a target CPU utilization.

Other works have considered the oscillation problem and instead,
use static thresholding for their control policy (e.g., [17, 16]). In
this policy, rather than having only one target goal, the goal is
turned into a target range, defined by a high and low threshold.
Thus, the system is considered on target when the sensor measure-
ment falls inside the target range. Urgaonkar et al. [17] use this
idea to allocate physical servers for a multi-tier Internet applica-
tion. Only when the observed rate differs from the predicted rate
by an application-defined range does the server resize. Their pol-
icy releases resources only when they are needed by other applica-
tions, which is difficult to achieve when the application controllers
and cloud controller are decoupled. Similarly, Soundararajan et
al. [16] present control policies for dynamic replication of database
servers based on static thresholding with a target range. Their con-
trol policies are in steady state only when the average latency of
their database servers is inside the low and high threshold.

Static thresholding is simple to use, however, it may not be robust
to scale. Consider the motivating scenario, mentioned in Section 1,
of a guest running as a web service host. Since the Tomcat cluster is
request-balanced, going from 1 to 2 machines can increase capacity
by 100% but going from 100 to 101 machines increases capacity
by not more than 1%. The relative effect of adding a fixed-sized
resource is not constant, so using static threshold values may not
be appropriate.

3.1 Design of Proportional Thresholding
Proportional thresholding addresses the problems outlined in the

previous section. This control policy modifies an integral control
by using a dynamic target range, instead of a single target value.
Moreover, the dynamic target range decreases as the accumulated
actuator values increases. Proportional thresholding is particularly

important for sensors with large dynamic range and fixed coarse-
grained actuators, such as using horizontal scaling to handle flash
crowds, while maintaining a certain CPU utilization target. Specif-
ically in our motivating scenario, the impact of a constant change
in the actuator value is dependent on the current server set. For ex-
ample, in a request balanced cluster, this behavior is illustrated in
Figure 2, where we plot the effect of increasing the size of a Tomcat
cluster to the CPU utilization while maintaining a fixed workload.

1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

A
v
e

ra
g

e
 C

P
U

 U
ti
liz

a
ti
o

n
 (

%
)

Cluster Size

Cluster Size vs Average CPU Utilization

Figure 2: The effect of increasing the size of a Tomcat cluster

to the CPU Utilization while maintaining a fixed workload.

Similar to Padala et al. [14], the control policy uses an integral
control because it eliminates steady state errors. An integral control
is defined by

uk+1 = uk + Ki × (yref − yk), (1)

where uk+1 is the new actuator value, uk is the current actuator
value, Ki is the integral gain parameter, yref is the target sensor
measurement, and yk is the current sensor measurement. The in-
tegral gain parameter Ki can be estimated empirically [15]. To
avoid the problem of having oscillations due to the coarse-grained
actuator, we then define yh and yl as the high and low target sen-
sor measurements, which defines the target range. The modified
integral control is as follows:

uk+1 =

8

>

<

>

:

uk + Ki × (yh − yk) if yh < yk

uk + Ki × (yl − yk) if yl > yk

uk otherwise

. (2)

This way, similar to static thresholding, a change in the actuator
value only occurs when the sensor measurement is outside the tar-
get range. More specifically, the actuator increases value only when
it is above the high target and decreases in value when it goes below
the low target.

In proportional thresholding, the target range used by the con-
troller should be able to change dynamically depending on the ac-
cumulated actuator values. This addresses the problem with static
thresholds, which does not give an effective control, in terms of en-
suring high resource utilization and meeting client demands. With
static thresholds, the behavior in Figure 2 can potentially lead to
poor resource utilization. It should be noted that this behavior is
not restricted to horizontal scaling.

The dynamic target range should capture the property of being
resource-efficient. Since the relative effect of the increment be-

comes finer as the number of allocated resources, the target range
should narrow for more precise control as the number of allocated
resources increases. This means that our modified integral control
(Equation 2) should have the property of converging to the stan-
dard integral control (Equation 1) as the accumulated actuator val-
ues goes to infinity. In order to achieve this behavior and assuming
we set yh = yref , proportional thresholding adjusts yl depending
on the number of actuator values accumulated and at the same time
have the following behavior: limx→∞ yl = yref , where x is the
accumulated actuator values. In the next section, we describe our
prototype control system and how we formulate the control param-
eters, specifically Ki and the equation for yl for a specific actua-
tor by empirically modeling the behavior of an actuator and sensor
measurements.

4. EXAMPLE

200 400 600 800 1000 1200 1400 1600 1800

10

20

30

40

50

60

70

80

Workload (Thread)

C
P

U
 U

ti
liz

a
ti
o

n
 (

%
)

Workload vs CPU Utilization

Data points
Fitted Curve

Figure 3: The CPU utilization of a Tomcat server under various

workload.

4.1 Prototype Control System
Like our motivating scenario, our guest serves as a web service

host by using leased virtual machines to form a Tomcat cluster.
Moreover, as mentioned in Section 2, our prototype assumes that
there is a front-end Apache web server that balances the distribution
of requests across all cluster nodes.

We use ORCA as the underlying architecture and resource leasing
mechanism. It is a software toolkit developed at Duke University
that allows guests to lease resources from a resource substrate. It is
also a service-oriented infrastructure and the architecture provides
resource leasing abstractions for the guests. Using virtualization,
ORCA enables guests to share a common pool of resources [7]. Fur-
thermore, to emulate the API provided by Amazon EC2, we only
expose similar API functionalities to the control system. We use
Automat [18] for our control interface. It is a programmable host-
ing center toolkit integrated with ORCA that supports external slice
controllers. Similar to the motivating scenario, our slice controller
performs horizontal scaling. We also use Hyperic HQ to gather the
CPU utilization of all leased virtual machines. The sensor measure-
ment used by our control system is then the average CPU utilization
of all allocated virtual machines, filtered by an exponential moving
average filter.

4.2 Control Parameters
For the parameter Ki of our control policy, we use the value

Ki = −.07, which is estimated offline. This value is derived by
using linear regression to model the relationship between the CPU
utilization and the cluster size under a synthetic heavy workload:
yk+1 = .8819yk − .5892uk . Using the Z-transform of this model,
we estimate the settling time and maximum overshoot correspond-
ing to a range of Ki values. We then use a Ki that gives a set-
tling time of 15.12 sample intervals and maximum overshoot of
0.0002544%.

Since the Tomcat cluster is request-balanced, we empirically mea-
sured the CPU utilization of a single machine under various work-
load to formulate the equation for yl (see Figure 3). From these
data, we find the best-fit curve, which in this case is

CPU = (3.869 × 10−5) × workload
1.947

. (3)

Given a target CPU utilization, yh, we can then use the equation to
get the estimated average workload for each machine applied to the
system:

workloadest = (
yh

3.869 × 10−5
)

1

1.947 . (4)

The idea is that we are interested in finding the lowest threshold
value, such that the minimum amount of resources is used while
still satisfying client demands. workloadest tells us that any av-
erage workload greater than workloadest will result in a CPU
utilization of greater than yh. This means that we only want to re-
duce the number of virtual machines if the resulting average work-
load is less than or equal to workloadest. The total workload
from workloadest when the number of machines is reduced by 1
is given by

workloadtot = workloadest × (currVM− 1). (5)

Using workloadtot to solve for the average workload of the cur-
rent number of machines gives the lowest average workload that is
also greater than or equal to the average workload of the number of
machines reduced by 1:

workloadlow = workloadest ×
currVM− 1

currVM
. (6)

We then calculate the yl by applying workloadlow to Equation 3.

yl = yh × (
currVM− 1

currVM
)1.947

(7)

Equation 7 shows that yl converges to yh as the number of virtual
machines becomes very large. Moreover, proportional threshold-

ing converges to the standard integral control (Equation 1).
In this example, we formulate the control parameter Ki and the

equation for yl offline, which depending on the type of target sys-
tems may already be enough. In our case, even though the model
may turn out to be not very accurate due to changes in workload,
our control system is still able to have an acceptable and stable
behavior. One of the benefits of feedback control is that an ac-
curate estimate of the models is not necessary because it can be
robust to errors in the parameter estimates. For example, using the
Ki = −.07 under a lighter workload gives a settling time of 39.96
sample intervals and maximum overshoot of −.004345%, which
has a longer convergence time but still results in a stable controller.
Furthermore, another reason is that the spectrum of workloads used
to formulate yl encompasses a wide spectrum. As mentioned by
Hellerstein et al., a good strategy for modelling systems is to start
simple, which means that there is no need to develop a complex
model, if a simpler model is already sufficient [10]. Nevertheless,

5 10 15 20 25 30 35 40 45 50 55
0

10

20

30

40

50

60

70

80

90

100

Time intervals (every minute)

A
v
e

ra
g

e
 C

P
U

 U
ti
liz

a
ti
o

n
 (

%
)

WL1650 WL1000WL1000

+1VM −1VM

CPU Utilization

y
h

y
l

(a) Proportional Thresholding

5 10 15 20 25 30 35 40 45 50 55
0

10

20

30

40

50

60

70

80

90

100

Time intervals (every minute)

A
v
e

ra
g

e
 C

P
U

 U
ti
liz

a
ti
o

n
 (

%
)

WL1650 WL1000WL1000

+1VM

−1VM

+1VM

−1VM

+1VM

−1VM

CPU Utilization

y
ref

(b) Integral Control

Figure 4: Comparison between proportional thresholding and

integral control.

there are target systems that need a complex and accurate model,
which requires tuning the control parameters online. Although not
specifically for automated control in cloud computing, there have
been works that applies adaptive controllers for computing sys-
tems [13, 12]. We leave the research problem of integrating the
modeling process with the control system as a future work, specif-
ically for a cloud computing infrastructure.

5. EVALUATION
To evaluate our prototype control system, we compared the per-

formance of our prototype using 3 control policies under various
synthetic workloads: proportional thresholding, static threshold-
ing, and integral control.

In Figure 4, we conducted an experiment, where we first applied
a workload of 1000 threads, then at the 10th time interval, we in-
creased the workload to 1650 threads, and finally at the 40th time
interval the workload goes back to 1000 threads. Figures 4(a), and
4(b) show the behavior of the controller under proportional thresh-

olding and integral control, respectively. Note that both figures start
with 1 allocated virtual machine. Under proportional thresholding,
the system does not oscillate, such that the controller allocates 1
virtual machine when the workload is 1000 threads and 2 virtual

5 10 15 20 25 30 35 40 45 50 55
0

10

20

30

40

50

60

70

80

90

100

Time intervals (every minute)

A
v
e

ra
g

e
 C

P
U

 U
ti
liz

a
ti
o

n
 (

%
)

WL1000 WL1650 WL3200 WL2450

+1VM
+1VM −1VM

CPU Utilization

y
h

y
l

(a) Proportional Thresholding

5 10 15 20 25 30 35 40 45 50 55
0

10

20

30

40

50

60

70

80

90

100

Time intervals (every minute)

A
v
e

ra
g

e
 C

P
U

 U
ti
liz

a
ti
o

n
 (

%
)

WL1000 WL1650 WL3200 WL2450

+1VM +1VM

CPU Utilization

y
h

y
l

(b) Static Thresholding

Figure 5: Comparison between proportional and static thresh-

olding.

machines when the workload goes up to 1650 threads. In contrast,
under integral control, the system oscillates between 1 and 2 virtual
machines when the workload goes up to 1650 threads, which may
not be desirable since it leads to short-term unpredictability.

In Figure 5, we conducted an experiment where we slowly ramp
up the number of threads from 1000 to 1650 to 3200 and then fi-
nally decreasing the workload to 2450 threads. Figures 5(a), and
5(b) show the behavior of the controller under proportional thresh-

olding and static thresholding, respectively. Like the previous ex-
periment, both figures also start with 1 allocated virtual machine.
Figure 5(a) also shows how yl changes with cluster size, specifi-
cally, with 3 virtual machines, yl has gone up to 23.84%. When the
workload drops to 2450 threads, the controller is able to reduce the
cluster size to 2 virtual machines and hence, conserve resources.
This is in contrast to static thresholding, where the cluster size re-
mains at 3, even though 2 virtual machines are enough to handle
the workload.

6. CONCLUSION
We have presented issues that make feedback control in a cloud

computing infrastructure different from feedback control of other
computer systems: decoupled control, and control granularity. More-
over, we have shown why prior works related to automated control
may not work, when used in a cloud computing infrastructure. We
have introduced proportional thresholding, a new control policy
that takes into account the coarse-grained actuators provided by re-
source providers. Using the actuator constraints similar to Amazon
EC2, we have presented a prototype control system that performs
better than traditional integral control and static thresholding.

Acknowledgment. This research is supported by the National
Science Foundation through CNS-0509408 and CNS-0720829.

7. REFERENCES
[1] Amazon Elastic Compute Cloud (EC2).

http://aws.amazon.com/ec2/.

[2] Apache Tomcat. http://tomcat.apache.org/.

[3] Aptana Cloud. http://aptana.com/cloud/.

[4] Eucalyptus. http://eucalyptus.cs.ucsb.edu/.

[5] Hyperic HQ Open Source Web Infrastructure Management
Software. http://www.hyperic.com/.

[6] Joyent. http://www.joyent.com/.

[7] Open Resource Control Architecture (ORCA).
http://www.nicl.cod.cs.duke.edu/orca/.

[8] VMware: Virtualization via Hypervisor, Virtual Machine &
Server Consolidation. http://www.vmware.com/.

[9] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and the
art of virtualization. In Proc. of SOSP, 2003.

[10] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury.
Feedback Control of Computing Systems. John Wiley &
Sons, 2004.

[11] C. Karamanolis, M. Karlsson, and X. Zhu. Designing
controllable computer systems. In Proc. of HOTOS, 2005.

[12] M. Karlsson, C. Karamanolis, and X. Zhu. An adaptive
optimal controller for non-intrusive performance
differentiation in computing services. In Proc. of ICCA,
2005.

[13] Y. Lu, T. Abdelzaher, and G. Tao. Direct adaptive control of
a web cache system. In Proc. of American Control

Conference, 2003.

[14] P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang,
S. Singhal, A. Merchant, and K. Salem. Adaptive control of
virtualized resources in utility computing environments. In
Proc. of EuroSys, 2007.

[15] S. Parekh, N. Gandhi, J. Hellerstein, D. Tilbury, T. Jayram,
and J. Bigus. Using control theory to achieve service level
objectives in performance management. In Proc. of IM, 2002.

[16] G. Soundararajan, C. Amza, and A. Goel. Database
replication policies for dynamic content applications. In
Proc. of EuroSys, 2006.

[17] B. Urgaonkar, P. Shenoy, A. Chandra, and P. Goyal.
Dynamic provisioning of multi-tier internet applications. In
Proc. of ICAC, 2005.

[18] A. Yumerefendi, P. Shivam, D. Irwin, P. Gunda, L. Grit,
A. Demberel, J. Chase, and S. Babu. Towards an autonomic
computing testbed. In Proc. of HotAC, 2007.

